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Regular Foliations along Curves (*)

PAULO SAD (1)
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pp. 661-675

On etudie des feuilletages reguliers le long d’une courbe
holomorphe compacte invariante, avec une attention speciale pour le cas
d’une courbe elliptique.

ABSTRACT. - A special type of foliation which is regular along an invari-
ant compact holomorphic curve is studied. When the curve is an elliptic
one, the relation to a naturally associated elliptic fibration is analysed.

This paper is concerned with the existence of holomorphic foliations, in
complex surfaces, without singularities along a smooth, compact, holomor-
phic curve. If this curve is a leaf of the foliation, it is well known that its
self-intersection number is zero. It is natural to ask if, given a curve of zero
self-intersection number, one can make it a leaf of a foliation on the surface.
This situation will be referred to as the foliation is regular along the curve
or the curve admits a regular foliation.

We study this problem in a fairly simple context. Let C be a smooth pro-
jective plane curve of degree one has C.C = d2. We select a number
of points in C and blow up d2 times the complex projective plane P(2) at
these points; the strict transform C of C has zero self-intersection number
in the new surface ( C depends on the choice of points and on the sequence
of blow-ups). We show that when d > 3, a generic choice of centers of blow-
ups produces a curve that does not admit a regular foliation. It should be
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remarked here that a smooth rational curve of zero self-intersection number
in a compact surface admits a regular foliation (see [I], Proposition V.4.3).

Next, we assume d = 3, that is, C is a plane elliptic curve, and the points
where P(2) is to be blown up are d~ = 9 distinct points. A necessary and
sufficient condition is given to assure that C admits a regular foliation; the
proof of sufficiency presented here produces an elliptic fibration containing C
as a fiber. This is the unique regular foliation admitted by C if we demand
the singularities along C to be of simple type. We give also an example
which has only a finite number of compact leaves: the holonomy group of
the curve C is not trivial, although the local holonomy difieomorphisms at
the singularities are all equal to the identity map (compare with ([12]).

The arguments used in the proofs are classical, and come from function
theory on Riemann surfaces, and from basic facts on elliptic fibrations with
sections. We proceed now to state more precisely the results.

Let C be a smooth plane algebraic curve of degree d ~ 3 and n ~ N.

THEOREM 1.2014 For a very generic choice of distinct points ~4i,...~
An e C, there exists no foliation on P(2) for which the set CB{A1,...,An}
is a leaf and its set of singularities along C is {~i,.... 

COROLLARY 2. - For a very generic choice of distinct points ~i,...~
An C C, the curve C obtained after performing a sequence blow-ups
with centers at these points admits no regular foliations.

The meaning of very generic will be explained in Section I .

In order to state the other results, we restrict to the case d = 3 and
and take d2 = 9 distinct points ~,1 ~ ~ ~ 9, along C; also, we select a

straight line Loo C P(2), transversal to C, which avoids those points. Let
C~L~ = {P1,P2,P3}. We then blow up P(2) once at each of the points
~1,...,~9. .

THEOREM 3. - The curve C admits a regular foliation with compact
leaves if and only if there exists a ~ N such that As - 3 Pj) is
a principal divisor of C.

We remark that the condition independs on the straight line Loo. The
foliations produced by Theorem 3 are pencils of curves of genus one (when
seen in P(2) ) with base points at Ai,.... When a = I the curves in the

pencil are generically smooth and cross each other transversely at the base
points; these are radial-type singularities for the correspondent foliation.
In general, if the curve C admits a regular foliation, the singular points



A1, ... , A9 in I~(2) may not be so simple; there exists only a small sector,
for each singularity, where the foliation is of radial type.

As for uniqueness in the situation of Theorem 3 (with a = 1) , we may
state

THEOREM 4. 2014 ~ If C admits a regular foliation such that A1, ... , A9
are singularities of radial type, then As - 3 P~ is a principal di-
visor of C; conversely, if this divisor is a principal one, there exists only one
admitted regular foliation whose singularities (before blow-ups) A1, ... A9
along C are of radial type. 2) There exists a regular foliation along an elliptic
curve which does not come from a pencil of curves.

