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RÉSUMÉ. - Dans cette article nous considerons une 4 x 4 matrice L
d’operateurs différentiels hyperboliques d’ordre 1 et nous determinons les
classes de Gevrey dans lesquelles le probleme de Cauchy est bien pose
pour L. Les résultats entrainent que la multiplicite maximale des zeros
du polynome minimal de la partie principale ne donne pas, en general,
l’indice de Gevrey pour lequel le probleme de Cauchy est bien pose.

ABSTRACT. - In the present paper we determine completely the Gevrey
indices for the well-posedness of the Cauchy problem to a certain first
order differential hyperbolic 4 x 4 systems. This leads us to the fact that
the maximal multiplicity of zeros of the minimal polynomial of the prin-
cipal part does not give, in general, the appropriate index for the Gevrey
well-posedness.

1. Introduction

Cauchy problem for hyperbolic equations with multiple characteristic
roots is not in general well-posed in the space of C°°-functions. If the mul-
tiplicities are constant, Ohya [1] and Leray-Ohya [2] found that the Cauchy

(*) 1 Recu le 10 juillet 1998, accepte le 8 fevrier 2000
( 1) ) Faculty of Engineering, Osaka Electro-Communication University, 18-8, Hatsu-cho,
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problem is well-posed for any lower order terms in appropriate Gevrey
classes. They showed that the indices of Gevrey classes are determined by
the multiplicities of the characteristic roots. Following these works, many
papers contributed in this field. Among them, Bronstein [3] studied hy-
perbolic equations without the assumption of the constant multiplicities of
the characteristic roots and showed that the Cauchy problem is well-posed
for any lower terms in Gevrey classes whose indices are determined by the
maximum of their multiplicities. Kajitani [4], Nishitani [5] and Mizohata [6]
developed the study of these problems from another view points.

In the case of hyperbolic systems, the above theorem are also true. How-
ever those results are not satisfactory for hyperbolic systems. The appro-
priate indices could not be determined only by the multiplicities of the
characteristic roots in this case. Once the author gave a conjecture that the
indices of Gevrey classes, in which the Cauchy problem is well-posed, are
determined instead by the multiplicities of zeros of the minimal polynomial
of the principal symbol. We know that this is true provided that the mul-
tiplicities of the characteristic roots are constant (Yamahara [7]). Here we
must remark that Vaillant [8], [9] studies intensively the relations between
the indices of Gevrey classes and the Levi conditions, and he explained
completely the relations when the multiplicities are at most 5.

If we drop this assumption of constant multiplicities, the situation is in
fact much more complicated. In this note, we will give an example of the
4 x 4-hyperbolic system which shows that, besides multiplicities of the char-
acteristic roots, the degeneracy of the Jordan normal form of the principal
part determine the appropriate Gevrey indices.

We study the following Cauchy problem:

in n = [0, T] x R;, where 14 denotes the unit matrix of order 4 and

Here we assume that ~(t), and a(t) are real and smooth functions



satisfying following (A. 1) and (A. 2).

as t --; 0 , where p and q are positive integers.

We are concerned with the Gevrey-wellposedness in (C.P.), more pre-
cisely we shall study how p and q determine the index of the Gevrey class
in which (C.P.) is wellposed.

As we assumed that the coefficients depend only on time variable, we
study (C.P. ) by Fourier transform w.r.t. space variable.

We define the Gevrey well-posedness of (C.P.) in the following way which
is equivalent to the classical definition.

DEFINITION. Let s be a positive number. We say that the Cauchy
problem (C.P.) is 03B3(s)-wellposed if for any lower order term B(t), there
exists a constant T > 0 and (C.P.)’ has the solution which satisfies the
following inequality

for 0 x t x T , where C and 6 are positive constants independent of the
initial data .

Our result is as follows.

THEOREM 1.- Under the assumptions (A.1) and (A.2), (C.P.) is 03B3(s)-
wellposed for any s satisfying

THEOREM 2.- Under the assumptions (A.1) and (A.2), (C.P.) is not
03B3(s)-wellposed for any s(> 2), and moreover for any s which satisfies



2. Proof of Theorem 1

In the Cauchy problem (C.P.)’, set ~ = n and without loss of generality
we regard it as a positive large parameter. Now we start with the ordinary
differential equations:

with the Cauchy data u(0, n) = vo(n) which satisfies

where c is a positive constant. At first we shall study (5) in the interval
0  t  n-a, where o~ is a positive constant which will be determined later.

Let us denote a matrix of weight:

where 61 and E2 are non-negative constants which will be also determined
later.

By the change of the unknowns v such that v = Wvi , (5) turns out to

In order to make the crutial terms in (8) smallest (with a viewpoint of
the order of n), E1 and E2 will be taken in such a way that 1- E1 = E1 + E2 =
1 - qu + E 1 - E2 , hence _

We shall study our problem with two cases



In case 1 regardless of (9) we can take el = 2, and e2 = 0, but in case 2
el and e2 are determined as in (9). Then we obtain following inequalitiy in
each case.

