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- 53-

Exact Controllability of the Wave Equation
with Neumann Boundary Condition and

Time-Dependent Coefficients(*)

MARCELO MOREIRA CAVALCANTI(1)

Annales de la Faculte des Sciences de Toulouse Vol. VIII, n° 1, 1999

On considere la contrôlabilité exacte frontiere de l’équation

lorsque le controle est de type Neumann et 03A9 est un ouvert borne connexe
de I~~‘. On utilise la methode HUM (Hilbert Uniqueness Method) de J.-L.
Lions.
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ABSTRACT. - In this paper we study the exact boundary controllabil-
ity for the equation

when the control action is of Neumann type and 03A9 is a bounded domain
in 1L8’~. The result is obtained by applying HUM (Hilbert Uniqueness
Method) due to J.-L. Lions
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1. Introduction

Let 52 be a bounded domain in with C2 bondary r, and let Q be
the finite cylinder 52 x ] 0 , T [ with lateral boundary E = r x ] 0 , T [. We
consider the following system with inhomogenous boundary conditions

where

The problem of the exact controllability for the system (1.1) is formulated
as follows.

PROBLEM 1.1.- Given T > 0 large enough, it is possible, for each pair
of initial data defined in a suitable space, to find a control v such
that solution y = y(x, t) of (1.1) satisfies the condition

Let us note that when a(t) = ~3(t) = a(x) = 1, Problem 1.1 was studied
by J .-L. Lions [12] by using HUM and also by I. Lasiecka and R. Triggiani
[10] by using the ontoness approach. Many other authors studied the exact
controllability of distributed systems with time-dependent or x-dependent
coefhcients. Among them, we can cite J. Lagnese [8] who firstly worked
in boundary controllability of distributed systems with time dependent
coefhcients and C. Bardos, G. Lebeau and J. Rauch [2] whose work treats to
the geometric optics approach in the case of space dependent coefhcients. In
this direction, we can also cite, V. Komornik [11] who presents an elementary
and constructive method to obtain the optimal estimates needed in HUM
(Hilbert Uniqueness Method) for the exact controllability of some linear
evolution systems, R. Fuentes [7], L. A. Medeiros [14], M. Milla Miranda
[15], M. Milla Miranda and L. A. Medeiros [16], J. A. Soriano [17], among
others.



In this work we prove that system (1.1) is exactly controllable by making
use of HUM, c.f. J.-L. Lions [12]. For this end, we employ the multiplier
technique to obtain the inverse inequality. When the coefhcients depend on
time, after making appropriated hypothesis on them, the inverse inequality
still remains true; but since standard arguments are not applicable, the
regularity of backward problem requires a new proof which is the main task
of this work (Theorem 5.1 ) .

In fact, the goal of this work is to show that HUM can be applied to
the case of time-dependent coefficients with Neumann boundary condition.
In order to simplify the computations, we consider the simple operators
defined by (1.2). Howover, with appropriated changes, we can extend our
results to those ones given by

with a(x, t) > fp > 0 in S2 x (0, oo). Now, when we consider the matricial
operators

the usual arguments cannot be applied even if i = j and t) = ai ( x )
(Remark 1, Sect. 4). 

’

Our paper is divided on sixth chapters. In Section 2, we give notations
and state the principal result. In Section 3, we consider the homogeneous
problem and in Section 4 we establish the inverse inequality. In Section 5,
we study the backward problem and in the last section (Sect. 6) we apply
HUM.

2. Notations and Main Result

Let xO E the unit exterior normal vector at x E r, m(x) =
x E and 

)



In what follows the symbol " ~ " denotes the inner product in II8’~. Let us

define

Let us introduce some notations that will be used throughout this work.
We are going to denote ( ~ , ~ ) and [ . the inner-product and the norm of
L2(S2) respectively. The norm in will be denoted by [[ . II.