In part 2) the divisor is still principal but we dropped the radiality
condition imposed before on the singularities; the dynamics becomes richer.

We acknowledge M. Brunella for helpful conversations, and the referee
for its careful reading of the paper (in particular, for suggesting a much
more conceptual proof for Theorem 7 and connecting this result to the
reference [4]).

1. Divisors and Regular Foliations

Let C C P(2) be a smooth, projective, plane curve of degree 
Given two straight lines L1, L2 which cross C transversely at the points
~’i ~ ~ ~ ~ ~ i=1, 2, the divisors P 1 and P~ are linearly equiva-
lent. We fix once for all a straight line Loo transverse to C to be the line
at infinity of P(2), and let LoonC = {~ " ~ ~}’ We consider a subset
~A1, ... , An~, n E N of distinct points taken along and the set FC
of foliations on P(2) satisfying the following conditions:

1. C is .~ invariant for .F E Fe

2. the singular set of F along C is exactly ~A1, ... .

We prove now:

PROPOSITION 5.2014 FC is not empty if and only if there exist ll, ...,
ln E N* such that the divisor Pj is a principal divisor

of C for = kd.

Proof. - Let us take ~’ E Fc. This foliation is defined by a meromorphic
vector field Z in P(2) with polar divisor (Z)oo = (deg (~) - where

is the degree of Since C is .~ invariant, Z is tangent to it, and



we have also Z(As) = 0 d 1 ~ s ~ n. Define ~ as the multiplicity of Zlc at
the point As. On the other hand, C is also invariant by the meromorphic
vector field Zo + where f = 0 is a reduced polynomial
equation for C. The restriction Zoic has no zeroes in CBLoo, and poles of
order deg (C) - 3 at the points the divisor of the meromorphic function
ç = is therefore of the form

where k = (~S-1 
For the converse, we need

LEMMA 6. - Assume that D = - k d Pj is a principal
divisor of C, where ll, ... , ln E N* and = k.d. There exists a poly-
nomial p(x, y) of degree k ~ N such that p = 0 intersects C exactly at the
points A1, ... An with intersection numbers ll, ... , ln E N* .

Proof. - 1) Let g be a meromorphic function of C such that (g) = D.
Since C is a projective curve, there exist polynomials P, Q satisfying 9 =
P/Q along C. Let us use homogeneous coordinates [Xo : Xl : : X2~ and keep
the notation ~ == ~-; for simplicity, the zero set of P (allowing multiple
components) will be indicated as P.

2) We have that D = P.C - Q.C. Since Q.C > (X2 = 0).C, it follows
from Noether’s Theorem ([7]) that Q = AXX + BF, where F = 0 is the
homogeneous equation for C and A, B are homogeneous polynomials. We
may therefore choose g = Now P.C > A.C, otherwise we would
have poles of g outside Loo. Another application of Noether’s Theorem lead
us to the conclusion that P = A’A+B’F, and again we may take g = A’/X2 .
The polynomial p = A’ (x, y,1 ) satisfies the statement of the Lemma.

We conclude the proof of Proposition 5 by taking the foliation defined
as the pencil of curves in P(2) given by CB : : f k + Ap = 0, A E C, where
f = 0 is a reduced polynomial equation for C. D

Now we can prove Theorem 1. We have to select points in the comple-
ment Cn of the diagonal of the nth-symmetric power of C in a very generic
way, that is, outside a countable union of analytic subsets of Cn. Let l =
(ll, ... E (Is1*)’~ satisfy = kd, for some J : C ---~ J(C)
be the jacobian map for C and



Then cod ~~=1 J(Pj)) ~ I . Indeed, the equality

in J(C) whenever A1 and A1 are close points in C would imply that
J (A1 ) ) - 0 in J ( C) which is impossible since J embeds C into

J(C) and J(C) has only a countable number of torsion points. It now fol-
lows from Proposition 5 and Abel’s Theorem ([5]) that any choice of points
in Cn B Ul J~ 1 (k ~d=1 J(Pj)) satisfies the non existence statement of the
Theorem.

