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RÉSUMÉ. - On etudie 1’existence, Funicite ainsi que les proprietes quali-
tatives des solutions radiales de 1’equation u +

p~q - 1) q - 1
|u|q-1 u = 0 dans Si q > p - I > 1, alors pour tout 03B3 6 il existe
une unique radiale solution u(r, ~y) telle que u(0, ~y) = ’y. On montre aussi

g 

- y assez petit, alors > 0 et lim = c > 0. D’autre

part si p-1  q  N -f-p-1 il n’y a pas de solutions strictement positives.
De plus si 2  p  N, et p - 1  q  1 alors il existe ~y* > 0 tel

N-p
que pour tout 03B3  03B3*, u(r, 03B3) change de signe.

ABSTRACT. - Existence, uniqueness and qualitative behaviour of radial

solutions of 0394pu + + u q-1 + |u|q-1 u = 0 for x E IRN

are presented. If q > p - 1 > 1, for any -y E 1R* there exists a unique
radial solution such that u(0, 7) = -y. Also it is proved that if

2  p  N, q > Np - 1 and 03B3 ~ IR* or if q > p -f- p - 1 and

03B3 small, then > 0 and lim = c > 0. On the

other hand if p - 1  q  p + p - 1 there are no positive solutions.
N

Moreover if 2  p  N and p - 1  q  - l then there exists
N-p

- y* > 0 such that for any q > -y*, the solution u( r, ~y ) can not be positive.

(*) > Reçu le 7 septembre 1998, accepte le 1 avril 1999
t 1 ~ Depart, de Mathematiques, Faculte des Sciences, B.P. 2121, Tetouan (Maroc).



0. Introduction

This paper is devoted to the study of the quasilinear elliptic equation

where, as usual Apu = div is the p-laplacian and Vu is the

gradient of u. We are concerned with existence, uniqueness and qualitative
behavior of radially-symmetric solutions whenever 1  p - 1  q.

The above equation arises naturally in the study of self-similar solutions
of the parabolic equation

i.e. solutions w of (0.2) which are of the form

where u satisfies the equation (0.1). If we make p = 2 in (0.2) we get
the semilinear equation which has been thoroughly studied by Haraux,
Weissler, Terman, Peletier ([4], [7], [10]) and others. They noticed the ex-

istence of two critical values for q in (1, -{-oo) which are and N + 2 N - 2 if
N > 3 ( 2 if N = 2 and 3 if N = 1 ) and they give the precise asymptotic
behavior for solutions. Now if we drop the gradient term in (0.1) we obtain
a particular case of a large class of equations which have been studied by
J. Serrin and P. Pucci [9] . Our purpose here is to extend some results of [4]
to the case p > 2.

It is worth mentioning that if we change the sign in front of the absorp-
tion term in (0.2) we get the following equation

which have been intensively studied. A special attention has been devoted
to the study of singular solutions i.e. non negative functions w satisfying
(0.4) in x (0, -f-oo) and such that w(x, 0) = 0 if x ~ IRN B {0}. In fact it
was proved by the second author, in [2], that (0.4) has a non trivial singular
solution if and only if0gp20141+~. The uniqueness of the fundamental
solution i.e. = cb(x) for some positive constant c, is proved by Kamin
and Vazquez in [5]. On the other hand, whenever ,

Peletier and Wang [8] proved the existence of a singular solution satisfying



u(x, t)dx = for any r > 0; which called "very singular
solution". Finally Diaz and Saa in [1] studied the uniqueness of a radial
solution of following problem

where G(u) = 1 u - and such( ) 
q -1 

~ ~ q

that m(p - 1) > 1 and (p - 1)m  q  (p - 1 )m + -~- . More precisely they
prove that problem (0.5) has at most one solution and this solution has

compact support. As a consequence they deduce the uniqueness of the very
singular solution of (0.4). From the point of view of the techniques involved
in [8], the concrete expression of function G is fundamental. so, we shall not
use the shooting method in the phase plane but a different technique.

