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Global Smooth Solutions of some Quasi-Linear
Hyperbolic Systems with Large Data (*)

F. POUPAUD (1)

Annales de la Faculté des Sciences de Toulouse Vol. VIII, n° 4, 1999
pp. 649-659

Nous donnons un critere d’existence de solutions classiques
globales en temps pour des systemes hyperboliques quasi-lineaire quand
toutes les valeurs propres sont confondues. Ce critere assure aussi l’exis-
tence de solutions globales regulieres pour certaines equations de Hamilton-
Jacobi. Il permet des données de Cauchy grandes. Il est base sur l’étude
d’une equation de Riccati matricielle.

ABSTRACT. - We give a criterion which ensures the existence of global
smooth solution for quasi-linear hyperbolic systems when all the eigenval-
ues of the system are equal. It provides also the existence of global smooth
solution for some Hamilton-Jacobi equations. This criterion allows large
Cauchy data. It is based on the study of a matrix valued Riccati equation.

1. Introduction

This work is concerned with the Cauchy problem for quasi-linear hyper-
bolic systems
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The vector-valued function u maps (0, onto 1Rd and Ai(u) E .Md(1Rd).
The matrix (03BE1, ..., 03BEn) E IRn has real eigenvalues
~1 (u, ~) ~ ... ~ Most of the studies deal with strictly hyperbolic
systems of conservation laws, i.e. the eigenvalues are assumed to be distinct
and the matrix are Jacobian of flux functions Ai(u) = Du fi(u), cf
[13]. There are only few results about the existence of global in time solution
for such systems. The most famous are those of Glimm [5] for n = 1 and
small Cauchy data and of Diperna [4] for n = 1, d = 2 with arbitrarily large
data. We refer for a general exposition on the subject and for more detailed
references to [13] and [9]. It is also wellknown that in general smoothness
of the solutions breakdowns in finite time. However using Ricatti equations,
it is possible to find criteria which ensure the existence of global classical
solution in the case of an equation d = 1 or of a 2 by 2 system of equation
in dimension 1 (n = 1 and d = 2), see [10]. In some sense, this work is an
extension of these very classical results. Let us also mention the recent and

very interesting result of Grassin, M. and Serre, D. [7] about the existence
of smooth solutions for the Euler system of equations.

In this paper we study the very particular case where all the eigenvalues
are equal. Then Ai(u) = where c;,(u) is a real number and the system
becomes

In order to motivate this work, we give two fields where this system arises.

For stellar dynamics physicists ([14]) have proposed pressure-less models.
The equations read

They are obtained from the classical Euler equation of gas dynamics by
assuming that the mean velocity u ~ of the gas is very large compared to the
sound speed. When the velocity is smooth the second equation becomes



Let us remark that it is no more a system of conservation laws. We can also
consider the relativistic version of these equations which are

rB 3 Q

or for smooth u = 0, L = 1, 2, 3,
dr i=i ~~

These problems have been investigated in [3, 8, 1]. A rigorous derivation
starting from the Euler isentropic equation has been performed in [6] in 1
dimension for classical solutions. Compared with strictly hyperbolic systems
a new phenomenon appears. The mass concentration p has singularities of
the type of Dirac functions just on the shock waves of the velocities u.
Therefore the product pu can not be defined in a classical way. The same
phenomenon exists for transport equations with non smooth coefficients

[12, 2, 8, 3].

The hyperbolic system (1.1) also appears when you differentiate the
Hamilton-Jacobi equation

where e is a real-valued function. It is easy to check that if 03B8 is smooth then

u := satisfies

with c(u) = Vu f(u) (cf 14, 3]). We point out that our criterion of
existence does not impose a convexity assumption on f. Of course there
is always a unique viscosity solution [11]. But it is interesting to have a
criterion which says when this solution is classical.

In this work we prove that the system ( 1.1 ) admits smooth solutions
which are global in time for large Cauchy data which satisfy a particular
criterion. It is in fact a generalization of the famous property of the Burgers
equation in 1 D to be smooth when the initial data is not decreasing. The



paper is organized as follows. In the next section we give the basic properties
of the system and the main result. The existence Theorem 2.2 is based on
a property of the Matrix valued Riccati equation

which is stated in Theorem 2.3. In Section 3 we apply these results for
Hamilton-Jacobi equations and we obtain the existence result of Theorem
3.4. Finally Section 4 is devoted to the proof of Theorem 2.3.

2. Basic facts

We study the system

where u is a vector-valued function from [0, T]  IRn to IRd and c = (cl, ..., c." )
belongs to 

The system (2.1) is supplemented by a Cauchy data

In this paper we are only interested in smooth solutions. So we assume

We say that T is an existence time if there is a solution of (2.1), (2.2) which
belongs to T ) x . Let u be such a solution. As usual we
define the characteristics X : : (O,T~ x - by solving

These characteristics belong to x and the applications
x --> X (t, x) are one to one and onto.

We compute



Therefore u(t,X(t,x)) = = and the characteristics are

given by

which can be inverted by

So we have

Conversely if uo E then the application x -~ 
is one to one and onto as soon as for any X E the map F(x) = X -
c(uo(x))t as a unique fixed point. But DxF = -t Duc(v,o).Dxv,p. Therefore
for t  r(uo) with

F is a contraction and (2:4) defines a smooth solution. Let

we remark that ~  oo and

> 0. We summarize these results in

THEOREM 2.1. - Let uo be an initial data which satisfies (2.3). Then
the problem (2.1), (2.2) has a smooth solution on where T(uo) > 0
is defined by (2.6). Conversely if T > 0 is an existence time, then dt E ~0, T]
the map x - x + uo(x) t is one to one and onto and the unique smooth
solution is given by (2.4).

COROLLARY 2.1.- If there exists a function a E such that

for every time t of existence of the smooth solution u of (2.1), (2.2) we have
r~(u(t, .)) x a(t) then this solution is global in time.

Indeed if the maximal existence time T* is finite then for every T  T*

we have by using the preceding Theorem with the Cauchy data u(T, .) at
time T : T* ~ T+r(u(T, .)). By taking the limit as T - T* we obtain that

=0, = 00.

Let KR be the complex domain defined by



(see Figure 1). We denote by Sp(M) the set of all eigenvalues of the matrix
M. The main result of this paper is

THEOREM 2.2. - Let us assume that for some R > 0 the initial data
satisfies (2.3) and

then the smooth solution given by Theorem ~..1 is global in time.

Fig 1 The complex domain KR

To prove this theorem we need

LEMMA 2.1.2014 Let T* the maximal existence time of the smooth solu-
tion u given in Theorem ~.1. Then the matri.x

satisfies the Riccati equation

Proof.- We differentiate (2.4) w.r.t. x and we get



We multiply by Duc(u(t, x + c(uo(x))t)) = Duc(uo(x)) and we obtain

We differentiate w.r.t. time, we get

which with the previous relation becomes

But starting with the Cauchy data u( s, ~) at time s we also have for any
t > ~ 0 with t  T*

For s fixed and t - s sufficiently small the matrix (Id + (t - s)A(s, x)) is

invertible. So A satisfies (2.9) on any interval of the form (s, s + e(s)) with
e(s) > 0 and s E ~O, T’‘) which ends the proof. D

To prove Theorem 2.2 we remark that it is enough to bound [
because of Corollary 2.1 and of the fact that x  x + t is one to one

and onto for t x T*. But it is an immediate consequence of Lemma 2.1 and

THEOREM 2.3.- Let Ao E with Sp(Ao) C KR where KR is
defined by (2.7). Then the matri,x valued Riccati equation

has a solution on [0, ~). Moreover for every R > 0, M > 0, there exists a
continuous function aM,R : : ~0, oo) -~ ~0, oo) for which

The proof of this Theorem is postponed to Section 4.

3. Hamilton-Jacobi equations

In this section we study the Hamilton-Jacobi equation



where 8, Bo are real functions. We assume that f E and 8o E
We say that 9 is a smooth solution of (3.1) if 9 E T~ x

for any time T > 0 and (3.1) holds everywhere. By differentiating (3.1)
w.r.t. x and using = we obtain that u := ~x8 satisfies (2.1)
with c2(u) := a2 f (u). So if belongs to KR we can apply
Theorem 2.2. But of course D2 is a real symmetric matrix so
the eigenvalues are real. We obtain

THEOREM 3.4. - Assume that 8o E and 
is a non negative matrix for every x E IRn, then the problem (3.1),

(3. 2) has a unique smooth solution which is global in time.

Proof. By mean of Theorem 2.2 we solve (2.1), (2.2) for the initial
data uo := ~x03B80 with c := "B111,1. Now we define

We have

so it only remains to prove that u = ~~6. By differentiating the last equation
with respect to Xi we have

Now we show that Dxu is symmetric. We use the notations of Section 2.
For any time t ~ 0 the matrix is positive definite since A(0, x)
is non negative. Then (2.10) gives

_ _ 
°

Therefore the matrix ~) is symmetric.

Then x) = x) and (3.3) yields

Since we have equality at t = 0 it ends the proof. D



4. The matrix valued Riccati equation

This Section is devoted to the study of the equation (2.11) and to the
proof of Theorem 2.3. We denote by ...  ~n the eigenvalues
of Ao. Since A? E KR the eigenvalues 1 of the matrix Id + tAo do

not vanish. So it is invertible. Let us define A(t) := Ao (Id + we

immediately check that A(t) solves (2.11). Then the solution of this O.D.E.
is global in time.

The eigenvalues of A(t), ai (t), i = I , ...n are given by

The trajectories defined by (4.1) are segment of circles centered on the
imaginary axis and passing by 0. The eigenvalues move clockwise along
circles above the real axis and counter clockwise below (see Figure 2). It
follows that KR defined by (2.7) is an invariant domain for positive time,
w.r.t. the spectrum of A. We have

F ig 2 Trajectories of eigenvalues

In order to complete the proof of Theorem 2.3, it remains to establish
the existence of the function aM,R (t) We begin with



LEMMA 4.1.- Let JC be a closed subset of a Banach X and (S(t))t,o
a semi-group defined on 1C which is pointwise bounded, i.e.

and locally continuous, i. e.

where BR is the ball of radius R, then S(t) is continuous for every t ~ 0.

Proof.- For fixed to ~ 0, ~ E I~ let R := Let ~n
be a sequence in IC which converges towards x. There exists Nl such that
xn E BR for n ~ Nl. Then for t E [0, e) - S(t)x. In particular
there exists N2 such that R for n ~ N2 since E 

By induction we derive the existence of Nk such that ke ~ to  (k + 1)e,
~ R for n ~ Nk and - Therefore S(ke + t)zn =

S(t)S(ke)xn - S(t)S(ke)x = S(ke + t)x for t E [0, e~. It remains to choose
t such that ke + t = to. O

We use this lemma with X = 7C = {A E ; Sp(A) C KR}
and S(t)Ao = A(t) where A solves (2.11). The local continuity is obtained
by using that the norm of A(t) is locally controlled by the solution of the
Riccati equation d (t) + y(t)2 = 0, y(0) = M. The pointwise boundedness
is a consequence of the continuity w.r.t. time of t --~ A(t). We deduce that
S(t) is continuous. Then the supremum

is a maximum so is bounded. Moreover since the functions t -~ are

continuous, aM,R(t) is also continuous.
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