2. Divisors and Elliptic Fibrations

As we have said in the Introduction, a surface foliation by curves which
has no singularities along some invariant compact curve is regular along the
curve. Equivalently, the compact curve admits a regular foliation.

We take the following situation. Suppose C is a smooth plane algebraic
curve of degree and choose d2 distinct points A1, ... , Ad2 E C. We
blow up each point As,1  s  d2, exactly once. The new surface P(2)
contains the strict transform C of C as a smooth curve of self-intersection

number equal to 0, which is a necessary condition for the existence of a
foliation on a surface which is regular along some curve ([3]). According
to Section 2, this condition is not at all sufficient. Our aim in this Section
is to present a condition (in terms of divisors over C) which ensures the
existence of a special type of regular foliation along C, namely a foliation
whose leaves are compact. Let Gc be the space of these foliations.

Let us consider g E Gc, and take a small section transversal to C.
There exists a E N such that any leaf close to C (and different from C)
intersects £ in a E N points. We select one of these leaves, say L, and
blow it down to the curve L in P(2). Then L has a E N smooth branches
going transversely through each point and its reduced poly-
nomial equation, restricted to C, gives us a principal divisor of the form

When C is a smooth plane cubic, we may state

THEOREM 7. - GC ~ ~ if and only if there exists a E N such that

is a principal divisor of C.



Proof. - 1)First of all, let us remark that the normal bundle C~~(2) (C) (C
to C in P(2)(for simplicity, written as NC) coincides with where

D := £§§§ As - ~E~~’ . In fact, the canonical divisor K of I~(2) is

03A3s=9s=1 Es - 3L~ (Es is the exceptional divisor that arises from blowing
up at the point A) and = -NC (this follows from the adjunction
formula and from the fact that the canonical divisor of C is zero). There-
fore aD is a principal divisor iff NC is trivial; if we assume that a E N

is the smallest integer with that property, then NC is not trivial for all
1  b  a, b E N. In particular, for such values of b E N there is no holo-
morphic section to NC since it would have zeroes, contradicting deg(bD) = b
deg(D) = 0.

2) Riemann-Roch’s theorem gives = so that _

0 for any 1  b  a. Using the long exact sequence associated to

we see that Hl(I~(2), 0~~2~((b-1)C)) = Hl(1~(2), 0~~2~(bC)) as long as 1 ~
b  a. It follows recursively that Hl(1~(2), = Hl(I~(2), 0~~2~),
so that Hl(1~(2), C~~~2~((a - 1)C)) = 0, and from

we get that the map H0((2), O(2)(a)) ~ H° (C, Na ) is surjective.

Therefore O(2) (aC) has a holomorphic section u which restricts to C as a
nowhere vanishing section of Na (since 1VC is trivial). But has a

(canonical) section uo which vanishes along C to the order a E N. Conse-
quently u/uo is a holomorphic function from P(2) to C such that its polar
divisor is aC and its zero divisor does not cross C. The fibration defined by

belongs to Ge. D

Remarks . I)In the situation of Theorem 7, the curve C is holomorphi-
cally diffeomorphic to a complex torus T via the Jacobian map J : C --~ T.
The set H = Z9) E T9; a. ~~9=1 Zj - 3J{~~-1 Pj)] = o~ is
an union of hyperplanes of T~; any point in H with distinct coordinates
gives us a divisor aD in C which satisfies the hypothesis of Theorem 3.

2) It should be also noticed that the same arguments of the proof of
Theorem 7 apply in the following setting: let C be a smooth elliptic curve



contained in a compact surface X with Ox) = 0; suppose that C.C =
0 and also that Në is trivial for some a E N. Then C is a fiber of multiplicity
a E N of some elliptic fibration of X.

