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Embedded Resolution of Singularities in Rigid
Analytic Geometry(*)

HANS SCHOUTENS(1)

Annales de la Faculte des Sciences de Toulouse Vol. VIII, n° 2, 1999
pp. 297-330

On donne une version analytique rigide du theoreme de
Hironaka de Resolution Immergee des Singularités, sur un corps alge-
briquement clos de caracteristique zero avec une norme complete ultra-

metrique. Cette resolution est locale dans la topologie de Grothendieck. La
demonstration est une application du résultat original de Hironaka et de
notre foncteur d’analytisation.

ABSTRACT. - We give a rigid analytic version of HIRONAKA’S Embed-
ded Resolution of Singularities over an algebraically closed field of char-
acteristic zero, complete with respect to a non-archimedean norm. This
resolution is local with respect to the Grothendieck topology. The proof
uses HIRONAKA’s original result, together with an application of our ana-
lytization functor.

0. Introduction and preliminaries

0.1. Introduction -

INTRODUCTION 0.I.I. - In this work we prove the analogue version of
HIRONAKA’S Embedded Resolution of Singularities in the frame work of
rigid analytic geometry. We will work over a fixed algebraically closed field
K, of characteristic zero, endowed with a complete non-archimedean norm.

(*) ) Recu le 15 janvier 1996, accepte le 29 janvier 1999
~) ) Mathematics Department, Wesleyan University, Middletown, CT 06459 (US)

hschoutens@wesleyan.edu



The requirement on the characteristic could be dropped, if a version of
HIRONAKA’S Theorem would be available in characteristic p.

Our main theorem (3.2.3) states that given an hypersurface in an affinoid
manifold, we can find a finite affinoid covering of the embedding space and
maps above each admissible open, which are a composition of finitely many
blowing up maps with ’nice’ centers, such that the inverse image of this
hypersurface under these maps has normal crossings. We show that this
theorem then implies a Desingularisation Theorem (3.2.5) in the following
sense: Given any integral rigid analytic variety, there exists an admissible
affinoid covering of this variety and above each admissible open a finite
sequence of blowing up maps after which the space becomes regular.

We haven’t bothered to give a fully global version of this theorem,
but contented ourselves with a version which is local with respect to the
Grothendieck topology, i.e., modulo an admissible aonoid covering. Nonethe-
less, using the more recent uniform versions of Embedded Resolution of
Singularities, such as [BM 2], one can modify the present proof to obtain
a global version of Embedded Resolution of Singularities; see the remark
following (3.2.3). However, for the applications we have in mind the local
version is more than sufficient. The main application appeared already in
the papers [Sch 2] and [GS] on the Uniformization of rigid subanalytic sets
(see also [Sch 3] and [Sch 5] for some more applications). In (3.2.6) we
give an extension of this Uniformization Theorem to the non-smooth case,
by using our Desingularization Theorem. A first but incomplete version of
Embedded Resolution had already appeared in our Ph.D. Thesis [Sch 0].

Let us briefly sketch an outline of the proof of our main theorem. Our
main tool is the principle of analytization of certain (algebraic) schemes
over K. An analytization of a scheme X over K is essentially a morphism
(7y, r~~ ) (X, O x ) --~ (X, Ox) of locally ringed spaces over K, where X is a
rigid analytic variety, such that this morphism is universal with respect to
morphisms of locally ringed spaces from a rigid analytic variety to X, for
a precise definition we refer to definition ( 1.1.1 ) . A notational remark: all
schemes and their maps will appear in bold face to distinguish them from
rigid analytic varieties and maps. By the universal property, it is straight-
forward to give also the definition of the analytization of a map between
schemes, both of which admit an analytization, so that we actually obtain
a functor from the category of analytic schemes (see (1.3.3) for a definition)
to the category of rigid analytic varieties.

We want to mention that the construction is a generalization of the an-
alytization of a scheme of finite type over K, which for instance is described
in the excellent book [BGR]. Our analytization is so to speak the relative



version of this, since we construct the analytization of any scheme of finite

type over an afhnoid algebra (and even a slightly larger class, see (1.3.4)).
In particular, if A is an aftinoid algebra, then SpA is the analytization of
SpecA. A main property of an analytization 7y : X ~ X, is that ~ induces
a bijection between the points of X and the closed points of X and that
the completion of the local morphism in a (closed) point is an isomorphism.
Therefore most properties of X are carried over on, or, vice versa, are deter-
mined by X, such as, for example, reducedness, regularity and normality.
(See (1.3.5)).

We also need a result on the maximal ideals of an algebra of finite
type over an affinoid algebra. We prove a Weak Nullstellensatz stating that
maximal ideals ’come from points’, in other words that their residue field
equals K, see (0.2.2). A result no longer true if one were to replace strictly
convergent power series by formal power series. We thank the referee for
pointing out Lemma (0.2.1) to us, thus simplifying the original proof of the
Nullstellensatz.

We would like to mention that U. K6PF has independently developed
the theory of analytization of schemes of finite type over afhnoid algebras in
her Ph.D Thesis [Kop], a fact which was brought to our attention by BOSCH
only after we had already written down the first draft of this work. She uses

’ 

a different starting point and a slightly different approach, but basically the
same results are obtained. In the second part of her work she then gives
a GAGA principle for the analytization of proper schemes of finite type
over an affinoid algebra. Since, however, her work is not readily available,
we decided to present the details of the analytization functor, in order to
remain self contained.

In the second chapter, we investigate the analytization of a blowing up
map. (For the definition and elementary properties of blowing up maps
in rigid analytic geometry, we refer to our paper [Sch 4].) Essentially we
show that blowing up commutes with the analytization functor, see (2.2.2).
We like to draw the attention to proposition (2.2.1), used to prove the
above result. This proposition provides a partial inverse to the analytization
functor. We show that in a restricted case, we can attach to a map of rigid
analytic varieties which both are analytizations of affine schemes, a map of
the corresponding schemes. In other words, we can ’algebraize’ this analytic
map.

