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RÉSUMÉ. 2014 Nous traitons des potentiels des mesures positives dans un
domaine de ou le noyau est le logarithme ou la fonction de Green pluri-
complexe. Leur mesure de Monge-Ampere est calculee, et nous étudions
quelles proprietes des potentiels classiques demeurent.

ABSTRACT. - We discuss potentials of positive measures in domains
in where the kernel is the logarithm or the pluricomplex Green func-
tion. Their Monge-Ampere measure is computed, and we investigate which
properties of classical potentials remain.

1. Introduction and definition of potentials

In classical potential theory in potentials of positive measures play
a crucial role. The theory is linear and, due to Riesz decomposition the-
orem, subharmonic functions are essentially potentials modulo harmonic
functions. Furthermore, we can solve Dirichlet problems using convolutions.
In the case n = 2 we can equally well work in the complex plane, and the
Laplacian is invariant under conformal mappings. For a thorough treatment
of classical potential theory we refer to the book by Hayman and Kennedy
[Ha-Ke]. However, from the point of view of complex analysis classical po-
tential theory is unsatisfactory. The Laplacian is not biholomorphically in-
variant in higher dimensions.

( * ) 1 Recu le 19 juin 1998, accepte le 12 octobre 1999
~ Linkoping University, ITN, Campus Norrkoping, 60174 Norrkoping, Sweden.



Pluripotential theory is the study of plurisubharmonic functions and
the complex Monge-Ampere operator. The operator is defined on certain
classes of plurisubharmonic functions in domains in In the case n = 1,
it reduces to the Laplacian, but in higher dimension it is non-linear. It is
invariant under biholomorphic mappings. We refer to Klimek’s monograph
[Kl] for an introduction to pluripotential theory and the basic definitions.

Since pluripotential theory is non-linear, we can not expect potentials
to be as fruitful as in the classical case. Still, it makes sense to study them,
and ask which properties remain, which is the purpose of this article.

We recall the following definition of the multipole Green function.

DEFINITION 1.1 [Lel2]. - Let 03A9 be a domain in and let

be a finite system of points ak E Q with weights vk > 0. Define

where

We call this the pluricomplex Green function for SZ, relative to the system A.

In hyperconvex domains the Green function is continuous, and tends to
zero at the boundary [Lel2~ . In the case p = 1, al = w, vl = 1 we have the
standard pluricomplex Green function g(z, w) with one pole at w E Q.

The following theorem shows that it makes sense to talk about potentials
in pluripotential theory.

THEOREM 1.2 [Lelll. . - Let SZ be a domain in (T, a locally com-
pact measure space, with a positive measure Let K : SZ x T -~ [-oo, oo)
be a function such that

1) K(ze28, t) is measurable with respect to the product measure d0 ® ~,
2) z H K(z, t) is plurisubharmonic for each t E T,
~~ t H K(z, t) is measurable for each z E S2,
.~) the function z ~--~ suptET K(z, t) is locally upper bounded on Q.

Then := is plurisubharmonic on Q.

We will mainly study two special cases, so we introduce special notation
for these.



DEFINITION 1.3. 2014 Let  be a finite, positive measure with support in H,
where S2 is a bounded domain in Let g(z, w) be the pluricomplex Green
function for 0 with pole in w E SZ. We define the pluricomplex potential of
~ as

and the logarithmic potential of  as

Clearly both potentials are plurisubharmonic in Q, and if SZ is hyper-
convex, then p~ vanishes on the boundary. For the logarithmic potential in
II~2’~, we refer to [Ha-Ke], Chapter 5.

In Section 2 we prove a characterization of logarithmic potentials, which
can be viewed as a counterpart to Riesz decomposition theorem.

In Section 3 we give some examples of pluricomplex potentials in the
unit ball.

It is possible to define the measures

This is done in Section 4, and there we also show that the latter is absolutely
continuous with respect to the Lebesgue measure unless all vZ coincide. If
g(., v) E C2(S2 B ~v~) for all v E SZ, the same holds for l~ ... n

vn).