3. Foliations and Elliptic Fibrations I

This section is dedicated to proving the first part of Theorem 4. We
describe again our setting. Let C C P(2) be a smooth algebraic curve of
degree 3 (an elliptic curve) which is an element of a pencil of elliptic curves
of degree 3 with 9 different points as base points. We write, after the earlier
sections, the pencil as the set of curves

and {~i,..., ~9} = C U{P = 0} , , deg(p) = 3.

This pencil defines a foliation g of P(2) with a rational first integral,
and the points A1, A2, ... A9 are singularities of radial type. It is easily
seen that = 4(see [8] for the definition of degree of a foliation),
therefore 9 has 21 singularities (counted with multiplicities); nine of them
belong to C. Blowing-up g at A1, A2~... A9 gives us a foliation ~ on the
surface I~(2) which is regular along C. The aim is to prove that ~ is the
unique foliation with this property when the singularities A1, ... , A9 are of
radial type(before blow-up’s)

The basic idea is to play with the elliptic fibration ~ : P(2) --~ C whose
fibers are the curves CB. In our setting, the exceptional divisor Es which
appears after blowing-up the point As is a section to the fibration. Although
it is not the case here, we observe that when the pencil is given as the set
of curves

(which was studied in the last section), we still have after blowing-up the
points Ai, ~... An a fibration by curves of genus I ; this time the excep-
tional divisor Es is no longer a section, but a multisection.

From now on we follow closely the exposition [6] on elliptic fibrations.

Suppose there exists another foliation ~ on P(2) regular along C. There
are interesting consequences which will be now explained. Theorem 4, part I )
is proved at the end of the section.

LEMMA 8. - The functional invariant of the fibration llb(2) - Es is
constant, all smooth elliptic fibers are of the same holomorphic type.



Proof. - I) Let Ca be a smooth fiber of ~ , ~ ~ 0. According to [2] , we
have

if is not j - invariant. Here N~ is the normal bundle to its

Chern class and tang(.~’, Ca) the number of tangencies between .~’ and Ca.
Since = Co homologically, we get

Now Co is invariant, and again by [2]

where Co) is the number of zeroes of j along Co. We conclude that
= 0. Therefore j is transverse to  except along a finite num-

ber of fibers (including the singular fibers of say Co, C~,..., Any
pair of fibers Ca, such that A and A’ do not belong to ~0, a1, ... , AJ are
holomorphically equivalent: we just lift a path in ~B~0, ~1, ... , a~~ which
joins A to A’ to the leaves of j in order to define a holomorphic diffeomor-
phism from to Ca~ . Lemma 8 follows. D

Consulting the table of behavior of the functional invariant at singular
fibers ([11]), and noticing that the elliptic pencil has 9 different base points,
we conclude that there are only 3 possibilities for these fibers in our sit-
uation : type II (rational cubic with a cusp), type III (a line and a conic
tangent to it) and type IV (three lines meeting at the same point). For type
III, the functional invariant extends as 1, and as 0 for the other two. Now,
the singularities of 9 appearing in fibers of type II,III and IV have multiplic-
ities (Milnor numbers) 2, 3 and 4 respectively. Since  has 12 singularities
(counted with multiplicities), we have then the following possibilities for its
singular fibers:

i) 3 fibers of type IV.

ii) 4 fibers of type III.
iii) 2 fibers of type IV and 2 fibers of type II.

iv) 1 fiber of type IV and 4 fibers of type II.

v) 6 fibers of type II.

It was said at the end of the proof of Lemma 8 that ~’ is transverse to
~ except along a finite number of fibers, including the singular fibers of 9.
In fact, when the singular fiber is not irreducible (types III and IV), this
means that at least one of its components is fi-invariant. Let us prove that



each irreducible component of a singular fiber C’ is F- invariant; we have
to keep in mind that = 0.