The last section then contains the proof of our main theorem. The proof
heavily relies on HIRONAKA’S Theorem, in that we will apply it to an al-
gebraic situation derived from our data and then take the analytization of
this algebraic resolution. Let us be a bit more specific. Given are the affinoid



manifold M = SpA (i.e., A is an affinoid algebra which is a regular domain)
and the hypersurface H in it. The morphism ?y : M -~ M = SpecA is an
analytization morphism. Take a point x E M and let x = r~(x), with m the
corresponding maximal ideal of A. Apply HIRONAKA’S Embedded Resolu-
tion (see (3.1.2)) to the excellent local ring Am in order to find a morphism
h : X --~ Spec(Am), which is a finite sequence of blowing up maps with ’nice’
centers, rendering the inverse image of the (local germ of the) hypersurface
to a normal crossings situation. It should be observed that at this point,
we cannot yet apply the analytization functor, since Spec(Am) is not an
analytic scheme, i.e., an analytization does not exist. But since everything
is local in the Zariski topology, we can find a small enough neighborhood of
x over which the map h can be extended and such that all its main proper-
ties remain. This (Zariski) open in SpecA now admits an analytization. So,
using that analytization and blowing up commute and that analytization
preserves the necessary properties, we have found a Zariski open U around
each point x E M and a map h !7 -~ U of the type described above, so that
the inverse image of the hypersurface H has normal crossings. Since each
covering by Zariski opens is admissible, we are done by taking an admissible
affinoid covering of each open U and then selecting a finite subcovering of
the collection of all admissible affinoids involved.

We would like to thank M. VAN DER PUT and S. BOSCH for some useful
discussions we had with them.

CONVENTIONS 0.1.2. Throughout this paper will be fixed an alge-
braically closed field K endowed with a complete non-archimedean norm.
We adopt the notation and the terminology from [BGR] for rigid analytic
geometry over K. In particular, let X be a rigid analytic variety. We will
denote its structure sheaf by Ox. Let z : Y -~ X be a closed immersion of
rigid analytic varieties. Then we call Y a closed analytic subvariety of X. .
Let z~ : Ox -~ i* (Oy ) denote the corresponding surjective homomorphism
of Ox-modules. The kernel I = ker(i#) is a coherent Ox-ideal and we call
it the Ox-ideal defining Y, or alternatively, we say that Y is the closed
analytic subvariety of X associated to the Ox-ideal I.

The underlying set li(Y) of the image i(Y) is an analytic subset of X. By
abuse of notation, we will sometimes consider Y itself as an analytic subset
of X, especially when we consider the admissible open given by X B Y, where
the correct notation should be X B ( i (Y) ~ Note that on an analytic subset Y
of X, we can define many structures of a closed analytic subvariety. Namely
one for each coherent Ox-ideal I, such that V(I) = Y. Recall that



and we call this analytic subset the zero-set of I. (Any analytic subset
is realized in such way). In particular there is exactly one structure of a
reduced analytic subvariety on Y, given by the coherent Ox-ideal 
which is a radical ideal.

DEFINITION 0.1.3. - Given a map f Y --+ X and a coherent sheaf of
Ox-ideals I, we call the inverse image ideal sheaf of I, the image of the
canonical map f*I --~ Oy, and we denote this coherent sheaf of Oy-modules
by or, when no confusion can arise, simply by IOy. .

If Z is the closed analytic subvariety of X defined by I, then we define
to be the closed analytic subvariety of Y associated to IOy. In other

words, we have that = Z x X Y. Of course, if Z is only considered
as an analytic subset of X, we mean by f -1 ( Z) only the closed analytic
subset, which is the set-theoretical inverse image of Z.

In particular, if both X and Y are affinoid, with corresponding affinoid
algebra A, respectively B, and if a is the ideal of A corresponding to I, then
aB corresponds to ZOy.

If y E Y, then we will sometimes denote the stalk of at y

by IOy,y, in stead of the more cumbersome or where
~ = f(y). 

’

LEMMA 0:1.4. - Let X = SpA be an affinoid variety and let a be an
ideal in A. Let U be an admissible open of X, contained in X ~ V(a). . Then
anX (U) = Ox(U). .

Proof. - See [Sch 4, Lemma 0.4]. a

0.2. Weak Nullstellensatz for K(X ) [Y~

LEMMA 0.2.1. - Let A be a domain with field of fractions F, such that F
does not equal the localisation A f for any element f E A. If m is a maximal
ideal in A[Y] with Y = (Yl , ... Yn), , then = 1. .

Proo, f. Suppose not, so that m n A = (0) . Hence the field L = 
contains F. As L is finitely generated over F, it follows that it is a finite
field extension of F. Let Pi E A[T] be a minimal polynomial of Yi (viewed
as an element of L) over F, for i = 1,..., n, and let f be the product of
the leading coefficients of these Pi. Hence L is integral over A f. However,
since L is a field, it follows that also A f is a field and whence equal to F,
contradiction. a



COROLLARY 0.2.2. (Weak Nullstellensatz). - Let K be a not necessarily
algebraically closed field which is endowed with a complete non-archimedean
norm. Let X = (Xl, ... Xn) and Y = (Yl, ... Ym) be finite sets of vari-
ables. Then any maximal ideal m of K(X)[Y] is algebraic, i.e., KX~[Y]/m
is a finite field extension of K.

Remark. - Hence, in particular, if K is algebraically closed, each max-
imal ideal m is of the form

with xZ, y2 E K and |xi|  1.

Proof. - We will give a proof by induction on the number n of X-
variables. If there are none, the statement is nothing but Hilberts Null-
stellensatz for polynomial rings over a field K.

So assume n > 1 and the theorem proven for a smaller number of X-
variables. Let L denote the fraction field of K(X) . We will consider two
different cases.

Case 1. Suppose first that mL[Y] = 1. Hence there exists a non-zero
element p(X) in m n K(X). . By the Noether Normalization Theorem for
affinoid algebras, we know that after a change of variables, there exists a
finite injective map K ~X’} ~ K (X } / ( p) ( ~BGR, 6.1.2. Corollary 2J ), where
X’ = (Xl, ... , Xn_1). Let m’ = m n K(X’} [Y], then also the map

is finite and injective. But since the latter is a field, the former has also to
be a field, which by induction must be finite over K. This establishes the
first case.

Case 2. We may now assume that 1. By (0.2.1), this implies
that for some f E K(X ) we would have that K(X)> = L. However this
is ruled out by the following argument. Let g E K (X ~ be an irreducible
element not dividing f. Using that K(X) is a UFD, we see that does
not belong to the localisation K(X) f. a

1. Analytization

1.1. Definition of Analytization

DEFINITION 1.1.1. - Let (X, Ox) be a scheme over K. We call a rigid
analytic variety X an analytization of X, if there exists a morphism of locally



ringed spaces over K,

such that, given any rigid analytic variety (Y, Oy), and, given any morphism

of locally ringed spaces over K, there exists a unique map of rigid analytic
varieties

making following diagram commute

Note that, since an analytization is defined by a universal property, we
have that, if an analytization exists, then it must be unique (up to a unique
isomorphism). We will denote this analytization by

The morphism (7y, r~# ) will sometimes be referred to as the analytizing mor-
phism.