Then (Section 5) we extend the comparison principle and partial integra-
tion formulas to certain classes of unbounded plurisubharmonic functions.

In Section 6, we define so-called integrated measures. Typically we will
have a family of positive measures v(v1, ... vn), depending on the param-
eters v1, ... , vn, such that the total mass is bounded, uniformly in all the
parameters. Examples are (1) and (2). We then define measures

where n, and  is a given positive measure.



After that we prove representation formulas for the Monge-Ampere mea-
sures of bounded potentials. For the pluricomplex potential, the formula is

This is done in Section 7.

In Section 8, we perform the procedure ~u ~--~ p~ ’-~ It turns out
that if g(., v) E C2 and p~ is bounded, then procedure is "smoothing",
i.e. the resulting measure is absolutely continuous, even if ~c is not. We also
prove some estimates for this procedure.

Finally, in Section 9, we investigate measures whose pluricomplex po-
tentials in the unit ball have finite energy in the sense of Cegrell [Cel]. We
give a sufficient condition for this, and extend the representation formula to
that class. The procedure is still "smoothing". We also
give an example of a measure such that the potential is unbounded but of
finite energy.

We would like to mention two other motivations to study potentials in
several complex variables. The first is the concept of pluri-thin sets. For a
discussion of these, we refer the reader to [Ca]. The second motivation is
the following. We define C to be the cone of non-positive plurisubharmonic
functions in a fixed hyperconvex domain. We say that a function cp in C
is extremal, if cp = cpl + where each cpz is in C, implies that there are
positive constants ai such that cp2 = aicp, i = 1, 2. It is known that the

pluricomplex Green function with one pole is always extremal [Ce-T]. From
the general Choquet theory of convexity the following theorem is known.
Let C be a convex cone. Then for each q E C there is a positive measure

supported on the extreme elements of C such that f(q) = f 
for all affine functions f. In our situation, taking f as a point evaluation
at a point a in the domain, we find that for any function E C there
is a measure ~c~ such that cp(a) = f for all a in the domain.
Here x varies over all extremal plurisubharmonic functions. A pluricomplex
potential is a special case of this, namely where the measure is supported
only on the (one-polar) pluricomplex Green functions. We do not carry this
discussion any further in this paper, however, the results indicate that the
pluricomplex potentials form a very small subset of C (see Theorem 8.1).
Therefore there should be plenty of extremal plurisubharmonic functions,
in addition to the Green functions. To characterize all of these seems almost

impossible, but it would be interesting to have at least a few more examples.

We also make a general remark about dimension. Most of the results of
this paper are valid for domains in but to avoid too unwieldy expressions



and computations, some results in Sections 8 and 9 are done in C2 only.
However, we suspect that they are true in higher dimensions too.

Most of the results of this article can be found in Paper I in [Ca], and
in some cases more details are given there.

Acknowledgements. I thank my thesis advisor Urban Cegrell for his
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research was carried out while I was visiting Department of Mathematics
and Statistics, University of Canterbury, Christchurch, New Zealand, and I
thank the staff there for their hospitality. This work was partly supported
by Magnuson’s foundation (Royal Swedish Academy of Sciences) and Lars
Hierta memorial foundation.

2. Characterization of logarithmic potentials

For logarithmic potentials, it is possible to give a counterpart to the
Riesz decomposition theorem.

PROPOSITION 2.1. - There is a positive constant Cn such that =

in the distributional sense, for each measure ,u. Conversely, if u is a
real-valued function, such that exists in the distributional sense, and

equals a positive measure then locally we have

where b is a real analytic function, and = 0.

Proo f. The first claim follows from the fact that log |x| is a fundamen-
tal solution for the operator A" in see [A-Cr-Li]. To prove the second,
note that

= 0

in the sense of distributions. Since the operator On is elliptic it has only
classical solutions, and hence u - lp  is an n-harmonic function. These are
real analytic. D

Remark. In a relatively compact subset of S2, which is star-shaped
with centre a, we can write b as

where each hj is harmonic. This is called the Almansi expansion [A-Cr-Li].