I) C’ is of type let C1 and C2 be its components; both have self-
intersection numbers equal to -2. Suppose C1 is a .F- invariant set, but C2
is not. One has:

Now Z(~’, C1)_> 0 because C~ is smooth, and > 0 because C1

is tangent to C2 and it is a i-invariant set. It follows that

in contradiction with 0. .

2) 0’ is of type IV: let oj, j = 1, 2, 3 be its components. Again, their
self-intersection numbers are equal to -2. If C1 is a F-invariant set but

C2, C3 are not, we have

which implies

contradiction.

If C 1, C~ are F-invariant sets and C3 is not, we may write

This time p E C 1 n C2 is a singularity of so that C 1 ) + Z (.~, > 2

and tang (~’, C3 ) > 0, contradiction again.

In conclusion, all the singular fibers of  are - invariant sets; we remind
that there is at least one smooth fiber (namely C = Co ) which is .~ invariant.

LEMMA 9. - The (vanishing) orders of ~’ at the points A1, A2, ... , A9
are all the same; if k ~ N is this common order, then and have k + 2

fibers of tangency (counted with multiplicities).



Proof. - I) We select some singularity As ; let us denote by k ~ N the
order of ~’ at As (it will turn out that 1~ E N does not depend on the
singularity). We take local coordinates around As as to have equations

for 9 and

x = y) + y) + ...) , y = y) + y) + ...]
for F ; y = 0 corresponds to C and Py, Qj are homogeneous polynomials of
degree j E N.

Let us proceed to find the tangency set between and  using the
equations above. Blowing-up at As (with coordinates ~ , t = y/x) gives the
equations 

.

for  and

We remark that Pk(l,t) - 0, but Pk+1(l,t) fl
0 (since the exceptional divisor x = 0 is not F-invariant). Also, we may
suppose that .f~+i(0,l) ~ 0, which ammounts simply to assuming that
t = oo is not a tangency point.

Finally, from the equations for .~’ we get that the tangency set is given
(along x = 0) by

and so there are k + 2 solutions (counted with multiplicities). Observe that
the argument independs on the singularity As I x s  9. In particular, the
order is the same for all of them. D

We know also that the foliations  and  have at least four common
invariant fibers: besides C = Co, there are the singular fibers that appear
in the possibilities i),ii),..., v). We conclude that

COROLLARY 10. - ~ > 2.

The first part of Theorem 4 is then proved.

Remark. - Let C be a plane smooth elliptic curve, and we search for
the foliations which leave it invariant and have only radial type singularities
~A1, ... , A9} C C. Then necessarily Aj - 3 Pj (where Pl, P2, P3
are the points of intersection of the curve with some straight line) is a

principal divisor, and we are back to the situation of Theorem 4. See also [10]



4. Foliations and Elliptic Fibrations II

Let us use again the notation introduced in the former section. We want
first to find an elliptic fibration ~ which comes together with a foliation
.~" transverse to it except for tangencies along a certain number of singular
fibers . Once this is done we will introduce another fiber of tangency,this time
a smooth one, by means of holomorphic surgery. Proof of Theorem 5, part
2) will then be achieved. Several steps are needed.

Step 1. 2014 Let us consider the pencil of cubics go defined by

There exists only one base point [0 : 0 : 1] at the line at infinity. If we blow
up sufficiently, we get an elliptic fibration Co which has two singular fibers:
one for A = 0, of type II, and the other one for A = oo, of type 11*. Eight
out of the 9 projective lines which arise from the blow-up’s are contained
in Boo and the remaining one, denoted here by E9, is a section to Co ( b y a
section we mean a section to the fibmtion). The pencil go is transverse to
the foliation Fo given by

except along Bo and Boo. If F0 is submitted to the same sequence of blow-
up’s applied to go, it is found that Eg is a leaf of fio ; we will restrict
ourselves to the subset V = > 0 being a small fixed positive
real number. Therefore: 

’

a) is an elliptic fibration over D and all fibers are smooth with the

exception of the type II fiber Bo.

b) Folv is transverse to except along Bo. It has two singularities in
Co : one at the singular point of Bo, and another one at Eg n Bo.This
singularity is easily seen to be holomorphically equivalent to the re-
duced one

where ~ is a coordinate along ilo and 7y is a coordinate along E9.