Let us now look at morphisms. Suppose X and Y are two K-schemes
which have an analytization ~ : Xan -+ X, respectively ( : Yan ~ Y (for
sake of simplicity, we will sometimes not write the corresponding map of
sheaves). Let

be a map of schemes (over K). Then there exists a unique map yan,
denoted by f~, such that following diagram commutes

This follows immediately from the definition of Y~’ applied to the composite



If g : Y --+ Z is a second map of schemes, where Z is a K-scheme which
also admits an analytization, then one checks that

Note that, if f is injective, then so is fan, provided we know that (is injective
(which will be the case in all the situations we know that an analytization
exists).

LEMMA 1.1.2.2014 Let X be a scheme over K. In order to check whether
a given morphism of locally ringed spaces (q, r~#) : (X, -- (X, Ox),
where X is a rigid analytic variety, is an analytization of X, it is enough
to check the universal property in definition (1.1.1) only for Y 

Proo f. Assume that the universal property has been checked for every
affinoid variety and let Y be an arbitrary rigid analytic variety, such that
there exists a morphism

of locally ringed spaces over K. Let be an admissible affinoid covering
and let (9Z, 8z~ ) be the restriction of (0, B# ) to , C~ys ). By our hypothesis
we can find unique maps of rigid analytic varieties

making the following diagram commute

The uniqueness of the (cpz, ensures us that they agree on Yi for

all i ~ j. Indeed, let {Uk}k be an admissible aflinoid covering of Yi n Yy.
Then both and Uk make the following diagram commute

By our hypothesis, we have that there exists only one map Uk -> X making
the above diagram (2) commute. Hence 03C6i| Uk and 03C6j|Uk must be equal.
From this our claim follows directly.



Therefore, we can paste the cpi together (see [BGR, 9.3.3. Proposition
1]) to obtain a map of rigid analytic varieties

making following diagram commute

The uniqueness of (cp, ~p~ ), follows from the fact that any (p, making (3)
commute, when restricted to is a solution to the commutativity
of (1), and therefore must coincide with ( ~p2, cp# ) . o

LEMMA 1.1.3.2014 Let X be a scheme over K, which admits an analyti-
zation

Let U be an open of X . Then the restriction

an analytization of U.

Proof. - Let us simplify notation by putting X = xan and U = 
and let ( = r~’ u. First of all, note that by definition of an analytization, TJ
is continuous, so that U is an admissible open in X , and hence in particular
is a rigid analytic variety.

Let

be a morphism of locally ringed spaces over K, where Y is a rigid analytic
variety. Since X is the analytization of X, there exists a unique map of rigid
analytic varieties 

II

making following diagram commute



The commutativity of above diagram implies that p(Y) c U, so that ,p
can be considered as a map Y -~ U. This map is necessarily unique, since
the original map was. a

1.2. Construction of an Analytization for Affine Schemes

1.2.0. - Let A be an affinoid algebra and B a finitely generated A-
algebra. Let us denote by X = Spec(B) the affine scheme associated to B.
In this section we want to give a construction of a rigid analytic variety X
and a map of locally ringed spaces (r~, r~~ ) (X,0x) -; (X, Ox), which in
the next section will be proved to be the analytization of X.

CONSTRUCTION 1.2.1.2014 Since B is finitely generated over A, there ex-
ists a finite set of variables T = (Tl , ... Ts ) and an ideal I of A ~T ~ such
that

Choose 7T E K, such that 17r1  1 and define, for all i, the following affinoid
algebras

This gives rise to a sequence of aflinoid algebras

Let us denote by Xi = Hence, using [BGR, 7.2.2. Corollary 6], we
have an ascending chain of aflinoid subdomains

We can paste these together (see loc. cit.) in order to obtain a rigid analytic
variety X. We have that

and is an admissible affinoid covering of X :

CLAIM 1.2.2. The points of X are in one-one correspondence with the
closed points of X, i. e. with the maximal ideals of B. (Recall our convention
that K is algebraically closed.)

Proof. Let us define a map (of sets)



as follows. Let x be a point of X, say x E Xi. Let mi be the corresponding
maximal ideal of BZ. Then we define as the point of X corresponding
to m = n~ n B. It is easy to see that this definition of does not depend
on the particular i we chose. From the inclusions K  B/m  Bi/mi = K,
we conclude that m is even a maximal ideal of B, or, in other words, that

is a closed point of X. To prove that this map is a bijection from X to
the set of closed points of X, we construct its inverse as follows.

Let m be a maximal ideal of B. Let A = be a representation
of A, where X = (Xi,... Xn). Using the Weak Nullstellensatz (0.2.2), we
can write

where Xj and t; are elements of K with 1, for all j. . Choose i big
enough, such that 1, for all j. Then mBi remains a maximal ideal
in Bi, so corresponds to a point x of Xi C X. Again we have that the
assignment of x to m is independent of the choice of i Moreover, mBZ n B =

m, so that m corresponds to the point . o

CLAIM 1.2.3. - The map 7y is a continuous morphism of topological
spaces.

Remark. More accurately, we should say ’continuous map of Gro-
thendieck topologies’, where we consider an analytic variety with its strong
Grothendieck topology (see [BGR, 9.3.1]) and a scheme with the Grothen-
dieck topology derived from its Zariski topology, i.e., an admissible open
of a scheme is any Zariski-open subset and an admissible covering is any
covering by Zariski-open subsets. Note that for the strong topology on a
rigid analytic variety, also any Zariski-open subset (with which we mean
the complement of an analytic subset) is admissible and any covering by
them is also admissible (see [BGR, 9.1.4. Corollary 7]).

Proof - Let a be an ideal in B and let V = V(a) be the correspond-
ing zero-set of a in X. We can define a coherent Ox-ideal I, by setting
I(Xi) = aBi. The reader should check that this uniquely defines I and
that, moreover, I is coherent. It is now an easy exercise to show that

Hence the inverse image of a closed subset of X under yy is an analytic
subset of X. . Therefore, the inverse image of a Zariski-open of X under yy
is a Zariski-open subset of X and hence is admissible open. Together with
what we said on coverings in the above remark, this proves the continuity
of 7/. a



CLAIM 1.2.4. There exists a map ~# Ox --> of ox-sheaves.

Proof. Let : Xi ~ X denote the restriction of ~ to Xi. It is enough
to construct maps of Ox-sheaves,

which are compatible with each other. Without proof we state that it is
enough to construct natural maps

for U of the form U = XBV( f ), where f E B. Hence U = f x E X ~ f(x) 5-E 0 }
is the inverse image of U under ~. Let Ui = U ~ Xi so that Ui = 
In other words, we need a natural map

But Ox(U) = B f (the localization of B at the multiplicative set of powers
of f) . Since UZ C Xi is an admissible open, we have the natural restriction
map

By (0.1.4), we know that f, considered as an element of via the
composite map B -~ j8~ --> (UZ), is invertible. Hence we obtain from
this composite map, a map

This is our desired map of (4). We leave it as an exercise to the reader to
verify that these maps define a map ~#i of Ox-sheaves as in (3), and hence
a map r~# as claimed. o

CLAIM 1.2.5. - The map

is a morphism of locally ringed spaces over K.

Proo, f. The only new thing to be proved is that the induced maps
on the stalks are local. Let therefore x E X be a point, say x E Let
mi denote the corresponding maximal ideal of Bt. From (1.2.2), we get
that m = mi n B is a maximal ideal of B, corresponding to 1J(x) = x and
mBi = mi- We have now a sequence of natural (local) maps



where the map e is given by [BGR, 7.3.2. Proposition 3]. The composition
is exactly the map and hence the latter is local. 0

CLAIM 1 .2.6. - The map

is a locally formal isomorphism.

Remark. We say in general that a morphism of locally ringed spaces

is a locally formal isomorphism, if, for every point x E X, we have that the
completion 

_ _

of the local map ax is an isomorphism.

Proof. Let x be a point in X, , say x E Xi and let tnZ denote the
corresponding maximal ideal in BZ of x. Let m = ~ni n B, so that m is the
maximal ideal of B corresponding to = x and mBi = mi. The local
ring at x is equal to Bm and by [BGR, 7.3.2. Proposition 3], the completion
of the local ring at x is isomorphic with Hence we must show that
the natural map

is an isomorphism. However, we have that m(Bi)mi = Therefore,
if we tensor (5) with K = Bm/mBm over Bm, we obtain an isomorphism. By
[Mats, Theorem 8.4], we deduce that fif is surjective. Let us now show in-
jectivity. Since the map A[Y] --+ A(Y) is fiat, the same holds for B ~ Bi, for
all i. Hence also is flat and since it is local, it is faithfully flat and hence
injective. a

Remark. Note that by faithfully flat descent we get that the local
maps rft are flat.

It is not clear at first whether the association X ~ X is well-defined,
since the construction of X depended on the representation (1) of B and
the choice of 7r. However, as a consequence of the following theorem, we will
get that X is in fact independent of these choices.

1.3. Analytization of an Analytic Scheme

PROPOSITION 1.3.1. - Let A be an affinoid algebra and B a finitely gen-
erated A-algebra. Let X = Spec(B) be the corresponding scheme over K and



let X and (q, r~#) be as constructed in (1.2). Then

is the analytization of X .

Proof. Let Y be a rigid analytic variety and let

be a map of locally ringed spaces (over K). We have to prove that there
exists a unique factorization of (B, 8#) over (X, Ox). In other words, we
have to show that there exists a unique map of rigid analytic varieties

such that the following diagram commutes

By lemma (1.1.2), we can assume that Y = SpC is aflinoid. From (1),
we get a K-algebra morphism

Let

be the representation (1) of (1.2.1), with the aid of which we constructed
X. Choose i big enough, such that, for all j, we have that f(T; ) (  
Therefore, we can factor f over a map

by sending T~ to This is well-defined by [BGR, 6.1.1. Proposition 4~ ,
since by our choice of i, the elements are power-bounded elements.
This map g gives rise to a map of affinoid varieties // : Y = Xi =
Sp (Bz ) We claim that the composite map ~p : Y --> X is the desired
map.



Let us first prove that (2) is commutative. Let y E Y be a point and let
x = 0(~/). Let m be the maximal ideal in C corresponding to y and let p be
the prime ideal of B corresponding to x. We claim that

via the map f B --+ C. Indeed, since (B, 9~ ) is a morphism of locally ringed
spaces, we must have a local morphism

Since Cm and have the same completion, we get a local map

This means that pBp = mm n Bp, from which our claim (3) follows readily.

Since m n B corresponds to we get by (3) that p is a maximal
ideal and that x = This proves the commutativity of diagram (2)
considered only as maps of sets. To prove the commutativity as a diagram of
morphisms of locally ringed spaces, we only need to check commutativity on
the stalks in each point. Therefore, suppose that x E Xi and let 9t = m~Bi
be the maximal ideal of Bi corresponding to x E Consider following
diagram

The outer diagram is commutative by construction and the second inner
diagram since all maps are natural. Since i is injective, we conclude that
also the first diagram has to be commutative, which is exactly what we
needed to show.

Next, we have to show that p is uniquely determined by (2). Hence let

be another map of rigid analytic varieties making (2) commutative. Let
y E Y be a point and set x = p(y) and x’ = By the commutativity
of diagram (2), we have that = 8(y) = r~{x’), and hence, since r~ is a
injection, we obtain that x = x’. Hence, as a map of sets, cp and 03C8 agree.



Let us keep notation as above and suppose that x = cp(y) E Xi. Let as
before m correspond to y and p to x = 0(y) and let 9t = m n Bi be the
maximal ideal of Bi corresponding to x E Xi. Using the commutativity of
(2), we get two local maps

making the first inner diagram of (5) commute. Since the completion

of r~~ is an isomorphism by (1.2.6), we get, from the commutativity of this
diagram, that 

" - "

Since this holds for all points x E X, one deduces that p = a

EXAMPLES 1.3.2.

(1) Suppose that in (1.2) B is already affinoid, so that we can take the
trivial representation B = A. We get that all Bi = B and hence X = SpB
is the analytization of Spec(B).

(2) Suppose that in (1.2) A = K, in other words, that X is of finite
type over K. Then in [BGR, 9.3.4. Example 2] the authors construct a rigid
analytic variety xan, which they call the associated rigid analytic variety
of X. Their construction is exactly the same as ours in this special case,
justifying our notation and proving that the in loc. cit. described associated
rigid analytic variety is exactly the analytization of X. Therefore, we also
obtain a better proof of the uniqueness of their construction.

DEFINITION 1.3.3. - We call a scheme X over K an analytic scheme,
if X admits an open affine covering where, for each i, the scheme
Xi is of finite type over an affinoid algebra AZ .

THEOREM 1 .3.4. - Each analytic scheme X has an analytization.

Proof. Let be an open affine covering of X, with each Xi of
finite type over some affinoid algebra. From (1.3.1), we know that, for each
i, we have an analytization

To simplify our notations, let us denote by XZ = Xan and set Xij = 
From (1.1.3), we get that



Hence we can paste the Xi together along these common open subsets, in
order to obtain a rigid analytic variety X. Likewise, we would like to paste
the ~i together, in order to obtain a morphism (q, ~#) of locally ringed
spaces. One should be a bit careful with this, since X and X are of a different
nature. However, the usual proofs for pasting morphisms in the rigid analytic
case (see [BGR, 9.3.3. Proposition 1]) or the algebraic geometric case, are
carried over without any surprises, so we will not go into details.

We claim that the above constructed rigid analytic variety X is the
wanted analytization (with analytizing map 7y). We will just give the outlines
of the proof, since most details are tedious but straightforward.

Let (8, 0~) : (Y, Oy ) - (X, Ox ) be a morphism of locally ringed spaces,
where Y is a rigid analytic variety. Let x = 8-1 ( X i ) and 8i the restriction
of 03B8 to Yi. Hence the x are admissible opens of Y and the collection 
is an admissible covering of Y. Since Xi is the analytization of Xi, there
exists, for each i, a unique morphism of locally ringed spaces

such that the following diagram commutes

Using (1.1.3), one sees that cpZ and 03C6j have to agree on Yi n Hence
we can paste them together to obtain a map p : : Y -~ X, such that

commutes. The uniqueness of p follows from the uniqueness of the cp2 and
the fact that any ~p making (4) commute, when restricted to Yz, renders (3)
commutative and hence has to be equal to a

COROLLARY 1.3.5. - Let X be an analytic scheme and r~ : X = Xan --~
X be its analytization. Then r~ is a locally formal isomorphism and the set
of (closed) points of X is in one-one correspondence, through r, with the set
of closed points of X . The local map in each (closed) point is flat.



Moreover, X is reduced, regular or normal, if and only if, X is reduced,
regular or normal, respectivel y.

~roof. From the proof of (1.3.4) and (1.2.6) the first three statements
follow immediately. For the last statement, recall that an aflinoid algebra is
a G-ring (Grothendieck ring, see [Mats, §32] for a definition) and therefore
also each finitely generated algebra over an affinoid algebra is a G-ring. The
last assertion is now clear by Theorem 32.2 of loc. cit. and [BGR, 7.3.2.
Proposition 8]. . 0

2. Blowing Up and Analytization

2.1. Sheaves and Analytization

DEFINITION 2.1.1.2014 We want to recall the following definitions of in-
verse image and direct image of a sheaf. Let us j ust give the definitions in the
cases we are interested in. Let X be an analytic scheme and let ?y: X - X
be the analytization of X. Let F be a sheaf on X. Recall that the inverse
image sheaf r~-1 (~’) is defined as the sheafification of the presheaf

If, moreover, F is an Ox-module, then this inverse image sheaf is
an Hence we can form the tensor product with Ox to
obtain the O x-module

called the inverse image of .~.

Let G be an Ox-module. Then one defines the direct image sheaf r~*(G),
given by the rule

where U is an open in X. This is an Ox-module.

LEMMA 2.1.2. - Let r~ : X - X be the analytization of the analytic
scheme X. Let .~ be an Ox-module. Let x be a point of X and let x = 
Then the following holds.

(1) We have that



(2) is coherent, then so is r~*(.~).

(3) We have that.~’ is invertible, if and only if, r~*(.~) is.

(4) is an Ox-ideal, then r~*(.~) is an Ox-ideal. Moreover,

Proof. - (1) is easy and left to the reader as an exercise. (2) follows
along the same lines as in the algebraic geometric case (see for instance [Ha,
Chapter II, Proposition 5.8]. (3) follows from the second isomorphism of (1)
and the fact that Ox,x - is flat by (1.3.5). Finally, (4) follows from
the fact that, for each admissible open U of X, the map

is flat by using (1) and (1.3.5). . a

Remark. - Note that the direct image of a coherent sheaf is in general
not coherent anymore, as can be easily seen by the next example. Let A be
an aonoid algebra and X = SpA and X = Spec(A) and let 77 : : X -> X

be the analytization map. Then is in general not a coherent Ox-
module (neither an Ox-ideal). For instance, if U = X B V ( f ), where f E A,
then Ox(U) is not a finite Af-module.

COROLLARY 2.1.3. - Let X be an analytic scheme and let r~ : X -~ X

be its analytization. Let I be a coherent Ox-ideal and let Z be the closed
subscheme of X defined by it. Let Z be the closed analytic subvariety of X
defined by Then the following holds.

(1) As analytic subsets, we have that Z = 

(2) Z is the analytization of Z.

Remark. - Therefore, in the sequel, we will mean by the rigid
analytic variety with closed analytic subvariety structure given by 

Proof. - (1) is easy, using (4) of (2.1.2). In order to prove (2), let us first
define a morphism

of locally ringed spaces. Let ( = r~ z, so that by (1), we have a continuous
map ( : Z --~ Z. Next we have to define a map (# of Oz-sheaves. Let U be
an open of Z. Hence, there exists an open W of X, such that U = W n Z.
By definition, we have that



If we denote by W = r~-1(W), then by (1) again, we have that ~-1(U) _
W n Z. Furthermore, we get by (2.1.2.(4)) that

Hence we obtain that

Therefore, we define, with aide of (4) and (5), the map

as the base change

of ~#(W) : Ox (W) - Ox(W). This defines the wanted map in (3) and the
reader should check that it is indeed a morphism of locally ringed spaces.

Let Y be an arbitrary rigid analytic variety and let

be a morphism of locally ringed spaces. After composing this with the closed
immersion Z ~ X, we get from the fact that X is the analytization of X, a
unique map cp : Y - X of rigid analytic varieties, making following diagram
commute

Clearly, from the commutativity of the above diagram and (1), we obtain
that cp(Y) C Z. We want to proof that cp even as a map of rigid analytic
varieties factors through Z. Therefore, we need to show that = 0.
We can check this on the stalks. So let y be a point of Y and let x = cp(y)
and x = 8(y) = ~7(x). From (1) of (2.1.2), we get that

where the vanishing of the latter follows from the fact that the composed
map Y --; X factors over Z, by the commutativity of (6), and clearly
IxOZ,x = 0.



Hence, cp becomes a map Y -~ Z which renders following diagram com-
mutative

The uniqueness of this map is easily verified. o

2.2. Analytization of a Blowing Up

PROPOSITION 2.2.1. Let X be an affine analytic scheme and let

be its analytization. Let Y = SpA be an affinoid variety and let Y =

Spec(A). Let

be the analytization of Y. Let 9 : Y --~ X be a map of rigid analytic varieties.
’ 

Then there exists a unique map of schemes 8 : Y - X, making following
diagram commute

Moreover, 8 equals the analytization ~‘n of B.

Pmof. Let X = Spec(B), where B is a finitely generated S-algebra
and S is an affinoid algebra. The map r~ induces a morphism of algebras

whereas the map 8 induces a morphism of algebras

Composing these two morphisms gives a map f B - A, which induces a
map of schemes



Let us prove that this map meets the requirements of the statement. So,
first of all, we have to show that (1) commutes. Let y be a point of Y and
let 91 be the corresponding maximal ideal of A. Hence ((~/) corresponds also
to this maximal ideal and therefore, 8(y) corresponds to the prime ideal
9tnJ3ofjB.

On the other hand, take a representation B = as in (1) of (1.2.1)
and define the aonoid algebras Bi as in loc. cit., so that X = where

Xi = SpBi. Suppose that 8(y) E Xi. Let mi denote the maximal ideal of Bi
corresponding to 8(y) and let m = mi n B. Hence m is the maximal ideal of
B corresponding to ~03B8(y). So we need to prove that m = n n B. Since m is
maximal, we only need to show that m C 9t. Consider the completion

of the local map Composed with the local map Bm - this yields
a local map 

~ 

"

and hence that m C 91. From this not only follows the pointwise commuta-
tivity of (1), but by considering stalks, also its commutativity as a diagram
of morphisms of locally ringed spaces. The uniqueness of 8 is clear from
the fact that yy and ( are locally formal isomorphisms which are bijections
between the sets of closed points. Moreover, diagram (1) proves that 0 must
be the analytization of 8. a

THEOREM 2.2.2. - Let X be an analytic scheme and let

be its analytization. Let Z be a closed subscheme of X Let

be the blowing up of X with center Z. Then X is also an a.nalytic scheme.
Moreover, let 

_. -

denote its analytization. Then the map

is the blowing up of X with center Z = zan(= ~-1 (Z)).

Proof. Since the blowing up map 03C0 is proper by [Ha, Ch II, Proposition
7.10], we have that X is of finite type over X, and hence is also an analytic
scheme.



Let Z denote the coherent Ox-ideal defining Z. Let Z = ~7* (~. Then
I is the coherent Ox-ideal defining Z, by (2.1.3). One verifies easily, using
(2.1.2.(4)) that

by checking this on all the stalks. Hence by (2.1.2.(3)), we get that this last
sheaf is invertible.

Let Y = SpA be an aflinoid variety and let f : Y -~ X be a map of rigid
analytic varieties, such that IOy is invertible. To complete the proof, we
have to show that there exists a unique map g : Y --> X making following
diagram commute

Let Y = Spec(A) and let

be the analytization of Y.

Case 1. Assume that X = Spec(B), where B is finitely generated over
an aflinoid algebra.

By (2.2.1), there exists a unique map

making the following diagram commute

By (2.1.2.(4)), one sees that

Hence by (2.1.2.(3)), we get that IOy is invertible. Therefore, by the uni-
versal property defining blowing up in algebraic geometry, there exists a
unique map g : Y --~ X, making following diagram commute



If we set g = gan, then the analytization of diagram (4) is exactly diagram
(1), proving its commutativity.

We need to prove that this map g is unique. Hence let h : : Y --~ X be
another map making diagram (1) commute. Let be an open affine

covering of X. Let Xz - Hence, by (1.1.3) we have that the re-
striction ij Xz is the analytization of Xz (where we will no longer
distinguish in notation between a map and its restriction). It is always pos-
sible to find an admissible affinoid covering {Yi = SpAi}i of Y, such that

C Xz. Let Yi = Spec(Ai) and let (i : Yi --~ Yi denote the analytiza-
tion of By proposition (2.2.1) we can find unique maps h2 : Xi,
making following diagram commute

Moreover, also by (2.2.1), we find unique maps a2 : Yi  Y making the
following diagram commute

CLAIM A. - The ideal IOy; is invertible.

Suppose we proved this, then, by the universal property of a blowing up
applied to the composite map there exists a unique map ti : X,
such that following diagram commutes



Clearly, the map gQi renders (7) commutative, hence we get that

CLAIM B. - We have that

Assuming the claim, we get that also h2 renders (7) commutative and
hence must be equal to ti. Together with (8), we therefore get that

Taking the analytization of these maps, we obtain that h = gl Yi, proving
the uniqueness of g.

So, the only thing which remains to be done is proving both claims A
and B. Claim A follows from the identity

which can be derived from (3). By assumption the latter ideal is invertible,
so that we are done by (2.1.2.(3)).

To prove claim B, let us first show that the composition of both maps
with (; are equal. By (6) and then using (2) we get that

On the other hand, by (5), the definition of 7r = and our assumption on
h, we get that

Hence, both fa; and rhi are solutions to the commutativity of the following
diagram



Since by (2.2.1) there exists a unique solution to this commutativity, both
maps must be the same, therefore establishing our claim and finishing the
proof in this case.

Case 2. Let X be an arbitrary analytic scheme and let be an
affine open covering of X. Let Xi = Then from ( 1.1.3) we know
that XZ is the analytization of From algebraic geometry we know that
the restriction

of or to ~c-1 (XZ ) , is the blowing up of XZ with center Z n Let X2 denote
the analytization of and let

denote the analytization of 1I"i. Hence from case 1, we obtain that (4) is
the blowing up of X; with center the analytization of Z n which equals
Z n Xi by (2.1.3). Using (1.1.3), we have that

In other words, we get that

We are now done by lemma [Sch 4, Proposition 1.4.4]. a

COROLLARY 2.2.3. - Let X be a rigid analytic variety, Z a closed ana-
l ytic subvariety and X ~ X the blowing up of X with center Z. If X is
reduced, then so is X . I, f X and Z are both manifolds, then so is X. .

Proof - The questions being local, we may assume that X = SpA is
aflinoid. Let X = SpecA and Z = VI, where I is the ideal defining Z.
Hence by (2.1.3), X and Z are the analytizations of X and Z respectively.
By (1.3.5), X is reduced (respectively, X and Z are regular), if X is (respec-
tively, X and Z are). Let 7r : X --~ X be the blowing up of X with center
Z. Then it is well-known that X is reduced (respectively, regular). Since by
the previous theorem (2.2.2), X is the analytization of X we are done by
using (1.3.5) once more. 0

3. Embedded Resolution of Singularities

3.1. Hironaka’s Embedded Resolution of Singularities

DEFINITION 3.1.1.2014 Let A be a noetherian regular ring (i.e. a ring all
of whose localizations are regular local rings) and f E A, with f ,~ 0. Let p



be a prime ideal of A, then we say that f has normal crossings at p , if there
exist a regular system of parameters ~~1, ... , ~d ~ of A~ a unit u E Ap and
integers Ni E N, such that we can write f, considered as an element of Ap, ,
as

We will say that f has normal crossings in A (or in Spec(A)), if it has
normal crossings in each prime ideal of A. More general, if X is a regular
integral (or, smooth) scheme, V C X a closed subset of codimension one (a
hypersurface, for short) and x E X, then we say that V has normal crossings
in x, if f has normal crossings in the local ring Ox,x of X at x, where f is
a local equation of V at x. We say that V has normal crossings in X, if it
has normal crossings in each point of X.

Remark. Let A be a noetherian regular ring and f E A, with f ~ 0.
One verifies that the locus of points p E Spec(A), such that f has normal
crossings at p is Zariski open (see for instance [BM]) and the same is true
if we work in the maximal spectrum (i.e. only consider maximal ideals).

THEOREM 3.1.2 (HIRONAKA’S Embedded Resolution of Singularities).
Let A be an excellent regular local ring which contains a field of character-
istic zero, X a regular integral scheme of finite type over Spec(A) and V
a hypersurface of X . Then there exist a regular integral scheme X of finite
type over Spec(A) and a map h : X --~ X, such that

(i) h is a composition of finitely many blowing up maps with respect to
smooth centers of codimension at least two,

(ii) has normal crossings in X.

Proof. - See [Hi, p.146 Corollary 3 and p.161 Remark]. For an explana-
tion of (i), see the remark following (3.2.3) below. a

3.2. Embedded Resolution of Singularities in Rigid
Analytic Geometry

DEFINITION 3.2.1. - Let M = SpA be an affinoid variety. We call M an
affinoid manifold if A is a regular domain. In other words, M is irreducible
and for each x E M, the local ring OM,x is regular. Indeed, if mx denotes
the maximal ideal of A corresponding to x, then we know from [BGR, 7.3.2.
Proposition 8] that is regular if and only if O M,x is regular.

Let M be a rigid analytic variety, then we will call M a rigid ana-
lytic manifold, if it is quasi-compact and the local ring at each point



x E M is regular. We sometimes might express this also by saying that M
is regular. So, in particular, M admits a finite admissible affinoid covering
X = such that each XZ is an affinoid manifold. Indeed, just take a
finite admissible affinoid covering X = of M. Since by [BGR, 9.1.4.
p.346] each connected component of XZ is an admissible affinoid open in Xi,
we may already assume that all the Xi are connected. But each point of
XZ = SpAi is regular, proving that AZ is a regular ring, hence by applying
[Kap, Theorem 168] and using that X; is connected, we conclude that AZ is
a regular domain and hence each X; is an affinoid manifold.

LEMMA 3.2.2. - Let X be a smooth analytic scheme and let r~ : X --~ X
be its analytization. Let V be a hypersurface in X (with its reduced induced
subscheme structure) and let V = be the analytization of v. Let
x E X be a point and let x = be the corresponding point in X . If V
has normal crossings at x, then V has normal crossings at x.

Remark. Note that by (1.3.5), we know that X is regular, so that it
makes sense to talk about normal crossings at a point of X. Also by loc. cit.,
we get that dimensions and codimensions are preserved under analytization,
since all the local maps are fiat. In other words, V is again a hypersurface.

Proof. Let (~1, ... , ~d) be a regular system of parameters in dX,X,
where d is the dimension of X. Since the local map

is an analytic isomorphism, we get that the maximal ideal of generates
the maximal ideal in Therefore (~1, ..., ~d) is also a regular system of
parameters in From this our claim follows immediately. o

THEOREM 3.2.3 (Embedded Resolution in Rigid Analytic Geometry).
Suppose that K is of characteristic zero. Let M = SpA be an affinoid man-
ifold and f E A, with f ~ 0.

Then there exists a finite admissible affinoid covering X = of
M, and, for each i E I, a rigid analytic manifold XZ and a map hZ : XZ
of rigid analytic varieties, such that

(i) hZ is a composition of finitely many blowing up maps with respect
to regular centers of codimension at least two,

(it) n XZ) has normal crossings in XZ.

Remark. Let us explain what we mean by (i ) . Fix some i E I and
let us, for the sake of convenience, drop the indices i, so that we can write
h : .X -~ X. . Saying that h is of the type as described in (i) means the



following. There exists rigid analytic varieties Yy, , for j = 0, ... , k, where
Yo = X and Yk = X, and maps 7r~ : for j = 0, ... , k - 1, such
that each ~r~ is the blowing up of Yj with center Zj, which is smooth and of
codimension at least two in Yy, such that

By (2.2.3) all Yk are rigid analytic manifolds, so, in particular, so is X. .

Below we will consider the strict transform of a closed analytic subspace
H of X under such a map h. With this we mean the consecutive strict
transforms under the x;, i.e., for each j = 0,..., k - 1, let C Yy+i
denote the strict transform of W; C 1; under where Wo = H. In other
words, Wy+i is the blowing up of Wj with center Wj n H. We then will call
H = Wk the strict transform of H under h. Note that the strict transform
H ’survives’, i.e. is not the empty space, if and only if, neither of the W; is
fully contained in the center of blowing up Z; . Consequently, if the subspace
H we started with was irreducible, the same holds for all strict transforms
by [Sch 4, Corollary 3.2.3], and moreover, each blowing up map is surjective
and therefore so is their composition h ‘ H .

In particular, if we apply the above for H = X, then h is surjective. In
other words, returning to the notation of the theorem, we obtain that

Proof. - Let M = Spec(A) and let

denote the analytization of M. Let x E M be a point and let x = r~(x) be the
corresponding point in M. Let m be the maximal ideal of A corresponding
to x (and x). Let X = Spec(Am). Let T be the hypersurface of X defined
by f and let V be the hypersurface defined by the same f, but now as a
closed subscheme of M.

By (3.1.2), we can find a regular integral scheme X and a map h :
X -~ X, such that

(i) h is a composition of finitely many blowing up maps with respect to
smooth centers of codimension at least two,

(ii) has normal crossings in X.



Therefore, we can find an s rt m, such that h can be extended to
Y = Spec(As). By this we mean that there exists a scheme Y and a map
g : Y ->  Y such that g is a composition of finitely many blowing up maps
with respective centers extensions of the centers of h. Moreover, the canon-
ical map a : : X -~ Y gives rise to a map lk : : X -~ Y such that the following
diagram

is the strict transform diagram of a under h. Indeed, this follows from the
fact that a is flat. We leave the details to the reader.

