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RÉSUMÉ. 2014 Au moyen de la théorie des points critiques non réguliers,
nous demontrons 1’existence de solutions faibles qui ne sont pas nulles
pour une classe générale de problemes elliptiques non linéaires.

ABSTRACT. - By means of nonsmooth critical point theory we prove
existence of a nontrivial weak solution for a general class of nonlinear
elliptic boundary value problems on a bounded domain n of .

1. Introduction

Since 1972, existence of weak solutions for the semilinear elliptic problem

has been deeply investigated (see e.g. [1, 2, 3, 13, 21] and references therein)
by means of classical critical point theory.
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have been studied in [5, 9, 10,12,14, 22] via techniques of nonsmooth critical
point theory. On the other hand, more recently, some results for the more
general problem

have been considered in [4] and [20].

The goal of this paper is to extend some of the results of [4, 20]. In order
to solve (1.1), we shall look for critical points of functionals f : Wo’P(S2) -~ R
given by 

A 

In general, f is continuous but not even locally Lipschitzian unless L does
not depend on u or L is subjected to some very restrictive growth conditions .

Then, we shall refer to the nonsmooth critical point theory developed in

[15, 16, 17, 19] and in particular to [12] for what we shall recall in section
2.

We assume that measurable in x for all (s, ~) E
R x of class C1 in (s, ç) for a.e. x E H, the function L(x, s, .) is strictly
convex and L(x, s, 0) = 0. Furthermore, we shall assume that:

( i ) there exist a E L 1 ( SZ ) and bo, v > 0 such that

for a.e. x and for all (s,) E R x 

(ii) for each e > 0 there exists aE E £1(0) such that

for a.e. x ~ 03A9 and for all (s,03BE) E R x with bi E R independent of 6-.

Furthermore, there exists al E L~~ (SZ) such that

for a.e. x E Q and for all (s,) E lt~ x 

(iii) there exists R > 0 such that



for a.e. x En and for all (s, ~) x 

(iv) Carathéodory function such that

for a.e. x E H and all s E R, where (Q) and b E JR. Moreover,

and there exist ci, c2 > 0 such that

for a.e. x E 52 and each s E R, where (7  p* - 1.

(v) there exist q > p and R’ > 0 such that for each e > 0 there is
aE E with

for a.e. x E S2 and for all (s, ~) E R x 

Under the previous assumptions, the following is our main result.

(1.11) THEOREM.- The boundary value problem

has at least one nontrivial weak solution u E Wo’p(S2).
This result is an extension of [4, Theorem 3.3), since instead of assuming

that

for a.e. x and for all £ E we only request condition ( 1.10) . In this
way the proof of Lemma (3.15) becomes more difhcult. The keypoint, to
deal with the more general assumption, is constituted by Lemma (3.11).

Similarly, in [20, Theorem I], a multiplicity result for (1.1) is proved,
assuming that



for a.e. x E S2 and for all ~ E which are both stronger than (1.6)
and (1.10). In particular, the first inequality above and the more general
condition (1.6) are involved in Theorem (3.4) .

Finally, let us point out that the growth conditions (1.3) - (1.5) are a
relaxation of those of [4, 20], where it is assumed that

for a.e. x E Q and for all x 11~’~ . .

2. Weak slope and weak solutions

In this section we want to recall the relationship between weak solutions
to (1.1) and critical points of f in the sense of weak slope [12, Defini-
tion I.I.I].

For the sake of generality, we shall here consider the more general setting
of functionals on Wo’p (S2, with N > 1, subjected to growth conditions
weaker than (1.3) - (1.5).