PROPOSITION 1. - For any solution v(t) = v(t; n) of (5) with the Cauchy
data satisfying (6), following inequalities hold on the interval 0 x t x n-a

Next we shall evaluate v(t) when t ~ For this, at first we construct
a matrix N(t) = N(t; n) satisfying

Actually N(t) is obtained such that

By changing the unknowns v(t) in such a way that v(t) = N(t)vl and
vl(t) = W1v2, where Wl is the same type with (7) and el, e2 will be deter-
mined later, (5) turns out to

We study each term carefully. First,



Second to evaluate we denote B blockwisely such that

B = f ~~ ~~ ~ , where each jB,, is a 2 x 2-matrix. ThenB~21 ~22/

Moreover when we denote Bij precisely by Bij = b21 b22 , we see that

Third in the term of we remark that =

(0 DtN12)0 0

Taking account of the above structures we can determine the orders of

all components w. r. t. n. In (12) terms are majorized by Terms in

(13) are estimated as follows:

In (Ll)-block and in (2,2)-block, they are majorized by

in (1,2)-block, by

in (2,1)-block, by

Finally, the terms of by



We shall take ei and f2 in Wl so that E1 > 0 and E2 > 0. Hence we expect
that the terms dominated just by n1-fl or are the top terms, which
means all the other terms are majorized by these terms when n-~  t. For
this purpose we must divide our argument in two cases.

In the case 2p  q :

We take E1 and E2 so that E1 = 2 , E2 = 0 , and in order that all the other
terms are majorized by n~ , ~ has to satisfy following conditions ;

In conclusion we obtain the following

PROPOSITION 2. - Assume that 2p  q and that

Then for any soluton v(t) = v(t; n) of (5), following inequality holds when
t ~ n-a

where M and ~i are positive constants independent of n.

Combining (14) with the first inequality in (10), we can see that

when t  n-03C3. Since that 03C3 > 0 and s  2 (15) leads us to

for t > 0. Here we enphasize that a must be taken under the condition

and remark that in the above inequality 1 / ( 6p - 2q) , 1 /(3p - q + 1) has no
meaning when 6p - 0, 3p - q + 1 x 0 respectively. Thus we established
the first part of Theorem 1.

Next we continue the proof of Theorem 1 in the case 2p > q :

We take f1 and E2 in Wi so that



Here we remark that E2 > 0 means that

Like the previous argument, in order that all the other terms are majorized
by ~ has to satisfy following conditions:

In conclusion we obtain the following

PROPOSITION 3. - Assume that 2p > q and that

Then for any solution v(t) = v(t; n) of (5), following inequality holds when
t ~ n-a

Combining with the second inequality in (10) we can see that

when t ~ On account of (18), (20) leads us to

for any t > 0. This means that for any s satisfying

the Cauchy problem to (5) with the Cauchy data which satisfies (6) is /(8)-
wellposed.

Here we recall that the energy inequality (21) is obtained when 2p > q
and when or satisties the following inequalities

Thus we established the second part of Theorem 1.



3. Proof of Theorem 2

The proof of the first part of Theorem 2 is similar to the second part
and is rather easy. So we shall only prove the second one of the theorem. To
prove this we will find the lower order term B(t) and the initial data vo(x)
which will cause the ill-posedness in the class 7~g> when s > (4p-q)/(3p-q)
and when 2p > q.

As in §2 we also denote that ~ _ ~ and we regard it as a positive large
parameter in the Cauchy problem (C.P.)’. More precisely we start with the
following equations:

Remark that we take B(t) as above whose (4,1)-element b is a non-zero
constant which will be determined later.

Let a be a positive constant, then by the asymptotic transformation
t = (23) changes to

where v = v(T, n) = v(n-aT, n), a = and so on. Next as in §2 we
introduce a matrix of weght:

where f1 and E2 are non-negative constants which are determined such that

Here we remark that the first term is from the Jordan form of order 2, the
second term is from the lower order term B and the last term is from a(r, n) . .



Thus

Here we assume that E2 > 0, which means that

Changing the unknown v such that v = WV1, (24) comes to

Remark that from the assumption of a(t) we can denote that a(r, n) =
vTQ + a2 (T, n), where v ~ 0 and a2 (T, n) --> 0 when n - oo and T E T2~
for any Ti and T2 (0  Ti  T2). We rewrite this such that

In (29) we regard the term D1 + as a principal part
which dominates the other terms. Now we will diagonarize For

this we denote that

where ~~(T) = Here we take the element b of the lower order term

B (t) as follows:

All b~ are distinct each other and there exists a positive constant 61 such
that 

,



From now on we consider our system of equations for T > 1. Then there
exists a non-singular matrix N (T) such that

We change again the unknowns vl such that V1 = N(r)v2, then (29)
turns out to

Denoting the components of the unknowns v2 by

we set the energy form in such a way that

Then we see that

where gn(T) is

Evaluating gn(r), we obtain a following estimate.



PROPOSITION 4.- Assume that 03C3  1/q and that 1-el-Q > 1-Q-pQ.
Then

for T ~ 1 and for large n.

Now we shall determine the Cauchy data. We define our Cauchy data
vo(n) at t = 0 so that

More precisely first we determine V2 at T = 1, that means v(t) is given at
t = Then we define vo(n) at t = 0 as the solution of (23) (backward
Cauchy problem) with this Cauchy data. From this consideration we can
see the following inequality for our Cauchy data v(0, n) = vo(n)

We emphasize that for any n the inequality (33) holds with = 1

when we define the Cauchy data v(0, n) in such a way as above which
satisfies the estimate (34).

We are going to prove the theorem by contradiction. So we assume that
our Cauchy problem is 1’(8)-wellposed which means by definition that

It follows from the definition of Sn ( í) that

When we remark that = = v(n-Ur,n), we can see that

Thus from (35) following inequality holds:

Moreover owing to (34) we see at last the estimte of ,Sn (T) such that



Let us compare this inequality with (33) under the condition that
= 1.

1)) ~ + 52~21 E1 ~~ ~ (38)

for T > 1 and for large n.

If we impose the condition that

then with fixed some T(> 1) the above inequality leads us to a contradiction
when n tends to infinity.

Here we review our conditions imposed on cr in our argument

Taking account of the choice of 61, it is easily shown that 03C3 can exist, when

and when

Thus the proof of Theorem 2 is complete.
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