Since the regular locus is open, we can even choose s in such manner
that all the centers of g are smooth. In particular, we get that also Y is
smooth.

From the remark after (3.1.1), we know that the locus of points of Y at
which g-l(V n Y) has no normal crossings is a closed subset of Y. Hence its
image under g is a closed subset in Y, since g is proper. Therefore, we can
choose s in such manner that n Y) has normal crossings everywhere.

By construction Y is an analytic scheme and, moreover, by (1.1.3), we
know that Y = is its analytization. Let Y be the analytization of
Y and let g : : Y -~ Y be the analytization of g. By theorem (2.2.2) we know
that g is a composition of finitely many blowing up maps with respect to
regular centers of codimension at least two. Moreover, by (3.2.2), we get
that g-1 (V n Y) has normal crossings.

To summarize, we found, for each point x E M, a Zariski-open K~, ,
containing x, and maps : Y~ -~ V~, such that (i) and (ii) of our
statement hold for these maps. Since each covering by Zariski open subsets
is admissible, we can take an admissible affinoid covering of each Y~x~, so
that the union of all these admissible affinoid coverings forms an admissible
affinoid covering of M. Therefore, already finitely many of these cover M,
say X = For each i, there exists an x E M, such that X; C 

Hence, if we set XZ = gt~~ 1 (Xz) and

then, by [Sch 4, Proposition 1.4.4], the hi and the XZ meet the requirements
of our statement. a



Remark. With a little extra effort, one can prove a global version of
this theorem in the sense that only a single map h : X --> X with the
properties (i) and (it) is needed. Namely, in stead of applying HIRONAKA’S
Theorem to the hypersurface given by f = 0 in each X = Spec(Am), use
[BM 2~ . The latter gives a canonically defined blowing up process on the
various (notation as above), which therefore patch together to form a
global map h.

COROLLARY 3.2.4. - Suppose that K is of characteristic zero. Let X be
a rigid analytic manifold and H an irreducible hypersurface in X. .

Then there exists an admissible affinoid covering X = of X,
and, for each i E I, a rigid analytic manifold XZ and a map hi : XZ --~ Xi
of rigid analytic varieties, such that

(i) hZ is a composition of finitely many blowing up maps with respect to
regular centers of codimension at least two,

(ii) the strict transform of H n XZ under hZ is a rigid analytic manifold.

Proof. By taking an admissible affinoid covering, we may assume that
X is affinoid. By (3.2.3) we can find a (finite) admissible affinoid covering
X = of X, and, for each i E I, a rigid analytic manifold Xi and a
map hi : XZ -~ XZ of rigid analytic varieties, such that hi satisfies condition
(i) of loc. cit. and, moreover, the inverse image n XZ) has normal
crossings in Xi.

In other words, in each point x E XZ, there exists a regular system of
parameters ~ _ (~1, ... , ~t ), such that the local equation of n XZ ) is
given by a monomial

But the strict transform of H n XZ under hZ is an irreducible component
of this inverse image. Indeed, the strict transform is again irreducible and
reduced by (2.2.3) and the remark before the proof of (3.2.3), and an an-
alytic subvariety of Xz of codimension one by [Sch 4, Corollary 3.2.3. and
Proposition 3.1.2]. Hence the local equation of the strict transform must be
given = 0, for some i, and hence is regular. a

Remark. We call the resolution of singularities of H as above an em-
bedded resolution. As observed in the remark before the proof of (3.2.3), the
strict transform of each H n X~ under hi is obtained by a sequence hi of
blowing up maps, which are derived from the ones in hi by restricting the
centers. In particular, the centers used in hi are of codimension at least one.
However, they might fail to be regular.



THEOREM 3.2.5 (Resolution of Singularities). - Suppose that K is of
characteristic zero. Let X be an integral (=irreducible and reduced) rigid
analytic variety.

Then there exists an admissible affinoid covering X = of X,
and, for each i E I, a rigid analytic manifold XZ and a map hZ : Xi -~ XZ
of rigid analytic varieties which is a composition of finitely many blowing
up maps with respect to centers of codimension at least one. In particular,
each hZ is surjective.

Proof. - Since the statement is local with respect to the Grothendieck
topology, we may assume that X = SpA is aonoid, with A a domain. We
then can embed X in an W = Sp(K{X ~ ), for some variables X In other
words, we can assume from the start that X is embedded in a rigid analytic
manifold W and we will prove the theorem under this additional assumption
by induction on the codimension d of X in W. .

If d = 1 (i.e., X is a hypersurface in W), then we are done by (3.2.4)
and the remark following it.

For general codimension d > 1, take any analytic hypersurface V of W, ,
containing X. By (3.2.4) applied to V, we can find an ’embedded resolution’
for V. Again, since everything is local, we can assume without loss of gen-
erality that we have found an analytic manifold Wand a map h : W -~ W
of which the centers are smooth and of codimension at least two and such
that the strict transform V under this map is smooth as well. Again, look-
ing at each stage in the blowing up process, there is no loss in generality
if we assume that h is given by one blowing up with (smooth) center Z of
codimension at least two (in W). There are two cases to be considered.

Case 1. X is contained in Z. Since Z is smooth, we are done by induction
on the codimension, since the codimension of X in Z has become smaller
than d.

Case 2. X is not contained in Z. Hence the strict transform X of X under
h is given by blowing up X with center Z n X, which is of codimension at
least one in X. Again we are done by induction on the codimension, applied
this time to the pair X C V.

As for the last statement on the surjectivity, this has already been ob-
served in the remark before the proof of (3.2.3). o

COROLLARY 3.2.6. - Suppose that K has characteristic zero. Let X be
a quasi-compact integral rigid analytic variety and let ~ be a subanalytic
subset of X . Then there exist finitely many maps h2 : X of rigid



analytic varieties, for i = 1, ... , s, with each hZ a finite composition of local
blowing up maps, such that

(i) h-1i (E) is (globally) semianalytic in Xi, for all i = 1, ... , s;

(ii) the union of all Imhi equals X . .

Proof. For the definition of subanalytic and semi analytic sets, see
[GS]. By (3.2.5), there exists a finite admissible affinoid covering Xi and
maps h2 : Xz -> XZ which are compositions of finitely many blowing up
maps, such that each XZ is a quasi-compact rigid analytic manifold. Taking
a finite admissible covering Yij on each of these Xz and applying the Uni-
formization Theorem [GS, Theorem 3.1] to the subanalytic sets ,

we obtain the required maps. o
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