Let A be the operator defined by the triple L2(S2), a(u, v)}
where

We recall that the Spectral Theorem for self-adjoint operators guatantees
the existence of a complete orthonormal system (wv ) of given by the

eigenfunctions of A. If are the corresponding eigenvalues of A, then
Av - +00 as v -~ +00. Besides,

Considering in D(A) the norm given by the graph, that is,

it turns that is a complete system in D(A). . In fact, it is known that
is also a complete system in Now, since A is positive, given

6 > 0 one has



In we consider the natural topology given by the norm

We observe that such operators are also self-adjoint, that is,

D(Al/2) = and D(AO) = L2(S2). We note that A(t) = Here,
we are using the same symbol for both operators to simplify the notation.

We make the following hypotheses :

(H2) if n > 1,

(H3) if n = 1,

Now we are in position to state our main result. Consider the system,

We have the following result.



THEOREM 2.1.- Suppose that assumptions are satisfied.
Then there exists a time To > 0 such that for T > To and initial data
{yo, yl} E L2(S2) x ~H1(S2)~~, there exists a control

such that the ultra-weak solution (the solution of (2.IJ is defined by the
transposition method, see (1 ‘~~~ y = y(x, t) of (2.1~ satisfies

3. The Homogeneous Problem

In this section we present a standard result and a new one about the
solutions of the following homogeneous system

We have the following results.

THEOREM 3.1.- Suppose that assumption (Hl) holds. Then, given
k E {0,1, 2} and

problem (~‘l.1) possesses a unique solution B : Q --~ R such that,

Moreover, the linear map

is continuous.



Theorem 3.1 can be proved in a standard way by applying the Faedo-
Galerkin method and using the spectral considerations given in Section 2.

Next we consider the homogeneous problem

which will be used in the study of the regularity of the solution of (2.1). .

THEOREM 3.2. - Given f E D ~0, T D(A)), the unique solution of
problem (~‘3.2J satisfies for every t E ~ 0 , T 

where C = C(T).

Proof . - Since B~ = Bl = 0 and f ~ E D ~0, T ; D(A)~ from Theorem 3.1
the above problem has a unique solution B such that

Besides, this solution satisfies the identity

From (3.3) we get AB E C°([0, T]; D(Al/2)) and therefore



This togheter with assumption (HI) implies that

Integrating this equality and noting that f (0) = 0 we have

Replacing by f’ - in the last integral we obtain

Now integrating by part and noting that f (0) = 0,



Replacing (3.6) in (3.5) we have

From (3.4) and (3.7) it follows that

Denning o-~~ - &#x26;-~/~/ = ~. and replacing by a-~/2~ + in the
above expression we obtain



From hypotheses (Hl), (H2) and (3.8) there exists a constant C > 0

independent of f and 8 such that

Applying Gronwall’s inequality twice (first we consider the Gronwall in-

equality (1/2)g2(t)  fo m(s)g(s) ds where g(t) = I and
m(t) = 2C(g(t) + IAf(t)I) and after the usual one), we get

In a similar way we also infer that

Using the definition on ~p we obtain the desired inequalities. 0

4. The Inverse Inequality

In this section we construct a special To time depending on n, on

the functions a(t), ,Q(t), a(t) and also on the geometry of Q.

Taking into account the regularity of 0393, we can define on F a unit exterior

normal vector field v(x) on class C1. In the same way we can define a family
of (n - 1) tangent vector field { T1 (x), ... , (x) ~ of class C1 such that
the family { v(x), T1 (x), ... (x) ~ defines an orthonormal basis 
for each x E I‘ . regular function, we have

where



Defining

we obtain from (4.1) and (4.2)

We observe that when ~03C6/~03BDA = 0 on r then ~03C6/~03BD = 0 since

Then, defining y~ = ~p, ... we obtain from (4.3)

and consequently

Remark 1.2014 At this point we observe that when A is a matricial

operator that is, when it is given by

then we have

and therefore if = 0 we do not have necessarely that = 0 and

consequently we cannot use the identity

even if i = j and t) = As this identity plays an essential role
to prove the inverse inequality, this case requires another treatment which
will not be considered in this work.