Due to the transversality between the foliations, we may define a "mon-

odromy map" 03A6 from Br to itself by lifting the path |03BB| = r along the leaves
of We observe that ~6 = Id, and that Eg n Br is a fixed point of ~ of
period 6.



We take in x B1 the foliations 0 and ’0 whose leaves are {03BB} x B1,
A E Di+r and x ~p~, p E B1 respectively. As in [9], we may glue
together 6 copies of to a copy of ~o in order to preserve the elliptic
fibrations and have a section to the resulting fibration; this section arises
by glueing the copies of E9 n V to the same horizontal leaf of Such a

construction is performed in the following way: we start by glueing 
to For this, we choose some holomorphic diffeomorphism h between
~ 1 } x B1 and By, and extend it to small neighborhoods x B1 and JBy
saturating along the leaves of v and ~’o and respecting ~o and v . The

resulting diffeomorphism is a the desired glueing map. We repeat the same
construction using again h to send ~~~ ~ x B1 to Br, where Aj = =

0, ... , 5. We arrive at a surface M’ which has an elliptic fibration if’ over
a domain of C diffeomorphic to a disc (we still call it D for simplicity) and
posesses a transversal foliation F’ (except for 6 type II fibers of tangency) ;
besides, the fibration has a section, because 6 copies of Eg n V were glued
together to the same horizontal leaf of ,~’o.

The monodromy map of ~’’ associated to which is defined for any
fiber of is the identity map, due to tP6 = Id and the fact that we have
used the same diffeomorphism h for all the glueing maps. This allows us to
extend F’ to a foliation transverse to the fibers of an elliptic fibration (with
the exception of 6 fibers) of a compact surface : we just glue it to the trivial
horizontal foliation of (CBD) x B1 (always sending the fibers of ~’ near 8M’
to the vertical fibers of (CBD) x B1 near 9D x B1 ).

Let us call M the complex surface obtained from this construction, 9 the
elliptic fibration and F the foliation transverse to the fibration. They have
in common 6 leaves which are type II singular fibers (and are transverse
elsewhere) ; the section (still called Eg) to G is invariant for . Let Qi,..., Q6
be the points of intersection of Eg with the singular fibers of 9. From b)
above one has that the Camacho-Sad index _ -1/6 1 x j 
6, so that E9.E9 = -1 (see [3]).

Step 2 . Since M is an elliptic fibration over C with 6 type II singular
fibers, its Euler-Poincare characteristic is 12. Furthermore, the fibration has
a section; it follows (see (III.4.4), (111.4.6) and (IV.1.2) in [11]) that

I) M is obtained from CP(2) blowing-up 9 points.

2) The fibration ~ comes from a pencil g of generically smooth cubics in
the projective plane with those 9 points as base points (one of them
produces the section Eg but the others could be infinitely near).



In fact, the remaining 8 points must all be distinct because otherwise
either some component of the exceptional divisor, different from E9, is part
of a singular fiber (which is not the case) or a connected component of
the exceptional divisor, still different from E9, has at least 2 elements not
contained in the fibers. This would imply that the generic member of the
pencil is not smooth, which is not the case also. Summarising: M comes from
CP(2) after blow-up’s at 9 different points A1, ... A9 producing sections
E1, ... , E9 to the fibration g.

Step 3. - The singularities of .F, besides the singular points of the sin-
gular fibers, are the points ~1, ... , ~s which belong to E9. There exists
therefore a component, say E1, of the exceptional divisor without any sin-
gularities of ~’. In particular, Ei is not F-invariant. Let us choose a smooth
fiber C of g such that C n Ei is not a tangency point between F and Ei.
We want to change F in a neighborhood of C in order to turn this curve
into an invariant one with non trivial holonomy.

Due to the transversality between  and  along that fiber, we may
trivialise the fibration in a neighborhood W of C. Let us assume then that
this neighborhood is equivalent to x C denotes the disc  r2 ~,
r2 to be chosen afterwards), ~ is the fibration defined by dA = 0, A E and

finally that z = 0 defines Ei , where z E C comes from the uniformization
of C (Remark: it can be easily verified that C is equivalent to the quotient
of C by the lattice r generated by 1 and e2z~/s ) . For simplicity we assume
that  is of the form dz/d03BB = I in W There exist as a consequence a point
(~’, 0) E Ei x {0~, close to (0,0) E Ei x {0~, two annuli A and B and a
holomorphic diffeomorphism 03C8 such that

I) A’ E A = { ~ E Ei, 0  ri  ~ a ~  r2  1 ~ , rl to be chosen afterwards.

2) 0 e B c C

3) the leaf of through a point of {03BB’} x B cuts A x {0} at its 1/;-
image ; this defines 03C8 as a diffeomorphism from {03BB’} x B to A x {0}
(in particular, ~(~’, 0) = (~’, 0)).

Let us now consider the foliation ?~ in C x C defined as

If we choose E f, the lattice associated to C, we get that the mon-
odromy map of M when we turn along A is the identity map. Once Ai is

fixed, we choose 0  ri  r2 sufficiently big as to have rl. The equa-
tion that defines ?-~ will be approximately dz/dA = 1 in a neighborhood of



A x B. We see that again there exists a diffeomorphism 1/;’ from ~~’} x B
to an annulus A’ x ~0} close to A x ~0} such that the leaf of H through a
point of B cuts A’ x ~0} at its w’-image; one has ~’(~’, o) _ {a’, o).

We intend to glue the foliation restricted to (A E C;ri  a ( 
r2 } x C to the foliation H restricted to Ae x C , where A: is the topological
disk inside the outer boundary of A’ ( A = 0 belongs to Ae ) . We have
to define an holomorphic diffeomorphism from A x C to A’ x C which
preserves fibers of  and sends leaves of to leaves of H. This can be
achieved by taking the identity map on ~a~ } x C and propagating it along
leaves and respecting fibers. It is well defined since the monodromies of w

and ?-~ when we turn along A and A’ are equal to the identity map. It is
important to notice that "respecting fibers" means that a fiber of  over a
point of A is sent to a fiber over a point of A’ according to some holomorphic
diffeomorphism from A to ~4 . .

Such a glueing construction may produce a complex surface different
from M, unless we are able to keep a section to the new elliptic fibration (this
follows exactly from the arguments in Step 2 above). In order to guarantee
that Ei is still a section, we proceed as follows. Consider the diffeomorphism
h = ~’ o~-1 from A x ~0} to A’ x ~0} (h{~’, 0) = {~’, o) ) . We take the identity
map on f a~ } x C and propagate it along the leaves of ?-~ but now

using h : the fiber over a point (A, 0) E A x ~0} has to be sent into the fiber
over (h(A),0) E A’ x ~0}. The resulting diffeomorphism preserves {z = 0},
so that the section E9 persists.

Let ’ denote the new foliation in M. We see that the elliptic curve cor-
responding to A = 0 in the equation of H is invariant, without singularities
and its holonomy group is not trivial ; the same can be said of this curve
as a leaf of ,~’ . To obtain the plane foliation we look for it is enough to
blow-down all the components of the exceptional divisor.

The proof of Theorem 4 is then completed.

Remark. The elliptic fibration used above corresponds, among the
possibilities discussed after Lemma 8, to case v). It would be interesting
trying to repeat the construction with the other possibilities.
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