A. STOIMENOW

The Jones polynomial, genus and weak genus of a knot

<http://www.numdam.org/item?id=AFST_1999_6_8_4_677_0>
The Jones Polynomial, Genus and Weak Genus of a Knot (*)

A. STOIMENOW (1)

RéSUMÉ. — Le genre faible (ou genre canonique), c.a.d., le genre minimal de toutes les surfaces de Seifert obtenues par l’algorithme de Seifert à partir d’un diagramme du nœud quelconque, est étudié dans le travail de Morton [MPCPS 99 (86), 107-109]. Il montre (en utilisant le polynôme de HOMFLY-PT) que ce genre est parfois strictement supérieur au genre de Seifert classique.

Dans cet article on montre que les doubles des sommes connexes itérées d’un nœud K ont un genre faible qui croit infiniment, si le polynôme de Jones du double de K vérifie une certaine condition. (Le genre de ces doubles des sommes connexes itérées est pourtant toujours égal à 1.) On donne des exemples.

ABSTRACT. — The weak (or canonical) genus, i.e., the minimal genus of all Seifert surfaces obtained by the Seifert algorithm applied on any diagram of the knot, appears implicitly in the work of Morton [MPCPS 99 (86), 101-104], where he shows (using the HOMFLY-PT polynomial) that this genus is sometimes strictly greater than the classical Seifert genus.

In this paper, it is shown that for any knot K, for which the Jones polynomial of a double satisfies a certain condition (almost to be the polynomial of a twist knot), the weak genus of the (genus one) doubles of the iterated connected sums of K grows unboundedly. Examples are given.
1. Introduction

In his book [Ad, p. 105 bottom], C. Adams mentions a result of Morton that there exist knots, whose genus g is strictly less than their weak genus \tilde{g}, the minimal genus of (the surface of Seifert’s algorithm applied on) all their diagrams. This observation appears just as a remark in [Mo], but was very striking to the author. Motivated by Morton’s example, the author started in a series of papers [St2, St, St3] the study of the invariant \tilde{g}. A key role in what we can say so far about \tilde{g} plays [St2, theorem 3.1], saying that knots of given \tilde{g} decompose into finitely many sequences of the kind introduced in [St4], and called there “braiding sequences”, that is, can be obtained from finitely many diagrams by successive applications of antiparallel twists at a crossing

$$\begin{array}{c}
\xrightarrow{\text{\textbullet \textbullet \textbullet}}
\end{array}$$

This theorem has several direct consequences, *inter alia*, to the enumeration of such knots or the properties of their knot polynomials.

In this paper, we extend the series of boundedness and stability criteria for the Jones polynomial V [J], presented in [St] for positive knots, to alternating knots. We make more precise our observation of [St3], that any coefficient of V of an alternating knot has an upper bound, which is polynomial in the crossing number for fixed genus, by writing down an explicite estimate. Furthermore, we show that the value range of any sequence of fixed length of leading or trailing coefficients of V of an alternating knot of given genus stabilizes as its crossing number goes to infinity.

Both properties are generalized in slightly weaker forms to non-alternating knots. Finally, we use these extensions to generalize Morton’s example to a series of knots with fixed genus, but arbitrarily high weak genus. Thus, unfortunately, no control from below can be expected on g from \tilde{g}.

It is to be expected that a proof for specific series of examples is possible by skein module calculations also using Morton’s inequality [Mo] $\max \text{deg}_v P/2 \leq \tilde{g}$ involving the maximal degree of the v variable in the HOMFLY polynomial P [H]. We decide here, however, to present a criterion using the Jones polynomial (and more exactly the Kauffman bracket), whose derivation is more analytical.

2. Preliminaries

The Jones polynomial [J] is a Laurent polynomial in one variable t (more precisely in its square root) associated to an oriented knot or link in S^3 and
can be defined by being 1 on the unknot and the (skein) relation
\[
 t^{-1}V_+ - tV_- + (t^{-1/2} - t^{1/2}) V_\iota = 0,
\]
with V_+, V_-, V_ι denoting diagrams equal except near one crossing, which is resp. positive, negative and smoothed out.

Briefly after Jones's discovery, Kauffman [Ka] found another definition of this invariant called “Kauffman’s state model” or “Kauffman bracket” (see also [Ad, §6.2]).

Recall, that the Kauffman bracket $\langle D \rangle$ of a diagram D is a Laurent polynomial in a variable A, obtained by summing over all states the terms
\[
 A^{\#A - \#B} (-A^2 - A^{-2})^{|S|-1},
\]
where a state is a choice of splittings of type A or B for any single crossing (see figure 1), $\#A$ and $\#B$ denote the number of type A (resp. type B) splittings and $|S|$ the number of (disjoint) circles obtained after all splittings in a state.