Let ao E bo E R, al E and b~ E be such that

for a.e. x E S2 and for all (s, ~) E x 

Conditions (2.2) and (2.3) imply that for every u E Wo’P(S2, 

Therefore for each u E we have

(2.4) DEFINITION.- We say that u is a weak solution to (1.1), if
u E and



Under more restrictive conditions, it would turn out f to be of class C~
and

for every u E In this regular setting, the classical (PS)c con-
dition may be considered. On the other hand, in our nonsmooth context, it
is convenient to introduce the following variant of the (PS)c condition :

(2.5) DEFINITION. - Let c E R. A sequence C is
said to be a concrete Palais-Smale sequence at level c ((CPS)c-sequence,
in short) for f , if f(Uh) -> c,

eventually as h --~ +oo and

strongly in (S2, .

We say that f satisfies the concrete Palais-Smale condition at level c
(CPS)c in short), if every (CPS)c-sequence for f admits a strongly con-
vergent subsequence.

The next result connects the previous notions with abstract critical point
theory.

(2.6) THEOREM.- f --> R is continuous and we have

|df I (u) %

for every u E . In particular, |df|(u)  +oo implies that

Proof - See, [12, Theorem 2.1.3~ D

As a consequence, each critical point u of f is a weak solution to (1.1).
Let us finally recall from [12] a concrete versions of the Mountain Pass

Theorem.



(2.7) THEOREM. - Let (D, S) be a compact pair, : S -> 

a continuous map and let

Assume that there exists a closed subset A of Wo’P(S2, such that

An = 0 and A n p(D) ~ 0 for all p E ~.

If f satisfies the concrete Palais-Smale condition at level

then there exists a weak solution u E of (1.1) with f(u) = c. .

3. The concrete Palais-Smale condition

We first recall a very useful consequence of Brezis-Browder’s Theo-

rem (8~.

(3.1) PROPOSITION. - Let u, v E Wo °p(S2), r~ E and w E

(SZ) with

and for all p E 

Then D9L(x, u, Vu)v E and

Proof. - See e.g. [20, Proposition 1~. D

Let us point out that as a consequence of assumptions (i) - (ii) and
convexity of L(x, s, . ) , we can find M > 0 such that for each e > 0 there is
ae E Ll(f2) with

for a.e. x and for all (s, ~’) E R x IEFn.



We now come to a local compactness property, which is crucial for the
(CPS)c condition to hold. This result improves [20, Lemma 2], since (iii)
relaxes condition (8) in ~20~.

(3.4) THEOREM. - Assume (i) - (iii), let (uh) be a bounded sequence
in Wo’P(S2) and set

for all v E C~°(S2). If (wh) is strongly convergent to some w in 
then (uh) admits a strongly convergent subsequence in 

Proof. - Since (Uh) is bounded in Wo’p(S2), we find a u in such
that, up to a subsequence,

By [7, Theorem 2.1], up to a subsequence, we have

Therefore, by (1.5) we deduce that

We now want to prove that u solves the equation

To this aim, let us test equation (3.5) with the functions

It results for each h E N

Of course, for a.e. x E S2, we obtain



Since by inequality (3.3) and (1.6) for each e > 0 and h ~ N we have

Fatou’s Lemma implies that for each 6- > 0

Since (uh) is bounded in LP’ (S2), we find c > 0 such that for each e > 0

Letting ~ ~ 0, the previous inequality yields

Note that we also have

Moreover

so that



Therefore, we may conclude that

Consider now the test functions

where H E C1(1R), H = 1 in ~- 2, 2 ~ and H = 0 in ] - oo, -1] U [1, +oo[. It
follows that

Furthermore, standard computations yield

Since cpH ~ k ~ goes to cp in Wo’P(52), as k -> +00 we have

By the properties of H and the growth conditions on letting k ~ +0oo
yields

Whence, we conclude that for all p E 

Choosing now as test functions



where as before cp > 0, we obtain the opposite inequality so that (3.7) is

proven.

In particular, taking into account Proposition (3.1), we immediately ob-
tain

The final step is to show that (uh) goes to u in Wo’p(S2). Consider the
function ( : lI~ -~ R defined by

and let us prove that

Since by Proposition (3.1), uh exp{~’(uh)} are admissible test functions for
(3.5), we have

Let us observe that (3.6) implies that

Since by inequality (3.3) for each F > 0 and hEN we have

Fatou’s Lemma yields



Therefore, since is bounded in L~(Q), we find c > 0 such that for all

Taking into account that £ is arbitrary, we conclude that

In particular, we have

namely



Therefore, by (3.2), generalized Fatou’s Lemma yields

that implies the strong convergence of (uh) to u in Wo’p(S2). D

(3.11) LEMMA. - Let c E lf~ and let (uh) be a (CPS)c-sequence in
. Then for each e > 0 and g > 0 there exists Ke,E > 0 such that for

all h ~ N

and

Proo f. - Let > 0 and g > 0. For all v E we set

Let us now consider {)1 : lI~ --~ R given by

Then, testing (3.12) with E L°°(~-2Q,2QJ), we obtain

Then, it follows that



Let Ko > 0 be such that Ko. Then, since by (3.2) we have

taking into account (3.3), we get for a sufficiently small value of cr > 0

Whence, we have shown an inequality of the type

Let us now define for each k > 1 the functions ~92~-1 : IE~ --> R by setting



and

Therefore, by iterating on k, we obtain the k-th inequality

Let now choose k ~ 1 such that and R. Take 0  b  1 and

let ai5 : ~8 --~ R be the function defined by setting

As before, we get

Taking into account (1.6), by computations, we deduce that

Moreover we have as before



so that

Therefore, we get

Combining this inequality with (3.14) we conclude that

where we have fixed 6 > 0 in such a way that , D



The next result is an extension of [20, Lemma I], since (1.10) relaxes (9)
of [20].

(3.15) LEMMA. - Let c E R. Then each (CPS)c-sequence for f is
bounded in Wo’p(S2).

Proof.- First of all, we can find ao E L1(S2) such that for a.e. x E 52
and all s E R

Now, let (uh) be a (CPS)c-sequence for f and let for all v E 

According to Proposition (3.1) and Lemma (3.11), for each e > 0 we have

On the other hand, from Lemma (3.11) and (3.3), for each e > 0 we obtain



Taking into account Poincare and Young’s inequalities, by (1.5) we find
c > 0 and CR, e > 0 with

Therefore, for a sufficiently small £ > 0, there exists ~9E > 0 with

Moreover, it is

Since wh - 0 in W-le(52), the assertion follows. D

(3.17) LEMMA. - Under assumptions (iv) we have

for each (uh) that goes to 0 in 

Proof. - Let (uh) C with uh - 0 in Wo’~(S2). We can find
(gh) C R and a sequence (wh) C such that uh = gh --~ 0
and = 1. Taking into account (1.8), it follows



Moreover, for a.e. x 6 H we have

If w is the weak limit of (wh), since d|wh|p - in L1(S2) and boh-p ~

0 in £1(0), (a variant of) Lebesgue’s Theorem concludes the proof. D

We finally conclude with the proof of the main result of this paper.

Proof of Theorem (1.11). From Lemma (3.15) and Theorem (3.4) it follows
that f satisfies the (CPS)c condition for each c E R. By (1.3) and (1.9) it
easily follows that

Finally from Lemma (3.17) and (1.3) we deduce that 0 is a strict local
minimum for f . From Theorem (2.7) the assertion follows.

(3.18) REMARK.- In this paper we only consider existence of weak
solutions to (1.1). However, as proved in (4, Lemma 1.4J, each weak solution
of (1.1) belongs to Wo’p(S2) n L°°(S2) provided that Land g satisfy suitable
conditions . Then, some nice regularity results hold for various classes of
integrands L. (see ~18~).

(3.19) ACKNOWLEDGMENTS. - The author wishes to thank Marco

Degiovanni for providing helpful discussions.

Bibliography

[1] AMANN (H.). - Existence and multiplicity theorems for semi-linear elliptic boundary
value problems, Math. Z. 151 (1976), 281-295.

[2] AMBROSETTI (A.). - On the existence of multiple solutions for al class of nonlinear
boundary value problems, Rend. Sem. Mat. Univ. Padova 49 (1973), 195-204.

[3] AMBROSETTI (A.) and RABINOWITZ (P.H.). 2014 Dual variational methods in critical

point theory and applications, J. Funct. Anal. 14 (1973), 349-381.

[4] ARCOYA (D.), BOCCARDO (L.). - Critical points for multiple integrals of the calculus
of variations, Arch. Rat. Mech. Anal. 134 (1996), 249-274.

[5] ARIOLI (G.), GAZZOLA (F.). 2014 Weak solutions of quasilinear elliptic PDE’s at reso-
nance, Ann. Fac. Sci. Toulouse 6 (1997), 573-589.

[6] BARTSCH (T.). 2014 Topological methods for variational problems with symmetries,
Springer Verlag (1993).

[7] BOCCARDO (L.), MURAT (F.). - Almost everywhere convergence of the gradients of
solutions to elliptic and parabolic equations, Nonlin. Anal. 19 (1992), 581-597.



- 131 -

[8] BREZIS (H.), BROWDER (F.E.). 2014 Sur une propriété des espaces de Sobolev, C. R.
Acad. Sc. Paris 287 (1978), 113-115.

[9] CANINO (A.). - Multiplicity of solutions for quasilinear elliptic equations, Top. Meth.
Nonlin. Anal. 6 (1995), 357-370.

[10] CANINO (A.). - On a variational approach to some quasilinear problems, Serdica
Math. J. 22 (1996), 399-426.

[11] CANINO (A.). 2014 On a jumping problem for quasilinear elliptic equations, Math. Z.
226 (1997), 193-210.

[12] CANINO (A.), DEGIOVANNI (M.). - Nonsmooth critical point theory and quasilinear
elliptic equations, Topological Methods in Differential Equations and Inclusions, 1-
50 - A. Granas, M. Frigon, G. Sabidussi Eds. - Montreal (1994), NATO ASI Series -
Kluwer A.P. (1995).

[13] COFFMAN (C.V.). - A minimum-maximum principle for a class of nonlinear integral
equations, J. Anal. Math. 22 (1969), 391-410.

[14] CORVELLEC (J.N.), DEGIOVANNI (M.). - Nontrivial solutions of quasilinear equations
via nonsmooth Morse theory, J. Diff. Eq. 136 (1997), 268-293.

[15] CORVELLEC (J.N.), DEGIOVANNI (M.), MARZOCCHI (M). - Deformation properties for
continuous functionals and critical point theory, Top. Meth. Nonlin. Anal. 1 (1993),
151-171.

[16] DEGIOVANNI (M.), MARZOCCHI (M.). 2014 A critical point theory for nonsmooth func-
tionals, Ann. Mat. Pura Appl. (4) 167 (1994), 73-100.

[17] IOFFE (A.), SCHWARTZMAN (E.). 2014 Metric critical point theory 1. Morse regularity
and homotopic stability of a minimum, J. Math. Pures Appl. 75 (1996), 125-153.

[18] LADYZHENSKAYA (O.A.), URAL’TSEVA (N.N.). - Equations aux dérivées partielles de
type elliptique, Dunod, Paris, (1968).

[19] KATRIEL (G.). - Mountain pass theorems and global homeomorphism theorems,
Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 189-209.

[20] PELLACCI (B.). 2014 Critical points for non differentiable functionals, Boll. Un. Mat.
Ital. B (7) 11 (1997), 733-749.

[21] RABINOWITZ (P.H.). 2014 Minimax methods in critical point theory with applications
to differential equations, CBMS Reg. Conf. Series Math. 65 Amer. Math. Soc. Prov-
idence, R.I. (1986).

[22] STRUWE (M.). - Quasilinear elliptic eigenvalue problems, Comment. Math. Helvetici
58 (1983), 509-527.