3. Some explicit examples of pluricomplex
potentials in the unit ball

In [Ca] the pluricomplex potentials of some measures are computed ex-
plicitly. Here we only state the results, and refer the reader to [Ca] for the
proofs.

PROPOSITION 3.1. - Let B be the unit ball in (C2, be the normal-
ized Lebesgue rneasure on the disc D x ~0}. Then

PROPOSITION 3.2. Let a = ~~. be the surface measure on the sphere
aB (4, r) in (C2, r > 0. Let t = . Then

(To get the potential of the normalized surface measure, divide by 2~r2r3.)

THEOREM 3.3. Let ~ be the normalized Lebesgue measure in the unit
ball, i. e. where ~ is the Lebesgue measure. Then the potential is

and hence

4. Definition of the Monge-Ampere operator
on certain classes of unbounded functions

It is possible to define measures of the type ddcu1 A ... A ddcun, where
each uj is plurisubharmonic and locally bounded outside a finite set A. This
can be done by generalizing a method used by Klimek in the case where
A consists of only one point. We refer the reader to [Kl] and [Ca] for details.
The construction is only a special case of the much more general treatment
in ~S~ . .



Let n be a domain in and A = {~i,... ~ , ap~ a fixed finite subset of
f2. Define

PROPOSITION 4.1. Let ul, ... be functions in PSH(SZ; A). . Then
there exists a positive Borel measure ~u on SZ such that if C

PSH n and ui ~ uj, when i ~ oo, for all n, then ddcu1i n
... A ddcuni is weak* -convergent to .

DEFINITION 4.2. We define ddcu1 A ... n ddcun = where  is the

measure of the preceding proposition.

The special cases we have in mind are

In these expressions, we always allow points to be repeated. It is well-known
(see e.g. [Kl]) that if all the v; coincide, and are equal to v, then both these
measures are equal to We now want to examine what happens if
they do not coincide. We will need the following special case of a theorem
by Demailly [D] .

THEOREM 4.3. - Assume that a E S2, u, v E PSH n ~-oo, 
u  v in n B ~a}, = = ~a~, and

Then  If the upper limit is a limit, then equality
holds.

PROPOSITION 4.4. Assume that v~ E SZ, for all j, and that vi ~ v~
for some indices i and j . Then dd~ log ~z - vi n ... A dd~ log ~z - un ~ is

an absolutely continuous measure with respect to the Lebesgue measure. If
g(., v) E C2(03A9 B {v}) for all v E S2, then v1) A ... A vn) is an
absolutely continuous measure with r~espect to the Lebesgue measure.

Proo f. We prove the proposition for g, the proof for the logarithm
being essentially the same. Let 1  k  n -1. It is sufficient to show that if

b~ ~ a, for all n - J~, then



Define

Then using Theorem 4.3 near a, we obtain = (ddCg(z, a))n =

(2~r)’~. On the other hand, expanding the wedge product, we get

Thus

and the proof is complete. D

The hypothesis about g being C2 is fulfilled in a strictly convex domain
with smooth boundary [Lem].

Let A be as in Definition 1.1. Define

As an example, let us assume that S2 C C2 is such that g E C2, and compute
A))2:

The right hand side is the Lebesgue decomposition of the measure rela-
tive to the Lebesgue measure, and the first term of the right hand side is
(c~(~))’. .

5. Comparison principle and partial integration
for certain unbounded plurisubharmonic functions

In what follows we will often need to compare certain measures and
do partial integration. We therefore need to justify this in a more general
setting than the standard one.



DEFINITION 5.1. For any function u with values in and any
integer L, define uL (z) = max ~u(z), L~ .

PROPOSITION 5.2. Let SZ be a bounded domain in and suppose
that cpl, ... are plurisubharmonic functions in SZ. Assume that for some
neighbourhood U of ~03A9, all 03C6i are bounded in U n S2. Set

Then, for all M, N  L,

We omit the simple proof, which basically depends on the fact that the
functions coincide in a neighbourhood of the boundary. See [Ca] for details.

COROLLARY 5.3. - With the same assumptions as in Proposition 5.2,
if

is defined, it equals

for any M.

COROLLARY 5.4 (Comparison principle). Let SZ be a hyperconvex,
bounded domain in . Let u and v be plurisubharmonic functions on Q,
and suppose that u  v. Further assume that u and v are upper bounded

exhaustions, that is ~z E SZ : u  c~ CC SZ for all c  0, and similarly for v.
Then 

_ _

Proof. For bounded functions, this is Lemma V:3 in [Ce3]. Hence we
have

for all M  -1. Now Proposition 5.2 applies, and the corollary is proved.D

THEOREM 5. 5 (Partial integration) . - Let SZ be a hyperconvex, bounded
domain in Cn. Let wo 03C61, ... , be plurisubharmonic functions in Q, and



assume that for some neighbourhood U of ~03A9, all cpZ are bounded in U n Q.

Further assume that ~po and cpl are exhaustions, continuous as functions
S2 --> ~-oo, 0), and that

Then partial integration is allowed, that is

We remark that the theorem applies to the class of functions we studied
in Section 4, but is actually more general. We refer to [S] for the definition
of the Monge-Ampere operator in the more general case.

For the proof of this theorem we refer the reader to the following sources:

[B12], [Ce4] (where an even more general result is proved) or [Ca]. .

6. Definition of integrated measures

Let 0 be a hyperconvex, bounded domain in and suppose that A is

a finite subset of SZ. We refer to Section 1 for notation and the definition of

the multipole pluricomplex Green function. Here we will make the following
convention. Let B = (~i,..., vn) be an n-tuple of points in A, where some

v; might coincide. Let B = ~vl, ... = ~v~l , ... where all v~k
are different. Set D = Abusing notation, we will write g(z, B)
instead of g(z, D).

Note that if v E B, we have

for all z E S2 B {v}. Hence

for all z E S2 B A. Corollary 5.4 gives



We conclude that the total mass of the measures v1) n ... n
vn) is bounded, uniformly in (vl, ... E Let ~u be a finite

measure on Q. Using this fact, we can make the following definition.

DEFINITION 6.1. - For each 1 ~ we define a new positive measure

in the following way:

where x E 

Note that the measure is a function in the variables ... vn.

Now, let n be any bounded domain in Let K(z, w) be defined as in
Theorem 1.2, and suppose that K is bounded on 03A9 x T. In an analogous
manner to the above definition, we also define the following measures:

7. A formula for the Monge-Ampere measures of potentials

The goal of this section is to prove representation formulas for the
Monge-Ampere measure of potentials. In fact the following is true.



PROPOSITION 7.1. Let SZ be a bounded domain in and ~c a finite
measure. Let K(z, w) and q~ be defined as in Theorem 1. 2, and suppose
that K is bounded on SZ x T. Then we have

(z))n = y) A ... A ... d (vn). (4)

Further assume that  is such that lp  is bounded. Then the formula

= ddz log v1| n ... A ddz log |z - vn|d (v1) ... 

(5)
holds. Finally, if S2 is hyperconvex, and ~ is such that p~ is bounded, we
have

- / Qn vl) A ... A ... (6)

The three formulas are equalities between positive measures in the variable z.

To prove these formulas we need the following lemmas.

LEMMA 7.2 (Chern-Levine-Nirenberg’s inequality). . - Let SZ be an open
neighbourhood of a compact set . There exist a constant C > 0 and

a compact set L C S~2 B K, which depend on K and SZ, such that for all
ul, ... C PSH n L°°{SZ),

Proo f. We refer to ~Kl~ , Proposition 3.4.2 and Corollary 3.4.8. 0

Remark. For later reference, we would like to point out two facts about
the proof of Lemma 7.2. Firstly, the inequality is proved by a recursive
procedure, and if this is stopped after, say, n - k steps we obtain

where

is the standard Kahler form. Note that dd~ ( z ~ 2 /4) = {3. Secondly, the set
L can be chosen "far from" K, i.e. for any compact subset K’ of 03A9 such

that K C K’, the set L can be chosen in the complement of K’. However
the constant C may change if L changes.



LEMMA 7.3. - For all C2 functions ul , ... and all smooth (n - k, n -
k) test forms 03C6 we have

A ddcuk n 03C6 = uk n (8)

Proof. - See [Kl], Prop. 3.4.1. D

Proof of Proposition 7.1. We first prove Formula (6). Since is
plurisubharmonic and locally bounded, is defined. For each
u E S2, let gE(~, u) be the usual regularization of g(. , u), defined on

n : ~z dist(z, a52) > E~ . .
Then u) ~ is a family of negative, C°° functions defined on SZE x Q,
plurisubharmonic in z, decreasing to g(z, u) when f ~, 0. Define, for z E SZE,

Let ~  0 be a Coo function with compact support in Q . Let e >
0 be so small that supp x C For brevity, we introduce the notation
MA(ul, ... , un) for ddczu1 n ... n where ui ... , un are C2 functions
in z. Then we have, using (8) and Fubini’s theorem repeatedly:



when E B 0 . In this computation all expressions of the types

should be interpreted as measures in the variable z.

To complete the proof of (6) we must assure that the sequence of mea-
sures 

_

tends to

weakly when e B 0. We need to justify an application of Lebesgue’s domi-
nated convergence theorem in the integral

where x E Since ~ is assumed to be finite, it is sufficient to prove
that the measures ddczg~(z, v1) A ... A vn) have locally uniformly
bounded mass for small E, independent of (vl ... , vn ) E This is done in

the technical Lemma 7.4 below.

We have proved Equation (6). To prove Equation (5), simply repeat the
computation with g(z, u) replaced with log z - Then use Lemma 7.4.

Finally to show that Equation (4) holds, we repeat the same computation
again. This time the counterpart to Lemma 7.4 is obvious.

LEMMA 7.4. Let SZ be a bounded, hyperconvex domain in tCn . For each
v E SZ, assume that ge(.,v) is the usual regularization of g(., v) and that

loge(., v) is the regularization of log ( . 
. The for each compact set K in

SZ, there exists a constant C = C(K) > 0 and an Eo = Eo (K) > 0 such that

and all e ~ ~o.



Proof. Let SZE = {z E H : dist(z, 8Q) > E~. Take an open set SZ’ such
that K c f2’ C C ~2. For an n-tuple (vi, ... , vn) E let us assume that

exactly k of the v; are contained in f2’, and that these are vl , ... We

apply Inequality (7) on f2’ to deduce that, for some compact set L C 
we have

for all e such that 0’ We then apply Lemma 7.2 on 0, with S2’
as K’ (see the remark following Lemma 7.2). This gives us a compact set
L’ C S2 B 0’, such that

Hence

Recall that g(z, w) > log w| - log R, where R > 0 is chosen such that
SZ C B(w, R) for all w E SZ. This implies that  log R - log

= 1, ...1~, and log R - log =

k + 1,... , n. Hence

where C(k) is a constant which depends only on the number of poles inside
S2’. Define C = maxokn C(k). Then

and we are done. For the logarithm, the proof is similar.



For the logarithmic potential, it is possible to get an explicit expression
for the Monge-Ampere measure. We will use the notation det(a, b) = alb2 -
a2b1, where a and b E C2.

PROPOSITION 7. 5. - If v ~ w E C2, we have

and this measure is absolutely continuous with respect to the Lebesgue mea-
sure. Moreover, if ~ is a finite positive measure with compact support in C2,
and is locally bounded, then

Proof. 2014 We compute the first measure using the formula

and the fact that

We omit the details. To prove the claim about absolute continuity, note that

is uniformly bounded from above. Since E the claim is

proved. Finally, inserting Equation (9) into Equation (5) gives Equation (10). .

D

8. Is there any relation between and 

In classical potential theory we have = where U~‘ denotes the
classical potential of the measure /~ and c is a positive constant. It is natural
to ask whether there is any relation between the measures and ~c,
such as an inequality. The following results partially answer this question.



THEOREM 8.1. Let S2 be a bounded, hyperconvex domain in ~n, n > 2. .
Let be a finite measure, such that the logarithmic potential of tc is bounded.
Then is an absolutely continuous measure with respect to the
Lebesgue measure. If is such that the pluricomplex potential is bounded
and g(., v) E ~v~) for all v E Q, then is an absolutely
continuous measure with respect to the Lebesgue measure.

Proof. We prove the theorem for p~, the proof for lp~ being essentially
the same. Let K be a set of Lebesgue measure zero. Then using Equation
(6) and Fubini’s theorem we get

Call the bracketed integral f (v1, ... , , vn ) . If vi ~ v3 , for some indices i

and j, we have f (v1, ... , = 0, according to Proposition 4.4. If all the
variables have the same value v, then f(v, ... , v) = if v E K, with
I ( V, ... , v) = 0 otherwise. Let ~~ _ ~(v, ... , , v) : v C Then we have

Since p is bounded, ~ can not have any mass at points. Hence the inner inte-
gral is zero for all w, which implies JK = 0, and the proposition
is proved. D

EXAMPLE 8.2. - Let Q = B(0,l) C C2, and let  be the normalized
Lebesgue measure on the disc D(0,1) x ~0~. Then the pluricomplex potential
is bounded. Hence it cannot have any mass on the 1-dimensional complex
variety D(0,1) x ~0~.

Proof. From Proposition 3.1 we know that



It is easy to see by using routine calculus that -1 /2 = p~ (o)  p~ (z)  0.
The second statement then follows from general properties of plurisubhar-
monic functions (see [Kl]). D

The moral here is that, when n > 2, the procedure  ~ p  ~ (ddcp )n
is "smoothing". The fact that is singular is not visible at the end, as long
as the singularity is not too strong. This breaks down in dimension 1. We
will generalize the result in Section 9.

Also note that Theorem 8.1 says that a necessary condition for a bounded

plurisubharmonic function to be a pluricomplex potential is that its Monge-
Ampere measure is absolutely continuous with respect to the Lebesgue mea-
sure. Since there are many such functions whose Monge-Ampere measure is
not absolutely continuous, this indicates that the Green functions (with one
pole) form a very small subset of all extremal plurisubharmonic functions
(see the discussion in Section 1). .

THEOREM 8.3. - Let Q be a bounded domain in en. . Let q > 1, f E
with f > 0, = f d~. Then the pluricomplex and the logarithmic

potentials of are continuous on Q. Moreover, if n = 2, and f is not iden-
tically zero, then = where > 0 throughout SZ.

Proof. Since for each z E SZ and 1  r  oo, we have log (z - ~ ~ E
L~’ (~, SZ), it is clear that l p~ (z) > -oo for each z. Let 1 /q + l/r = 1. We
first prove that the logarithmic potential is continuous at every z E SZ.
Without loss of generality, we may assume that z = 0. Let z; --~ 0. Then

by Holder’s inequality. Hence it suffices to show that

This, however, follows immediately from Theorem 2.4.2 in [Ku-J-F], and
the first statement is proved for 

_ 

We now turn to p~ . Again, it is enough to show continuity at z = 0. If
B(w, R1) C SZ C B(w, R2), then - log R2  g(z, w) - log iz - R1,
for all z, w E SZ. Hence, if 6 > 0 is small enough, there is a constant A such
that - w~ (  A, for all z, w E B(o, b). Let E > 0 be given.



Choose 6 > 0, such that ~))  Er. We have by Minkowski’s
inequality:

Using the proof for we conclude that u) - g(0, dA(u) 
3e, if j is large enough. Outside B(0, ~), all functions are uniformly bounded
if j is large enough. Hence we can use Lebesgue’s dominated convergence
theorem there, and the first statement is proved for p~ .

Finally, to prove the statement about cp, we use Equation (10) :

There is an E > 0 and a set with positive Lebesgue measure where f > E.
Since the determinant vanishes only in a set in SZ x SZ with Lebesgue measure
zero, the integral is greater than zero for all z. p

THEOREM 8.4. Let SZ be a domain in Let f > 0, = f dh. Then
there is a constant C > 0 (depending only on SZ), such that

for all q > 2, f E and 1 /q + 1 /r = 1. .

Proof. It is clear that for all z, v, w E SZ,



is uniformly bounded. Hence, using Equation (10), we have

Since q > 2 we have r  2. Hence |z - vl-2 E Lr and the last integral can
be estimated by Holder’s inequality:

Take R > 0 large enough to ensure that n C B (z, R) for all z E SZ. Then
we have

Putting everything together we obtain the theorem. 0

We close this section with a characterization of smooth potentials.

THEOREM 8.5. Let SZ be a domain in Let ~c be a measure (not
necessarily bounded) in Q. Then the logarithmic potential is smooth (i.e.
C°°) in f2 if and only if ~c is given by a C°° function times the Lebesgue
measure. is such that g(x, y) - log ~x - y~ E C°°(SZ x SZ) then the same
characterization holds for the pluricomplex potential. In particular, this is
true for the unit ball.

~’roo f. We begin with the logarithmic case. As mentioned in Section
2, the logarithm is a fundamental solution in and the potential
is the convolution of the logarithm and the measure. The first statement of
the theorem now follows from distribution theory, see ~Ho~ , Theorem 4.4.1.
The second statement is a trivial consequence of the first. For the ball, set
g(x, y) = log y) + h(x, y). We must prove that h(x, y) E C°° (B x B).
We omit the easy computation. 0



9. Measures whose potentials have finite energy

Recently, Cegrell introduced the concept pluricomplex energy, and
defined the Monge-Ampère operator on functions of finite energy.

DEFINITION 9.1 [CelJ. Let SZ be a hyperconvex, bounded domain in
We define a function u to be in the class Eo if it is bounded, plurisub-

harmonic, tends to zero at the boundary, and  oo. We define a
function u to be in the class Ep, if there is a sequence C Eo, such that
u~ ~, u, and

It is shown that Ep is a convex cone. We remark that functions with
logarithmic poles, for instance the logarithm or the pluricomplex Green
function, are not contained in Ep for any p. We may say that functions in
the class Ep have finite p-energy.

THEOREM 9.2 . - The Monge-Ampère operator is well-defined on
Ep. .

The definition of the Monge-Ampere operator is done by means of the
defining sequence, and it is shown that this gives a unique measure.

We begin with investigating what happens if we take a function u E Eo,
and perform the procedure

PROPOSITION 9.3. Let S2 be a hyperconvex domain in such that
the pluricomplex Green function is symmetric, for example, a convex do-
main. Let u E Eo and set ~c = . Then p~ E Eo .

Proof. We need to show that p~ is bounded. Fix z E SZ, and set

Set K = - inf(En u(). We have by Holder’s inequality



for N  -l. We now apply Corollary 2.2 in [Bll] to obtain

Since

it follows that p~ is bounded. We also need to check that is finite.

We use Equation (6) :

Recall that the inner integral is uniformly bounded in v1, ... , vn . Hence

and J =  oo by assumption. The proof is complete. D

In the rest of this section we will work in the unit ball in C~ and prove
that Ei contains the potential of a measure , if  satisfies a kind of "loga-
rithmic finite energy" condition.

THEOREM 9.4. - Let Q = B, the unit ball in ~2. . If

then E El , and

Furthermore, is an absolutely continuous measure with respect to
the Lebesgue measure.

Proo f. Let

and define, for N x -1,



Then pN is a bounded function on 0 plurisubharmonic in z, so we can
apply Equation (4) to obtain

Since, by Corollary 5.4, the total mass of the measures

is bounded ( uniformly in v, w and N ), we have

It follows that that each pN is in Eo. Since also pN ~, p~ when N --~ -oo, it
is sufficient to show that if Inequality (12) holds, then supN fB 
oo. We have

Let let, v, w) be the inner integral here. We can estimate it using Theorem
5.5 in the following way.