The Jones polynomial of a link L is related to the Kauffman bracket of some diagram of it D by
\[
 V_L(t) = (-t^{-3/4})^{-w(D)} \langle D \rangle \big|_{A=t^{-1/4}}.
\]

The Kauffman bracket skein module of a room (a disc with a distinguished number of points on its boundary) is the module, say, over \mathbb{Z}, generated by isotopy classes of inhabitants of this room (tangle diagrams in this disc, intersecting its boundary exactly in the distinguished points), and with relations corresponding to resolving the crossings according to the Kauffman bracket relation.
The concept of a braiding sequence was introduced in [St4] in the context of Vassiliev invariants, but subsequently turned out to be more useful in a special case when considering knot diagrams, on which the Seifert algorithm [Ad, §4.3] gives a surface of given genus. (We subsequently call this genus the genus of the diagram.)

Definition 2.1. A \tilde{t}_2-move is the move in a diagram D is a replacement of (a neighborhood of) some distinguished crossing in D by the tangle of 3 antiparallelly twisted crossings, as shown in (1).

A braiding sequence associated to a diagram is a family of diagrams, parametrized by $c(D)$ odd numbers $x_1, \ldots, x_{c(D)}$ (where $c(D)$ henceforth denotes the number of crossings of D), each one indicating the number of \tilde{t}_2 moves performed at each crossing. We adopt the convention that for $x_i < 0$ we switch the crossing numbered by i and apply $(-x_i - 1)$ \tilde{t}_2 moves on the switched crossing.

We consider crossings as equivalent, if they form a reverse clasp, so that \tilde{t}_2 on either of them have the same effect on the diagram. The maximal number of (such equivalence classes of) crossings over diagrams of genus g we call d_g.

Theorem 2.1 (theorem 3.1 of [St2]). Knot diagrams of given genus decompose into finitely many equivalence classes modulo \tilde{t}_2 moves and their inverses. That is, they all can be obtained from finitely many (called “generating”) diagrams by repeated \tilde{t}_2 moves.

3. The Jones polynomial of alternating knots of given genus

Directly from [St2, theorem 3.1], in the proof of theorem 9.3 of [St] we mentioned a way how to compute V on a whole braiding sequence from the Jones polynomials of the generating diagram (as defined in [St2]) and all its crossing-changed versions. From this principle, the following observation is relatively straightforward, but in view of the results of [St3, §6] maybe should be recorded in its own right.

\[
\bigotimes = A \bigotimes + A^{-1}
\]
THEOREM 3.1. — There exists a constant C, such that for any alternating knot K and any $k \in \mathbb{Z}$ it holds

$$
\left| \left[V_K(t) \right]_{t^k} \right| \leq \max_{2g(K)+1 \leq k \leq d_g(K)} \left(\frac{Cc(K)}{k} \right)^k ,
$$

(3.5)

where $c(K)$ denotes the crossing number of K and $g(K)$ its genus, $[V]_{t^k}$ is the coefficient of t^k in V, and $d_g(K)$ can be defined by

$$
d_{\bar{g}} := \min \left\{ i \in \mathbb{N} : \limsup_{n \to \infty} \frac{|A_{n,\bar{g}}|}{n^i} = 0 \right\} ,
$$

(3.6)

with

$$
A_{n,\bar{g}} := \{ K \text{ alternating, } g(K) = \bar{g}, c(K) = n \} .
$$

(3.7)

Remark 3.1. — For fixed $c(K)$ the maximal value on the right of (3.5) is attained at $k = c(K)/e$, which is exponential in $c(K)$. Therefore, the essence of this theorem is the claim that the coefficients of V for K alternating grow polynomially in $c(K)$ for fixed $g(K)$. This was already noted in [St3], but here we give this more explicite estimate.

Proof. — This is basically a repetition of the proof of theorem 9.3 in [St]. If V_n denote the Jones polynomials of L_n, where L_n are links with diagrams D_n equal except in one room, where n antiparallel half-twist crossings are inserted, then from the skein relation for the Jones polynomial we have

$$
V_{2n+1}(t) = t^{2n}V_1(t) + \frac{t^{2n} - 1}{t^2 - 1} \left(t^{1/2} - t^{-1/2} \right) V_\infty(t) ,
$$

(3.8)

with V_∞ denoting the Jones polynomial of L_∞, which is the link obtained by smoothing out any crossing in the room.

We consider now a diagram D in a braiding sequence of diagrams of genus $g(D) = \bar{g}$ and some number of parameters $d \leq d_{\bar{g}}$, where $d_{\bar{g}}$ can be defined by (3.6). We have $d \geq 2\bar{g} + 1$ because of the $(2, 2\bar{g} + 1)$-torus knot diagram.

Then expand the relation (3.8) with respect to any of the d crossings, at which t_2 moves can be applied, obtaining 2^d terms to the right. So their number in exponentially bounded in \bar{g}, and hence it suffices to prove the inequality for each term separately.

Each term is of the form

$$
(t^{1/2} - t^{-1/2})^k \cdot V_{L}(t) \cdot t^{k'} \prod_{i=1}^{k} (1 + t^2 + \ldots + t^{2a_i}) ,
$$

(3.9)
with $k \leq d$, $k' \in \mathbb{Z}$ and $\sum a_i = O(c(D))$, where $c(D)$ denotes the crossing number of D, and L being a link obtained by smoothing out (according to the usual skein rule) some set of crossings in the generating diagram. But the crossing number of L is linearly bounded in d, hence all its coefficients are exponentially bounded in d. Then, the coefficient sum of the product term is at most

$$\left(\frac{C c(K)}{d} \right)^d.$$

From this the theorem follows, as by [Ka2, Mu, Th] for an alternating diagram D of an alternating knot K, we have $c(D) = c(K)$, and by [Ga], $g(D) = g(K)$. □

Remark 3.2. — C can be in principle written down explicitly. However, the resulting number so far has an unattractive magnitude. By [St], $d_\tilde{g} \leq 97 \cdot 8^{\tilde{g} - 2} - 6$ for $\tilde{g} \geq 2$, but here it is possibly as well fertile to think about sharper bounds.

Another straightforward consequence was already noted in [St] and is repeated here, because it will be related to the extension of Morton’s example.

Proposition 3.1. — Let $t \in S^1 := \{ z \in \mathbb{C} : |z| = 1 \}$. Then $\{ V_K(t) : \tilde{g}(K) = g \} \subset \mathbb{C}$ is bounded for any $g \in \mathbb{N}$.

Proof. — Repeat the previous formulas, noting that the partial sums of the Neumann series of t^2 and t^{-2} are both bounded if $|t| = 1$. □

Finally, we come to the announced stability result for the “edges” of the Jones polynomial.

Definition 3.1. — For some polynomial $V \in \mathbb{Z}[t, t^{-1}]$ define the minimal and maximal degree and the span (elsewhere called “breadth”, not to the author’s taste) of V by

$$\min \deg V := \min \{ a \in \mathbb{Z} : [V]_{t^a} \neq 0 \}, \quad \max \deg V := \max \{ a \in \mathbb{Z} : [V]_{t^a} \neq 0 \}, \quad \text{and span } V := \max \deg V - \min \deg V.$$

Then the list $\lambda_l V$ of V’s leading coefficients of length l is the l-tuple $([V]_{\min \deg V + k})_{k=0}^{l-1} \in \mathbb{Z}^l$. Analogously define the list $\tau_l V$ of the trailing coefficients of V of length l.

Theorem 3.2. — Fix g, l and $n \mod 2$. Then the sets $\Lambda_{l,g} := \{ \lambda_l V_K : K \in \mathcal{A}_{n,g} \}$ and $T_{l,g} := \{ \tau_l V_K : K \in \mathcal{A}_{n,g} \}$ (with $\mathcal{A}_{n,g}$ as in (3.7)) stabilize as $n \to \infty$, that is, are all the same when $n \geq n_0$ for some n_0.

- 682 -
The proof of this property is closely related to its analog for positive knots from \cite[§6]{St3}. We show it just for \(\lambda_i V \) (because \(\lambda_i V_K = \tau_i V_K \), so in fact \(\Lambda_{i,g} = T_{i,g} \)).

By recalling carefully the proof of theorem 6.2 of \cite{St3} for the case \(t = 0 \), we see that if for \(i \mod 2 \) fixed are links as in (3.8) (that is, a one-parameter antiparallel twist sequence), then \([V_{L_i}(t)]_{i^k} \), and more generally the \((l_2 - l_1 + 1)\)-tuple \(([V_{L_i}(t)]_{i^k})_{i=l_1}^{l_2} \) for any \(k, l_1, 2 \in \mathbb{Z} \), stabilize as \(i \to \infty \), with the property, that a (not necessarily minimal) point of stabilization \(m_0 \), that is, a number, such that \([V_{L_{i_1}}(t)]_{i^k} = [V_{L_{i_2}}(t)]_{i^k} \)

\[
([V_{L_{i_1}}(t)]_{i^k})_{i=l_1}^{l_2} = ([V_{L_{i_2}}(t)]_{i^k})_{i=l_1}^{l_2}
\]

for all \(i_1, 2 \geq m_0 \), is dependent on \(k \) resp. \(l_1, 2 \), but (very crucially) independent on the link diagram outside of the twist box, assuming \(\min deg V \) is uniformly bounded from below (see remark 3.3 below).

We now have the following

Lemma 3.1. — Let \(D \) be an alternating diagram and \(D' \) be obtained from \(D \) by applying a (antiparallel) twist at any of its positive resp. negative crossings. Then \(\min deg V(D) = \min deg V(D') \) resp. \(\max deg V(D) = \max deg V(D') \).

Proof. — First forget about \(D \)'s orientation and consider its unoriented version. It can be seen from the expression of \(\min deg V \) and \(\max deg V \) in terms of the checkerboard shading (see \cite[pp. 160-162]{Ad} or \cite{Ka3}) that under a twist (in the unoriented version) \(\min deg V \) changes only locally, i.e., by something independent on the rest of the diagram.

Now, considering again \(D \) with orientation, \(\min deg V \) has a lower \cite[lemma 6.1]{St3} and upper \cite[theorem 4.2]{St6} bounds in terms of the diagram genus (which is fixed by an antiparallel twist) and the number of negative crossings (which is preserved as well, if the twist is at a positive crossing), hence \(\min deg V(D) \) ranges within some finite interval under antiparallel positive twists. But if the local change of \(\min deg V \) were non-zero, by applying successive further twists, we would be able to push \(\min deg V(D) \) arbitrarily high or low, contradicting one of the bounds.

Applying the argument on the mirror images, we get the statement for \(\max deg V \) and negative twists. \(\square \)

Remark 3.3. — Therefore, twisting at positive crossings, \(\min deg V \) stays always the same. But then we see, that the dependence of \(m_0 \) on \(k \) resp.
$l_{1,2}$ is in fact just a dependence on $k - \min \deg V$ resp. $l_{1,2} - \min \deg V$, because of the freedom to rescale V by a power of t (this is not very clear from the generating series representation of [St3, §6]). This is the second crucial point.

Prepared with lemma 3.1 and this observation, fix g, and consider separately any of the finitely many braiding sequences of alternating (knot) diagrams of genus g, and also consider therein all the twist boxes separately. First consider the twist boxes with positive crossings.

From lemma 3.1 and remark we see that $\lambda_1 V$ stabilizes after m_0 twists for some m_0 at any positive crossing (under further twists at that crossing), independently on how many twists have been done at the negative crossings. Therefore, to capture all contributions of knots in this braiding sequence to $\lambda_1 V$, it suffices to consider separately the finitely many cases, where at each positive crossing at most m_0 twists are performed. Therefore, we fix for the rest of the proof the number of twists at each positive crossing.

We now show that the same argument can be made to apply for (twists at) the negative crossings.

Recall that (3.8) is the explicit form of the recursive relation

$$V_{k+4}(t) = (t^2 + 1) V_{k+2}(t) - t^2 V_k(t) , \quad (3.10)$$

with the subscripts of V denoting the number of positive (half-)twists. Now consider for a diagram D in the sequence

$$V'_D(t) := t^{c(D)} V_D(t) ,$$

with $c(D)$ being the crossing number of D. Then because of $c(D_{k+2m}) = c(D_k) + 2m$, V' again satisfies (3.10), but this time with subscripts of V denoting the number of negative twists. As D is alternating, by [Ka2, Mu, Th], $\min \deg V'(D) = - \min \deg V(!D)$, where $!D$ is the mirror image of D, and applying negative twists at D is the same as applying positive at $!D$, which by lemma 3.1 fixes $\min \deg V(!D)$, hence also $\min \deg V'(D)$.

Therefore, having fixed the number of twists at the positive crossings in D, we are interested in the leading l coefficients (that now have fixed positions) of the polynomials V' of the diagrams D, which again satisfy (3.10) in every twist box, the subscripts counting the number of negative twists. But because of (3.10), and its iterated version (3.8), these coefficients stabilize by the positive twist case argument. \hfill \Box

Remark 3.4. — Note that the use of [Ka2, Mu, Th] is crucial – we need upper control on $\min \deg V'(D)$, hence a lower control on the span of $V(D)$.
from \(c(D) \). The only (in fact, larger) class of knots, for which such control exists are the adequate knots of Lickorish and Thistlethwaite [LT]. It would be interesting, whether any of the results generalize to these knots. However, much trouble is expected because of the need of existence of an adequate diagram of minimal weak genus. On the other hand, from (3.8) it can be hoped, that a more careful analysis can prove the theorem 3.2 in full generality.

We conclude by another property of the Jones polynomials which is not expected to hold always, but at least "generically" with growing crossing number – the 2-periodicity almost everywhere of their coefficients. We just draw attention to the problem, leaving it open.

Definition 3.2. Call \([m, n] \subset [\min \deg V, \max \deg V] \) for some \(V \in \mathbb{Z}[t, t^{-1}] \) and \(m, n \in \mathbb{Z} \) with \(n > m + 2 \) a 2-periodic interval of \(V \), if \([V]_{t^k} = [V]_{t^{k+2}} \) for each \(k \in \{m, n-2\} \). Denote this by \([m, n] \in 2p(V)\).

Conjecture 3.1

\[
\sum_{k \in A_n,g} \bigg| \bigcup_{[m,n] \in 2p(V_K)} [m,n] \bigg| \to 1 \quad \text{as} \quad n \to \infty
\]

for any fixed \(g \).

4. Inequalities for non-alternating knots

We show now a version of theorem 3.1 for non-alternating knots. An analogon to theorem 3.2 is a consequence of it.

Theorem 4.1. There is some constant \(C > 0 \) such that for any knot \(K \) and any \(k \in \mathbb{Z} \) it holds

\[
| [V_K(t)]_{t^k} | \leq (C \operatorname{span} V_K)^{d_g(K)} \leq (C c(K))^d_g(K).
\]

Proof. If \(K \) has a diagram \(D \) in a \(d \)-parameter antiparallel braiding sequence of diagrams of genus \(g(K) \) (so \(d \leq d_g(K) \)), as before, from (3.8) you have that \(V_K \) is the sum of \(2^d \) terms of the form (3.9), with \(k' \in \mathbb{Z} \), \(k \leq d \) and \(c(L) \leq 2d \). Therefore, \(V_K(t) \cdot (t + 1)^d \) is the sum of terms as in (3.9), but this time with the product of \(1 - t^{2a_i+2} \), and so the coefficients of \(V_K(t) \cdot (t + 1)^d \) are bounded independently on \(c(D) \) by something exponential in \(d \). Now, w.l.o.g., multiply \(\tilde{V}_K(t) := V_K(t) \cdot (t + 1)^d \) by a power of \(t \), so that it to have minimal degree 0 (i.e., to be an honest polynomial it \(t \) with
absolute term). The Taylor expansion of \(\frac{1}{(t+1)^d} \) around \(t = 0 \) has an \(n \)-th coefficient, which is \(O(n^{d-1}) \) in \(n \), with \(O(.) \) independent on \(d \). Therefore,
\[
[\bar{V}_K(t) \cdot \frac{1}{(t+1)^d}]_t^k = O(k^d)
\]
in \(k \) with \(O(.) \) depending exponentially in \(d \).
But clearly
\[
[\bar{V}_K(t) \cdot \frac{1}{(t+1)^d}]_t^k = 0
\]
for \(k > \text{span} V_K \), so the first assertion follows. The second inequality follows from [Ka2, Mu, Th]. \(\square \)

COROLLARY 4.1. \(\{\lambda_l V_K : \bar{g}(K) = g \} \) is finite for any \(l \) and \(g \).

Proof. Use the bijection between \(\lambda_l V_K \) and \(\lambda_l \bar{V}_K \), and prove the assertion for \(\lambda_l \bar{V}_K \). \(\square \)

A more detailed study may also show a stabilitiy property of some kind, for example, when \(\text{span} V_K \to \infty \).

COROLLARY 4.2

\[
\max_{\bar{g}(K)=g} \left| [V_K(t) \cdot (t+1)^{d_g}]_t^k \right| \leq C^{d_g}
\]
for some constant \(C \) independent on \(k, K \) and \(g \), that is, \(V_K(t) \cdot (t+1)^{d_g} \) has bounded coefficients over all \(K \) with \(\bar{g}(K) = g \), and moreover the number of non-zero coefficients of \(V_K(t) \cdot (t+1)^{d_g} \) is also bounded for fixed \(g \). \(\square \)

COROLLARY 4.3. For \(K \) positive we have

\[
\text{span} V_K \geq C \sqrt[2d_g(K)+1]{c(K)} - 1
\]
(4.11)
for some constant \(C \) depending on \(g(K) \). In particular, there are only finitely many positive knots with Jones polynomial of given minimal and maximal, or just maximal, degree.

Proof. Use the inequality [St7, theorem 6.1] for \(v_2 = -1/6V''(1) \). \(\square \)

Remark 4.1. In (4.11), \(\text{span} V_K + 1 \) may stronger be replaced by the number of non-zero coefficients of \(V_K \), and \(c(K) \) by the maximal crossing number of a positive reduced diagram of \(K \).

COROLLARY 4.4 (see conjecture 9.1 of [St]). Among the Jones polynomials of knots of given \(\bar{g} \), only finitely many polynomials of given span occur.

Proof. By theorem 4.1, Jones polynomials of knots of given \(\bar{g} \) with given span have only finitely many coefficient lists between minimal and maximal degree. But (for knots, unlike for links) the coefficient list recovers the minimal degree (and hence the polynomial), because \(V(1) = 1 \) and \(V'(1) = 0 \). \(\square \)
5. Genus and weak genus

Definition 5.1. — The untwisted double tangle of a knot is obtained by cutting the knot diagram

\[
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{untwisted_double_tangle.png}
\end{array}
\rightarrow
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{untwisted_double_tangle_2.png}
\end{array},
\] (5.12)

replacing each strand by two

\[
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{twisted_double_tangle.png}
\end{array},
\] (5.13)

and adding a number of half-twists, which are doubly as many as the writhe of the knot diagram (5.13), and are positive when orienting the strands antiparallelly

\[
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{twisted_double_tangle_2.png}
\end{array}
\] (with the usual convention that \(-1\) half-twist is a half-twist with the crossing changed). A tangle obtained by any other number of half-twists is called twisted double tangle of the knot. The difference of the number of its half-twists and the number of half-twists of the untwisted double tangle is called the twist of the twisted double tangle.

Let \(w_\pm\) be the tangles \(\includegraphics[width=0.1\textwidth]{w_plus.png}\) and \(\includegraphics[width=0.1\textwidth]{w_minus.png}\).
THEOREM 5.1. — If T is a double tangle and some of the knots $\overline{#^n T \# w_\pm}$ has a Jones polynomial, in which there are (at least) two coefficients with absolute value 3 or (at least) one coefficient with absolute value at least 4, or (at least) six coefficients with absolute value 1, then $\tilde{g}(\overline{#^n T \# w_\pm}) \xrightarrow{n \to \infty} \infty$ (while clearly all $\overline{#^n T \# w_\pm}$ are doubled knots and hence have genus one).

Proof. — Assume that $K_n := \overline{#^n T \# w_\pm}$ have bounded \tilde{g}. By theorem 4.1, our strategy will be to find some $k_n \in \mathbb{Z}$, for which $\left[V_{\overline{#^n T \# w_\pm}}(t) \right]_{t^{k_n}}$ grows exponentially in n, unless the assertion is satisfied. First, we use the Kauffman [Ka] definition for V and replace V by the Kauffman bracket $\langle . \rangle$ (as all the normalization does not affect the norm of an evaluation on any point on S^1 and changes the coefficients just by a sign).

Then consider T in the Kauffman bracket skein module of

We have therein

$$T = P'_1(A) \quad + \quad P'_2(A)$$

for some $P'_{1,2} \in \mathbb{Z}[A, A^{-1}]$. Then by straightforward calculation

$$#^n T = \frac{1}{-A^2 - A^{-2}} \left[(P'_2(-A^2 - A^{-2}) + P'_1)^n - P'^m_1 \right] + P'^m_1$$
and hence
\[B_n := \langle \#^n T \#^\pm \rangle = \frac{1}{-A^2 - A^{-2}} \left[(P_2'(-A^2 - A^{-2}) + P_1)^n - P_1^n \right] \langle \bigcirc \bigcirc \rangle + P_1^n \langle \bigcirc \rangle \cdot A^{k_1}. \]

Therefore, using \(\langle \bigcirc \bigcirc \rangle = -A^k(1 + A^8) \) for some \(k \in \mathbb{Z} \) and \(\langle \bigcirc \rangle = 1 \), we get, normalizing \(B_n \) by a power of \(A \),
\[B_n = A^{k_1 + A^8} \left[\frac{(P_2'(-A^2 - A^{-2}) + P_1)^n - P_1^n}{1 + A^4} \right] P_2^n + \left(1 + \frac{-A^k - A^{k+8}}{1 + A^4} \right) P_1^n, \]
with \(P_1 := P_1' \) and \(P_2 := P_2'(-A^2 - A^{-2}) + P_1' \).

The shape of \(B_n \) is exponential, and we attack it using the following elementary function theoretic lemmas.

Lemma 5.1. Let \(f \in \mathbb{Z}[A, A^{-1}] \). If \(f \), regarded as a function \(f : \mathbb{C} \setminus \{0\} \rightarrow \mathbb{C} \), has the property \(\max_{S^1} |f| \leq 1 \) and \(f \neq 0 \), then \(f = \pm A^k \) for some \(k \in \mathbb{Z} \).

Proof. Use the relation
\[\sum_{i=-\infty}^{\infty} |f|^2 A^i = \int_0^1 |f(e^{2\pi i u})|^2 \, du. \]

Lemma 5.2. Let \(f : \mathbb{C} \setminus S \rightarrow \mathbb{C} \) be a holomorphic function for some finite set \(S \ni 0 \), with \(f(\overline{x}) = \overline{f(x)} \) (where bar denotes conjugation). If then \(f \) maps some infinite subset of \(S^1 \subset \mathbb{C} \) to \(S^1 \), then \(f(x)f(1/x) \equiv 1 \) wherever defined.

Proof. Use that \(f(x)f(1/x) \) is a holomorphic function wherever defined and is equal to 1 on a set with a convergence point.

The rest is basically applying appropriately these lemmas.

Lemma 5.3. For any two polynomials \(P_1 \) and \(P_2 \) in \(\mathbb{Z}[A, A^{-1}] \) with \(P_1 \neq \pm A^{k_1} \) or \(P_2 \neq \pm A^{k_2} \) for any \(k_{1,2} \in \mathbb{Z} \), there are infinitely many \(A \in S^1 \) with \(\left| \frac{A^k + A^{k+8}}{1 + A^4} \right| \neq \left| \frac{1 + A^k - A^{k+8}}{1 + A^4} \right| \) and \(\max(|P_1(A)|, |P_2(A)|) > 1 \).
Proof. Assume that $P_1 \neq \pm A^{k_1}$ or that $P_2 \neq \pm A^{k_2}$. As the assertion is symmetric w.r.t. P_1 and P_2, assume w.l.o.g., that $P_1 \neq \pm A^{k_1}$. Then by lemma 5.1, there is some $x \in S^1$ and $\epsilon > 0$ such that

$$|P_1|_{S^1 \cap B(x, \epsilon)} > 1,$$

with $B(x, \epsilon)$ being the ball around x with radius ϵ. Set $X_1(A) := A^k + A^{k+8}$ and $X_2(A) := 1 + A^4 - A^k - A^{k+8}$. If now, for infinitely many $A \in S^1$ we have $|X_1(A)| = |X_2(A)|$, then applying lemma 5.2 on X_1/X_2 outside of the zeros of X_2 and $1 + A^4$, we see that $X_1(A)X_1(1/A) = X_2(A)X_2(1/A)$, in particular every zero $A \neq 0$ of X_1 must be either a zero of X_2 or the inverse of such. However, $e^{\pm \pi i/8}$ are zeros of X_1, but not of X_2.

Therefore, all but finitely many $A \in S^1$ satisfy $|X_1(A)| \neq |X_2(A)|$, in particular almost all A in $S^1 \cap B(x, \epsilon)$. □

But now, continuing the proof of theorem 5.1, if $\max(|P_1(A)|, |P_2(A)|) > 1$ and $\left| \frac{A^k + A^{k+8}}{1 + A^4} \right| \neq \left| \frac{1 + A^4 - A^k - A^{k+8}}{1 + A^4} \right|$ for some A not zero of $X_{1,2}$ and $1 + A^4$, then for

$$A \in \{ x \in S^1 : |P_1(x)| > 1 \land 0 \neq |X_1(x)| \neq |X_2(x)| \} \setminus \{ \text{zeros of } 1 + A^4 \}$$

we have

$$|B_n(A)| \geq \frac{1 - \epsilon}{|1 + A^4|} \min \left(|X_1(A)|, |X_2(A)|, \left| |X_1(A)| - |X_2(A)| \right| \right) \max(|P_1(A)|, |P_2(A)|)^n \rightarrow_{n \rightarrow \infty} \infty,$$

with exponential growth. But from (5.14), comparing the orders of zeros or poles of B_n as $A \rightarrow 0$ and $A \rightarrow \infty$ (or from [Ka2, Mu, Th] using the evident fact that $c(TT w_{\pm}) = O(n)$), we see that span B_n is linearly bounded in n, which means that some coefficients of B_n grow exponentially in n, and we would be done by contradiction to theorem 4.1.

Therefore, P_1 and P_2 are monomials with coefficients ± 1 (as happens when T is an unknot double, i.e., $\#^n T \# w_{\pm}$ are twist knots). But then the only possibility for them, so as $B_n \in \mathbb{Z}[A, A^{-1}]$ for any n, is to differ by a power of A^4, so that

$$B_n = A^k (1 + A^8) (1 - A^4 + A^8 - \ldots \pm A^{4(np-1)}) + A^{nl}$$

for some $k, p, l \in \mathbb{Z}$, from which the claim is evident. □

We chose to use the new property of §4 in a part of our proof, although it can also be done in alternative ways. We invite the reader to think about them.
EXERCISE 5.1. — Use (5.14) to show that if $P_{1,2} \neq \pm A^{k_{1,2}}$, then $\lambda_l B_n$ or $\tau_l B_n$ are infinitely many for some value of l, without using the lemmas, so that the conclusion $P_{1,2} = \pm A^{k_{1,2}}$ is also possible using corollary 4.1. In a much easier (and less interesting) way, deduce the same conclusion also from proposition 3.1.

We give some hints to the reader, giving a rough sketch of the argument.

As λ_l is mapped bijectively under multiplication by a fixed polynomial, eliminate the denominators in (5.14), and consider

$$P_n := \frac{(1 + A^4 - A^k - A^{k+\delta})}{X_1(A)} P_1^n(A) + \frac{(A^k + A^{k+\delta})}{X_2(A)} P_2^n(A). \quad (5.15)$$

LEMMA 5.4. — Let the minimal order of V be defined by $\text{min ord } V := \min \{ m > 0 : [V]_{\text{min deg } V + m} \neq 0 \}$, if $V \in \mathbb{Z}[t, t^{-1}]$ is not a monomial. Then

$$[V^n(t)]_{\text{min deg } V + k} = O \left(n^{k/\text{min ord } V} \cdot [V]_{\text{min deg } V}^n \right)$$

and

$$[V^n(t)]_{\text{min deg } V + k \cdot \text{min ord } V} \geq O \left(n^k \cdot [V]_{\text{min deg } V}^n \right). \quad \square$$

An analogous definition and statement hold for the maximal order $\text{max ord } V$ of V.

From (5.14) clearly not both P_1 and P_2 are zero, and if just one is zero, the other cannot be a single monomial, so we would be done by the above lemma. Therefore, assume that both P_1 and P_2 are non-zero.

Now, if $\text{min deg } P_2 < \text{min deg } P_1$ and $P_2 \neq \pm A^k$, then for any l for sufficiently large n we have $\lambda_l P_n = \lambda_l (X_2 P_2^n)$, which by the lemma for l sufficiently large has an unboundedly growing coefficient. An analogous argument with P_1 and the maximal degree shows that we are done unless $\text{min deg } P_1 = \text{min deg } P_2$ and $\text{max deg } P_1 = \text{max deg } P_2$. Then the lemma shows that $\text{min ord } P_1 = \text{min ord } P_2$ and $\text{max ord } P_1 = \text{max ord } P_2$ by a similar argument. For example, if $\text{min ord } P_1 < \text{min ord } P_2$, consider the coefficient of $l^{\text{min deg } (X_1 P_1^n) + \text{min ord } P_1 l}$ for l sufficiently large, and compare in (5.15) the growth rates of this coefficient as $n \to \infty$ for $X_1 P_1^n$ and $X_2 P_2^n$. But now a contradiction follows, considering the above mentioned coefficient for $l = 1$, because at least one of $\text{min deg } X_1 \neq \text{min deg } X_2$ or $\text{max deg } X_1 \neq \text{max deg } X_2$ holds, no matter what k is. Therefore, $P_{1,2}$ must be monomials, and then clearly they must have coefficient ± 1.

- 691 -
Example 5.1. — The two 14 crossing (twisted) doubles of the left-hand
trefoil with positive and negative clusp, in Thistlethwaite’s tables (see [HTW])
included as 1435575 and 1441716, have the Jones polynomials (in the notation
of [St5])
\[V(14_{35575}) = -1 \ 1 \ 1 \ 0 \ 1 \ [0] \ 1 \ -1 \ 1 \ -2 \ 1 \]
and \[V(14_{41716}) = 1 \ -1 \ 1 \ -1 \ [1] \ -1 \ 1 \ -1 \ 1 \ -1 \ 2 \ -1 \, \]
and hence theorem 5.1 can be applied to the tangle in (5.13) with both \(w_+ \)
and \(w_- \).

6. Problems

In fact, the motivation for this note was to develop the results of §3 so
far as to do the construction of §5 without use of proposition 3.1. Using this
proposition, the proof is somewhat simpler, but it appeared nicer to link
both parts of the paper in the chosen way.

Nevertheless, I prefer to conclude stressing again some problems that
suggest to be of some significance within the framework of this note.

Problem 6.1. — Is there an upper bound for \(|[V_K(t)]_{4k}| \) for \(K \) alternating
in terms of \(g(K) \) and possibly \(k \), but not \(c(K) \) (as there is for positive \(K \))?
Is there a similar inequality also for non-alternating knots?

Problem 6.2. — Can one generalize theorem 3.2 to a stability property
for arbitrary knots (and weak genus) by more refined study of (3.8)?

Problem 6.3. — Are the only finitely many positive knots with Jones
polynomial of given span? If we had an infinite series of such knots, then
by corollary 4.3 we know that their genera must grow unboundedly, but yet
we cannot exclude such a case.

Bibliography

[BFK] BULLOCK (D.), FROHMAN (C.) and KANIA-BARTOSZYNSKA (J.). — Understanding
the Kauffman bracket skein module, q-alg 9604013.
681.
[H] FREYD (P.), HOSTE (J.), LICKORISH (W.B.R.), MILLETT (K.), OCNEANU (A.) and

[St5] Stoimenow (A.). — Polynomials of knots with up to 10 crossings, tables available on my webpage.