Since our attention is focused on radial solutions u(r), where r = ,

then the problem (0.1 ) can be written in the following initial value problem

where q is a constant and

By a solution of (P) we mean a function u ~ C1 ([0,+oo)) such that

|u’ I 
p- 

~ C1 ([0, +00)) which satisfies (0.6) and (0.7) for a fixed real,.

The following results are obtained.

THEOREM 1. - Then for any 03B3 ~ 2R*, problem (P)
has a unique solution 

It is important to remark that u(r, 2014~) = -u(r, ~y). Therefore, from now
on we shall state the results only for 03B3 positive.

THEOREM 2. - (i) Assume q > p N + P - 1. Then for ayn/



the solution u of (P) is strictly positive. Moreover, there is a constant c
such that

(ii) Assume 2  p  N and q > 201420142014 - 1. Then the conclusion

(i) holds for any, E 1R+.

THEOREM 3. 2014 (i) Assume p - 1  q fi p + p - 1. . Then there are no

positive solutions of (P).

(ii) Assume 2  p  N and p - 1  q  - 
1. Then there exists

03B3* > 0 such that for any 03B3 > 03B3*, the solution u of (P) can not be positive.

The organization of this paper is as follows.

Section 1 is devoted to the proof of theoreml which is based on the
Banach fixed point theorem.

Section 2 collects some properties of solutions of problem (P). In par-
ticular, using an energy function, we prove that any solution u of (0.6) and
its derivative u’ tend to zero as r tends to infinity.

The existence and the asymptotic behavior of strictly positive solutions
are studied in section 3.

Finally, section 4 is devoted to the proof of theorem 3. In part (i) of this
theorem we us an estimate of u’ and part (ii) is proved by using a scaling
argument. We also present some important information for non positive
solutions. The study of positive rapidly decreasing solutions of (P) remains
an open problem.

1. Existence and uniqueness of solutions

In this section we investigate the existence and uniqueness of a solution
u{., ~) of the initial value problem (P) for a fixed, E IR*. Recall that
this solution, which we continue denoting by u, is a C~ function such that

u E CZ (~~~ ’~°o)) ~ °

We start with a local uniqueness and existence result which is analogous
to a result due to Serrin and Veron (see [3], , Theorem 5.2) .



PROPOSITION 1.1. Assume q > p-1 > 1. Then for any 03B3 E 1R*, there
exists a constant r,y > 0 such that, problem (P) admits a unique solution u
in ~0, r,y ) .

Proof. The proof is divided in three steps.

Step 1: Local uniqueness.

If u is a solution of problem (P) in [0, r.~ ) Then u satisfies the following
equation

where f is given in (0.8). Then

where

Note that F is a locally Lipschitz continuous function.

Let v be another solution of (P) in [0, r.~ ) Hence, for any r E (0, r.y }

where

Next, let
~~S) = Min (~A(s)~ , ~B~S)~) . (1.8)

It is not diflicult to see that



Substituting this last inequality into (1.5) we obtain

Let m > 0 and Km be the Lipschitz constant of F on E~y - m, ~y + m] . In
view of the continuity of u and v, there exists ro > 0 such that

Let

Notice that, since

it is possible to choose m such that m  cx. By using (1.11), we obtain easily
the following inequalities on [0, ro]

Combining (1.15)) and (1.16) we deduce that A(s) has a constant sign
on [0, ro]. On the other hand, since ~ 7~ 0 we have

Moreover, if we set

we deduce, from the choice of m, that



Of course the same estimate is also valid for B(s) . As a consequence
~) ~ /~ for any r ~ ro. (1.20)

This last inequality, together with (1.10) and the fact that the function
r ~ G r (r ) is decreasing implies that

for every r E (0, ro). But

So that

We have

On the other hand

Hence (1.23) implies that

where

Finally using Gronwall’s lemma we conclude that u = v on [0, ro].



Step 2: Local existence

Let m, Km, a and ~3 be the previously chosen constants. Set

Let I = [0, where r,~ is given by

For the sequel, let C(7, jR) denote the Banach space of continuous func-
tions on I and consider the following complete metric space

E"Y = ~cP E . (1.32)

Define the mapping T on Ey, by

for p E E.~ and r E [0, r"Y) Here G and F have the same meaning as in the
previous formulas (1.3) and (1.4).

We claim that T maps E.~ into itself. To see this fix cp E E"Y. Using (1.29)
we can prove, as in step 1, S P(9 - 1) o
has a constant sign on [0, and consequently we have the following esti-
mates



Moreover

From these estimates we also obtain

Then, from the choice of r’Y’ we deduce that

Now it is clear that T is a contraction. In fact, as in step 1, we can show
that for any CPl, E E.~ and r E (0, ry)

where a is defined by (1.27).

Putting together (1.29) and (1.30), we get

The Banach contraction theorem implies that there exists a unique func-
tion solving the problem (P) in [0, r.y ) .



Step 3:

We have just to prove that |u’|p-2 u’ is a C1 function near r == 0.

Integrating equation (1.1) from 0 to r, we obtain

which yields

On the other hand, since u satisfies equation (0.6) then

Hence

The proof is complete. o

REMARK 1.1. - It is possible to see that for N > 4 and q > p - 1 > 1
we have b > a. Thus, in this case we can choose m1 = inf(m, a) in the
proof of the previous proposition.

PROPOSITION 1.2. For any 03B3 E 1R* , there exists a unique solution u
of problem (P) in [0, +oo) , which satisfies

Proof. The proof is divided in two steps.

Step 1. Global existence.



Thanks to proposition 1.1, for any r E IR+* we know the local existence
and uniqueness of a solution u of problem (P). In order to establish global
existence, we define the energy function

According to (1.1), E satisfies that

Hence u and u’ are bounded, and then u exists for all r > 0.

Moreover, since u’ (0) = 0, E(r) x E(0) and the fact that the function
x2 

x ~ 2 - 1 + increasing on [0, +00), we get (1.45) and (1.46).

Step 2. Global uniqueness

Since the energy function E is non increasing, we see that if u = 0 and
u’ = 0 at some point ro > 0, then u(r) = 0 for all r ~ ro. Hence, we can
suppose that (u(ro) , u’ (ro)) ~ (0, 0) and the uniqueness is treated similarly
as in proposition 1.1. a

REMARK 1.2. - It is not difficult to see that the solution u of (P) is a
C°° function at any point r > 0 whenever u’ (r) ~ 0.

2. Asymptotic behaviour of solutions

In this section we give some preliminary results for radial solutions of
(0.1). Here and in the rest of the paper, we assume N > 1, q > p - 1 > 1
and, > 0. Using equation (1.1) we immediately have the following lemma

LEMMA 2.1.2014 Suppose u is a solution of (P). Then any critical point
r of u must be a relative minimum if u(r)  0 or a relative maximum if
u(r) > 0.

Now, proceeding as in [6] , we shall prove the following result

LEMMA 2.2. - Suppose u is a solution of (P). Then the energy function
E(r) given by (1.,~9) goes to zero as r --~ oo.



Proof. Since E’ (r)  0 and E(r) > 0 for all r > 0, then there is a
constant l > 0 such that lim E(r) = l. Suppose for contradiction that l > 0.

r-->oo

Hence there exists ri > 0 such that

Let us define disjoints subsets ~1 and 12 of by

Let r E [ri, +00[. We distinguish two cases.

(i) r E 7i, from (2.1), we obtain

~2 
(ii) r E I2. Remembering that the function x ~ 2 (q - 1 ) 

+ q + 1 
is

increasing on [0, +oo), we obtain the existence of a positive constant ci such
that ~ u (r) ~ > ci. Thus, for any r E 12 we have

where c2 - q cl ‘ 1 + . Putting together (2.2) and (2.3) the following
inequality holds for any r > rl

Now consider the function



Applying equation (0.6), we obtain the following equality

Recall that u and u’ are bounded, so that there exists r2 ( > rl ) such that

Combining (2.4) and (2.7) yields

Integrating equation (2.6) between r2 and r we get

But, E r + N - 1 2r |u’|p-2 u’ u r  D r and using again the boundedness
of u and u’, we get from (2.9) that lim E(r) = -oo. This is impossible.

r-+o

Hence 1 = 0 and the proof is ended . 0

As a consequence of the above lemma, we derive the following result

COROLLARY 2.1.2014 Suppose u is a solution of (P). . Then necessarily
u(r) and u’ (r) go to 0 as r -> +00.

3. Strictly positive solutions

The goal of this section is to investigate the existence of strictly positive
solutions of (P). But first of all, we establish some results on the behavior
of such solutions.

PROPOSITION 3.1.2014 If u is a strictly positive solution of (P) then

u’ (r)  0, f or all r > 0. (3.1)

Proof - Suppose for contradiction that there exists ro > 0 such that
~ ( o) ~ 0’ As



then there exists rl E (0, ro~ such that u(rl) > 0, ~i (rl) = 0 and

I v,~ p - z u~ / B I (rl) ~ 0. This contradicts the fact that

Thus, u’ (r)  0, for all r > 0 . a

PROPOSITION 3.2. - Let u be a strictly, positive solution of (P). Then
them exists ro > 0 such that the function u’(r) u(r) is monotone in [ro, +oo) .

As a consequence of this result, we have

COROLLARY 3.I. - Let u be a strictly positive solution of (P). Then
lim 

u’(r) u(r) 
exists in [-cxJ, 0]

One of the main tools for the proof of proposition 3.2. is the following
lemma.

LEMMA 3. I. - Let u be a strictly positive solution of (P). Then there
exists ri > 0 such that

for any r > rl satisfying

where



Proof. 2014 Proposition 3.1 together with Remark 1.2 and equation (0.6)
imply that u satisfies the following equation

u" (r) + a(r)u’ (r) + b(r)u(r) = 0, for r > 0. (3.8)

Define the set

{r > 0 : (~)~(r) + + = 0} . ° (3.9)

It is clear that for any r e Ju, the following equations hold

~ = (t/)~ (3.10)

This leads to

for any r ~ J~’

On the other hand equation (3.11) is equivalent to

Set



Then, u satisfies

so that

Set

It is clear that Ju = Ju U J; .

First, observe that from corollary 2.1, we have

Next, we consider two cases.

(i) r E J~ is large enough. Then we have the following behaviour

Carrying this last result in (3.12), we obtain

Using again corollary 2.1, we deduce that

(ii) r E Jj is large enough, then



Hence, from (3.12), we get

So (3.4) holds and the proof is ended . a

Proof of Proposition 3.2. - Introducing the functions

where a(r) and b(r) are given in lemma 3.1, and function k(r) will be chosen
later. As u satisfies (3.8), we have

Let w = u’ then w satisfies

Applying lemma 3.1, it is possible to choose rl > 0 and k(r) such that

Therefore

i

If we put y = w = u , then we obtain
u u

So, we have either y’ (r)  0, for all r > rl or there exists r2 > rl such that
y’ (r) > 0, for all r > r2, which ends the proof. a

In the next two propositions, we will give more precise asymptotic be-
havior for strictly positive solutions.

PROPOSITION 3.3.2014 Let u be a strictly positive solution of (P) then



Proof - Set L = lim u’(r) u(r). Thanks to corollary 3.I, we have L Gr-+o ~(T)
[-cxJ, 0] . We claim that L # -oo. Indeed, suppose that L = -oo. As we
have u(r) > 0 and u’ (r)  0, for all r > 0, equation (0.6) is equivalent to

Therefore, since u and u’ are bounded, by letting r ---~ +00

we deduce that, for large r, we have

which contradicts the fact that lim u’ (r) = 0.
r---~+oo 

We turn now to prove (3.32). By 1’Hopital’s rule, we get

On the other hand, dividing equation (0.6) by u(r), we obtain the following
equality

Letting r ---~ +oo ; the proposition follows by (3.36) and corollary 2.1. o

COROLLARY 3.2. Let u be a strictly positive solution of (P). Then,
lim r q+1-p u(r) exists and is a positive number.



REMARK 3.1. - By using the previous result, we deduce that if there
exist two constants C and m such that u(r)  for large r. Then

u~ (r)  for large r, where C is another constant.

PROPOSITION 3.4. Let u be a strictly positive solution of (P) such
that lim = 0. Then, for all m > 0, we have lim = 0

and lim (r) = 0.
r-+o

Proof. 2014 Let 03BB = 
q + p . Multiplying equation (0.6) by r03BB-1, then

the following identity holds

Integrating from x to y (0  x  y  +00), we get

Letting y --~ +00, we obtain

Thus



It follows that if u(x)  (with m~ > ~ ), for large x (consequently

u~ (x)  by Remark 3.1 ) and we get

where we denote by C different constants.

Plugging all these estimates in (3.41), we deduce that

Then

where

Since q > 1 and p > 2, we have m2 > ml. The proposition follows by
induction starting with mi = A and setting = (mj + 1 )(p -
1) + 1). a

We may now turn to the main result of this section: the existence of

strictly positive solutions of (P) for sufficiently small initial values q and
under suitable hypothesis on p, q and N. More precisely, we have

PROPOSITION 3.5. 2014 ? > N + p 
2014 1 and

0  03B3  N(q + - 1 1 p) - 20142014 ) . . Then the solution u o f (P) iso  ’Y  
B p(q - ) q - i 

. Then the solution u of (P) is

strictly positive and lim u(r) > 0.

Proof. - Suppose u is not strictly positive and let ro be the first positive
zero of u. Then, u’ 0 and u(r) > 0, for all r E [0, ro). Integrating
equation (1.1) from 0 to ro gives the following formula



Since  ~y and from the choice of q, we deduce that the right side
of (3.48) is strictly positive but the left side is negative. This contradiction
allows to confirm that u is strictly positive and so lim 0.

To finish the proof, one suppose, that lim u(r) = 0. We have,
for any r > 0,

By using proposition 3.4, the left side of the last equality converges to
zero as r --~ +00. But the right side is strictly positive. Then we have a
contradiction and this completes the proof. o

PROPOSITION 3.6. - Assume 2  p  N and q  __ TVp - 1. Then for
- p

E , the solution u{r, ~y) of strictly positive and

Proof 2014 (i) Assume that there exists some positive real r such that
u(r) = 0. Setting

(3.50)

Then u is a radial solution of the following problem:

where BR is the ball of radius R centered at x = 0.

Multiplying (3.51 ) by u, integrating over BR and using Green’s formula
and (3.52), we get



Next, multiply (3.51) by x.Vu, we obtain

To estimate the first integral we use Gauss-Ostrogradskii’s formula to con-
clude that

By standard computations we have

Now let k be a positive real such that

If we define the operator G by

we obtain

Plugging all these estimates in (3.54), we obtain



Substituting (3.53) in this last equality we obtain

From the choice of k, the coefficient in front of the integral / is

strictly positive. On the other hand as q > N ^ - 1, - - p 
1 - N q + 1  0.

We deduce a contradiction with (3.62). Hence > 0 for any r > 0.

(ii) Assume that lim = 0 we deduce from proposition 3.4.

that lim = lim (r) = 0 for any m.
r--~+oo 

" ’ ’ ’ "

Then we can let R to the infinity in (3.62). As in step (i) we get a
contradiction and the proof is complete. 0

4. Non positive solutions

In this section we investigate the existence and some properties of non
positive solutions of (P). Set ro = inf ~r > 0 : u(r) = 0}, the first positive
zero of u; when 0  ro  oo, u is called nonpositive solution.

PROPOSITION 4.1. Assume p - 1  q  p -f- p - 1. Then there are
no positive solutions of (P) .

Proof. - Suppose by contrary that u is a positive solution of (P). Then,
for any r > 0, the following equality holds true



This implies

which means that

Integrating from 0 to r, we obtain

By letting r -~ -f-oo, we get a contradiction. a

PROPOSITION 4.2. Assume 2   N and - 1   
Np 

- 1.

Then there exists 03B3* > 0 such that for any 03B3 > 03B3* the solution u of (P)
is non positive.

This proposition is a simple consequence of the previous lemma.

LEMMA 4.1. Assume 2   N and - 1   
Np 

- 1. Then

there is no positive radial solution of equation

+ uq = 0, in IRN. . (4.5)

The proof of this lemma is given in ~l~

LEMMA 4.2. - If for any 03B3 > 0 the solution u of (P) is strictly positive,
then there exists a G1 function v which satisfies



Proof. Let k > 0 and u~ be a solution of (0.6) with uk (o) = 
and u~ (o) = 0. Define the function v~ by

we have vk E C1 ([0, +oo)) and vk 
p 2 v’k E G1 ([0, +oo)) . Some elementary

computation show that v~ satisfies

On the other hand, since

we obtain

Now observe that (4.10) is equivalent to

which implies, by using (4.12), that

Hence, there exists a positive constant c independent of k such that

Using (4.12) and (4.15), we see that for k ~ 1, vk and v~ are uniformly
bounded on any compact subsets K of [0, +oo). So, by the Arzela-Ascoli



theorem and a standard diagonal argument, there is a sequence 1~~ --~ +00
and a C~ continuous function v : [0, +oo) --~ lR such that vkn --~ v

k~. -+o

uniformly in It follows from (4.13) that v satisfies

Consequently, we have

Now it remains to show that v is strictly positive. Indeed, since vk > 0
then v > 0. On the other hand (4.16) implies that v is strictly decreasing.
Thus, we have v > 0. o

PROPOSITION 4.3. Assume q > 
p 
+ p - 1. If for some -y > 0 the

solution u of (P) is non positive then, either u has a compact support
or there is a positive constant M such that u has at most one zero in

[M, + oo ) .

Proof. Since lim u(r) = 0, there exists M > 0 such that

Suppose that there exist two consecutive zeroes such that 
y. Integrating equation (1.1) from x to y therefore gives

Suppose that u(r) > 0 for x  r  y (The same argument can be applied
when u(r) x 0) and distinguish two cases.

(i) u’ (x)u’ (y) = 0. Then from the decreasing of the function energy E
given by (1.47), u must have a compact support.

(ii) u~ (x)u~ (y) ~ 0. Then, u’ (x) > 0 and u’ (y)  0. Now using (4.18), the
right side of (4.19) is strictly positive while the left side is strictly negative,
which yields a contradiction. Thus, two such zeroes can not exist. a



As a consequence of the previous propositions, we obtain the following
result.

COROLLARY 4.1.2014 Assume q > p + p - 1. Then any non positive
solution of (P) has either a compact support or a finite number of zeroes.

Proof. - Let u be a non positive solution of (P). Then, from

proposition 4.3, there exists a positive constant R such that all zeroes of u
are in [0, R] suppose that there is an increasing sequence (xn ) of zeroes of
u and let x = lim xn. Then, for any n E 1N, there exists zn E (xn, xn+1)
such that u’ (zn) = 0. This implies that lim zn = x. And so, u(x) =

u’ (x) = 0. Hence u has a compact support. This finishes the proof. o
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