We claim that if v ~ w, then



This estimate is contained in Lemma 9.6 below, and combining it with a
trivial estimate of g, we conclude that

Since we know that

for every A, B > 0 by assumption, it suffices to prove that there exists

A, B > 0 such that

This is done in the technical Lemma 9.8 below.

Next we prove Formula (13). By Theorem 9.2 and its proof, 
is well-defined and equals the weak limit of Hence it suffices to
show that if 0 ~ E then

But

and the inner integral here is bounded by

which, again, is uniformly bounded in v, w and N. Hence we can apply
Lebesgue’s dominated convergence theorem, and Formula (13) is proved.

Finally, to prove the claim about absolute continuity, repeat the proof
of Theorem 8.1. This is possible since a measure satisfying Condition (12)
can not have any mass at points. D

It remains to show a number of technical lemmas, used in the preceding
proof. The first one is a straight-forward but tedious computation, and we
omit the details.



LEMMA 9.5. - We have v,

LEMMA 9.6. - We have if u ~ v,

Proof. Immediate from the previous lemma. p

LEMMA 9.7. Let B2 = B(0, 2) C (C2. . Then the function : (C2 x ~2 --~
1~, defined by

is bounded from above.

Proof. Define = log(x/c)/x2 for x > c > 0. By differentiation
we see that  1/(2ec2). Hence

which proves the lemma. Q

LEMMA 9.8. - Let Br = B(o, r) C ~C2, and define a function W : Bi x
Bi x Bi --~ R by



Then there are constants A and B > 0, such that

Proo f. Let w = v - u, and make the change of variables z’ = z - u,
to obtain

Since B (-u,1) C B(0,2) and the integrand is non-negative for  2, we
get

We split this into three integrals 7i, 12 and 13, where

Note that

Using this and Lemma 9.7 we conclude that 7i is bounded from above by
say. To estimate ~2, note that it is a rotation invariant function of w.



Hence we may assume that w = (w, 0) where w E 1I~+ . We obtain

We now change to spherical coordinates in This gives

Call the bracketed integral 14. To estimate 14, we make the substitution
t = tan 81 /2, and get

Thus

by direct integration. We conclude that 12 x A2 - B2 log |v - u|.

For 13, just note that since  2,



and we can estimate it exactly as 12. We obtain 13 x A3 - B3 log |v - ul. .
Putting everything together, we obtain u, v) ul+
A3 - B3 log |v - u| = A - B log |v - u|, as desired. D

We remark that for measures with compact support, Condition (12)
reduces to

It would be interesting to see whether this condition is also necessary.

EXAMPLE 9.9. - In the unit ball in C2 we construct a measure whose

potential is unbounded, but still in Ei.

Proof. We adopt the convention that C, Cl, C2 etc. are positive con-
stants but they may have different values in different expressions. For ex-
ample, we might write C, if we know that ~ is bounded

by some other constant (not necessarily 1). Let ~a~ ~, C (o,1 ) be se-
quences which decrease to zero. Further assume that ~ a~ /b~  oo, and

= oo. We will use radial measures of the type = 

where f(r) = if r  1 /2, and zero if r > 1 /2. We first note that
~c is finite, since

Further, p~ is unbounded, since

It remains to show that satisfies Condition (14). First note that since
~c is rotation invariant, then so is Let x = (t, 0), t E (0,1/2), and change
to spherical coordinates. We get

Let I be the inner integral here. We use the substitution x = This



gives

where f is defined by

We have f(O) = 0 and

by elementary methods from calculus. Hence

We also have

We conclude that



Thus

It follows that

Note that the last sum is convergent for all 0  t  1 /2, since 0  2-b - tb 
- b log t, by the Mean Value Theorem applied to the function b H 2-b - tb.

Now we integrate again, and obtain

If we now choose, for instance, a; = j -3, b~ = the last series converges,

and the corresponding measure has finite energy. 0

Remark. For the suggested choice of a~ and the last series becomes

Ci((2)((3) + C2((2)2 + 2C3((3). Here we used the curious fact that

which can be proved using an integral representation of the Riemann zeta
function.
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