If 03C6 E H2(O) we can define in a natural way a continuous linear operator

such that

In addition, we can also define a continuous linear operator

where Fo is a nonempty open subset of r (sometimes the whole r) such that

Thus, from (4.7), (4.9) and by density arguments it results that

Considering the above equality we are able to define the tangential
gradient

Dropping the index "2" in (4.8) to simplify the notation, we define the
adjoint operator

and from (4.8) and (4.11) we obtain the continuous linear operator

where "o" denotes composition.



Hence, for all ~, ~ E H1 (T‘o),

In particular

THEOREM 4.1.- Let B be the weak solution (it means that the initial
data E H1(52) x L2(S2)) of the Problem (~5.1). Then, if f = 0,

where

and

Proof.- We consider first that E D(A) x Then, from
Theorem 3.1, there exists a unique solution e in the class

Multiplying (3.1), by 8’(t) we obtain

Integrating this expression from 0 to t and then integrating by parts we get



Taking into account (4.14) we can rewrite the above expression as follows

On the other hand, differentiating E(t) we have

So

where

The above inequality gives,

Now, considering

it follows from (4.15) that

Finally, considering

we obtain the desired result by using density arguments. D



THEOREM 4.2.- Let q be a vector field such that q E
Then each weak solution ~ of Problem (~.IJ satifies

Proof. - First we prove the identity for the strong (it means that the
initial data E D(A) x Hl (S2)) solutions of (3.1) and then the result
follows by a density arguments. So, let us suppose that

By multiplying the first equation of (3.1) by and integrating
over Q,

Integrating by parts the left side of equality (4.16) we get

On the other hand, since



we have from (4.17) that

We also have

Thus, combining (4.19) and (4.18) we obtain

Now, evaluating the right side of (4.16) we have from Green identity

Combining (4.16), (4.20), (4.21) and (4.5) we obtain the desired identity. 0



The To time which Theorem 2.1 is defined by

and uniquely depends on n, a(t), ,~(t), a(t) and on the geometry
of S2.

THEOREM 4.3.- Suppose that hypotheses (HI), (H2) and (H3) hold and
that T > Tp. . Then for each weak solution ~ of (,~.1) with f = 0 there exists
C > 0 such that:

(i~ if n > 1 then

(ii) if n = 1 then

Proof. - By using the identity given in Theorem 4.2 with q(x) = m(x) =
x - we get after some calculations



On the other hand,

Multiplying the first equation of (3.1) by § and integrating on Q we have

Replacing (4.24) in (4.23) it follows that

Now, substituting (4.25) in (4.22) we obtain



Since = max{ Ilm(x)11 ; x E 52}, from hypothesis (HI) we have

From (4.26) and (4.27) we get

and from hypothesis (H2) and Theorem 4.1 we obtain

Next, we estimate the expression

From hypothesis (HI) and Theorem 4.1, we get,

and from (4.29) we obtain



From the above inequality we get

which together (4.28) implies that

This gives (i).

To prove (ii), we consider the identity



Then, it follows from (4.22) and (4.31) that

From (H3) we have that 0  ^y  1 and therefore,

Then, by making use of the same arguments of (4.27) and (4.28), from (4.32)
we obtain

Defining

from hypothesis (H2) and using similar arguments to the case n > 1, we
obtain (ii). D



THEOREM 4.4 (Inverse Inequality). - Suppose that (HI)-(H~) hold and
let T > Tp. . Then for each strong solution ~ of (~.IJ with f = 0 there exists
C > 0 such that:

(i) if n > 1

Proof. - We are going to prove the case (i) since (it) is analougous.
Dropping the terms which give negative contributions in Theorem 4.3 one
has

On the other hand, there exists a constant C2 > 0 such that

Indeed, since 4; is a regular solution of (3.1), then

and therefore



Defining

we have

and from (4.35) it follows that h, h’ E L2(0, T) and hence h E C°([0, T]).
Let to E ~ [0 , T] be a minimizer of h. Thus

and consequently

But, since to is a minimizer, we have

and then

Thus, from (4.36) and (4.37) we obtain

V t E [0, T], which proves (4.34). Combining (4.33) and (4.34) we get the
desired result. 0

5. The Backward Problem 

Let T > To where To is defined in the previous section, and consider the
following homogeneous problem:


