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R.~SUM~. - On étudie, d’un point de vue variationnel, un problème
parabolique a donnee initiale mesure:

ou n est un ouvert borne régulier de 2,Q = SZ x J0, T (, /3(x, . )
un graphe maximal monotone de 1R2 dependant mesurablement de x, 0 E
03B2(x, 0) pp et |03B2(x, r)|  C(1 + a  2 + 2 N et  est une mesure
de Radon bornee. On montre que la solution faible de ce problème est en
fait aussi la solution d’un problème de minimisation convexe dans l’espace

r = 2 + N Les demonstrations font appel essentiellement a, des

arguments d’épi-convergence.

ABSTRACT. - We study, from a variational point of view, a parabolic
problem with measure initial data:

where n is a smooth open bounded set in N > 2, Q = T ~, ~3(x, . )
is a maximal monotone graph of R2 depending measurably on x and
verifying: 0 E a.e, ~~(~, r)~  C(1 + a  2 + N and ~ is a
bounded Radon measure in SZ. We prove that the weak solution of this

problem is in fact the solution of a convex minimization problem in the
space r = 2 + ~ . The proofs rely essentially on epi-convergence
arguments.

( * ) Recu le 20 mai 1999, accepté le 18 février 2000
(1) LMARC, UMR 6604, 24, rue de 1’Epitaphe, 25000 Besançon.



1. Introduction

The aim of this paper is to present a new approach for solving semi-
linear parabolic problems involving measure data. More precisely, we are
interested in the following problems P,~:

where Q is a bounded open set of 2 with a smooth boundary.
L is a linear second order elliptic operator in divergence form, ~3(x, .) is a

measurable multi-valued mapping with values maximal monotone graphs of
IR x R with ~3(x, o) 3 0 for a.e. x in SZ, ~ E mb(í1), f E mb( Q).

In what follows, we shall explain our approach by considering typically
the case f = 0, L = -L),.

Among the previous works related to this problem, we mention essen-
tially the two following ones:

H. Brezis and A. Friedman [7] have previously studied the case

L = -0, r) _~ r r. They showed the existence and uniqueness
of a weak solution u if p  1 + 2/N, and the non existence if p > 1 + 2/N.
Their proofs are direct and rely on a priori estimates for the solutions of
some approximating problems and on related compactness arguments.

P. Baras and M. Pierre [4] extended [7] to more general elliptic operators
L, and possibly unbounded p. In particular, they showed under the same
condition p  1+2/N, that the problem P,~ possesses a unique weak solution
u which belongs to Ls (0, T; with 1  s, q  N

In the present work, the problem P,~ is considered from a different point
of view. Our aim is to give a variational formulation of this problem, more
precisely to ask if the solution satisfies some variational principle. To this
end, we use essentially the epi-convergence method, which has been al-
ready successfully applied to semi-linear elliptic equations involving mea-
sure data in [2], [8]. The key idea is to start from a variational formulation
of the regular case ~ E n using the Brezis-Ekeland principle
[6]. Then we introduce a smooth sequence ~c~ E converging weakly
to /~, and study the limit behaviour of the associated minimization prob-
lems. If the growth of ,Q(x, r) is less than C(1 +  2 + N, then
the limiting process yields a variational solution tt which is the solution

of two alternative formulations (Th. 3.4 and Th.3.6) each having its own
interest. This variational solution is also the weak solution. The fact that



it is only defined under the more restrictive condition a  ~ + N is in
some sense compensated by the fact that it possesses the mentioned min-
imizing properties and that it enjoys more regularity. Indeed it belongs to

The literature on parabolic equations, especially concerning existence,
uniqueness and regularity results, has been enriched by many authors in the
last ten years. We mention particularly the contributions of L. Boccardo &#x26;
co-workers (see [5] and the bibliography herein). But these works do not
cover ours. In fact they are merely concerned with existence results for
nonlinear problems with right-hand side measure, and this do not contain
the semi-linear case with a measure as initial datum. Besides this, we seek
not only existence results, but more important for us was to ask if the
solutions verify some variational principle. In this sense, the present work
can be more thought of as a generalization of the Brezis-Ekeland principle
to a non-hilbertian, nonreflexive case.

The general idea of working via a variational principle has been used
before in the elliptic case involving measures by L. Orsina in [11].

The main results of this work have been announced in the short note

[9]. The paper is then organized as follows:

2. The smooth case: The problem with data  = gdx, g E n Ho (S2)
is shown to be equivalent to the evolution equation in the Hilbert space
H = L2(n): .

where cpH(t, .) is the functional:

being the weak solution of the linear problem (/3 = 0) and j,~ (x, .) a
primitive of ,Q(x, . ) verifying jQ (x, . ) > 0 and j,~ (x, 0) = 0 for a.e. x in Q.

This problem is then transformed, via the variational principle of Brezis-
Ekeland [6], into a minimization problem over a convex set of the space
H2 = L2(o, T; .H). .

3. The general case: We take a regular sequence ~cn converging in the
weak-star topology to ~c. For each n, we have thus a minimization problem
Vn over a convex set Kn We show that Vn possesses a unique solution vn ,



for which we derive uniform estimates for the Therefore, we

can extract a subsequence, still denoted by vn, such that vn ~ v weakly.
By using epi-convergence techniques, we show that v is the solution of two
minimization problems, the first one over the space and the second

one over the space W = {u E V, u’ E V’ } Moreover we prove that v is the
solution of the evolution equation in 

where 03C6v(t,.) : H10 ~ IR is the restriction of 03C6H (t, .) to Ho . We call u =
v + jE~ the variational solution of and prove that it is the weak solution

too.

l~. Concluding remarks.

Notations: Q is an open bounded set N > 2, of class C2+~, ~ >

If B is a Banach space, B’ is its (strong) dual, Bs, Bw = B equipped
with the strong ( resp. weak) topology.

For every vector-valued function u : ~0, T~ -~ B with values in the Banach
space B , we denote by u’ its (strong) derivative.

LP(O), are the usual Lebesgue or Sobolev spaces,
and are the local ones. Especially, we denote by
H.

is the space of continuous functions on S2 , vanishing on 8Q ,
mb(Q) is the space of bounded Radon measures in Q, that is the dual of

 .,. >y being the duality (C°(S2), mb(SZ)). un ~ ~ if u~ converges
weak-star to 

Vr = = L~(0,r;~-~)) ; for r = 2 we denote
them V and V’.

Hp = H), p ~ 1. D(SL), D’(S2) are the usual Schwartz spaces.

If F : : X -> IEt, then domF = {x E X F(x)  +oo} is the effective
domain of F.

is the LP norm. More generally ~.~B is a norm in the space B.



If F : H - R, then F*(~) is its Fenchel conjugate in the duality 
H, H >.

If F : U,. -a R, r ~ 2, then is the conjugate in the duality  Vr, V~ >.
For r = 2 we use the notation F~.

n = {u E E r’ = 

By .,. >, we shall denote different duality brackets.

If f and g are two functions on the same space X, their infimal convolu-
tion (inf-convolution) is the function h = defined by = =

+ 9~~ - y)~ 

The characteristic function of the set D, denoted ID is used in the sense
of Convex Analysis, i.e ID(x) = 0 if xED and +oo elsewhere. We shall
often denote by the same letter C different positive constants, and we shall
often omit the symbol S2 if there is no possible confusion.

2. The smooth case

Let us first give the precise formulation of the problem Pp:

DEFINITION 2.1.- Let ~, E mb(S2) and u E Then u
is a weak solution of problem Pp if and only if:

(i) there exists a function h E s. t. h(x, t) E u(x, t) ) a. e. and

u’-Du+h=OinD’(Q).

(ii) ess limt~o In u(x, _ , 8 >Q dB E Co(S2).
In the linear case (~3 = 0), we recall the following result of [4] concerning

L1 data:

LEMMA 2.1. (~4) Lemma 3.3).- Let f E and ~, E . There
exists a unique solution of the problem

Moreover:

(ii) the mapping (~,, f) --~ u is increasing and compact from L1 (S2) x
L1 (Q) into Lp(S2) for 1 ~ p  1 + 2/N.



To obtain a variational formulation in the smooth case, let ~c E H2 n HJ ,
E~ the corresponding solution of Po , and define the following functions for
a.e t in [0 , T] :

and the associated functional 03A6H = {H2 ~ IR fT 
THEOREM 2.1. - Let /3 satisfy the following conditions

Then:

(i) The differential equation in H

possesses a unique strong solution v.

(ii) v solves the convex minimization problem

where:

(iii) The problem P,~ for smooth data possesses a unique strong solution
u given by u = E~ + v. We call ~c the variational solution of P~.

As a consequence of this theorem, solving Pa for smooth data is equiv-
alent to solving the differential equation (3) or the minimization problem
Y~.



Proof. - (i) We need only to estimate pH(t, v) - pH(s, v) for s, t E

(0, T~ and v E drnncpH (t, .) = Ho (S2). We have by using the subdifferential
inequality:

But a  a* gives us supt  +oo, and 
C(l + hence there exists positive constants such that:

Then it suffices to apply the results of [3] (Th.l, p.54).

(ii) This is simply the Brézis-Ekeland principle [6] applied to the equation
(3).

(iii) We know from [3]Th.l that v E With
the assumptions made on J.L and /3 , the subdifferential of is charac-
terized by:

where, for each t, (3(t) is the maximal monotone operator in H associated
to the graph (a family of graphs indexed by x)

More precisely, for u E L2(S2) we have (,0(t)u)(x) = for
a.e x E Q. Thus v verifies

Consequently u’(t) - + /~(t)u(t) 3 0 a.e. and which means
that u is a strong solution of D

3. The general case

We suppose from now on that the condition:

is fulfilled.



3.1. Approximate problems

Let  E There exists a sequence pn E D(H), supn~ n~L1 

+00, -~ /~. For each n, let En be the corresponding solution obtained
by lemma 2.1. Then n (actually a subsequence) converges weakly to  as

t ~, 0, En -~ E in for p  1 + 2 /N, and E is the weak solution of the
linear problem Po.

Set Kn = For every n E N, we consider the problem:

Pn := 8tv(t, x) - x) + ,C3(x, v(x, t) + En(x, t)) ~ 0, v(o, x) = 0 (5)

Using En and E in place of E~ , we define as before, the functions jn (t, . ) , ,
and We can then reformulate P~ as an

equivalent evolution equation in H:

Pn : v’ + v) ~ ~~ v(~) - ~ (6)

By theorem 2.1, for each n there is a unique strong solution vn for which
we shall derive several estimates.

LEMMA 3.1.2014 The , f unctions ~H are equi-coercive on
V = and we have supn03A6n*H(0)  +oo.

Proof. - Let v E V. Then:

But E for 1 ~ q  +00 and we have the classical upper bound:

Let g = c~, then /3(.,E~(.)) ~ ~(0,r;L~(~)) iff g  ~y that is iff
a  ~ + ~. Consequently

and 03A6nH(v)  C1~v~2v - C2~v~V hence the equi-coercivity. This implies that

is bounded uniformly in n (because C V). D



LEMMA 3.2. - (i) The functions ~H are equi-continuous on E, r =
2(1 + 2/N).

(ii) The conjugate functions are equi-coercive on VT and equi-continuous
on V’.

Proof. - (i) For v E dom( H) we have by using the Young’s inequality
and the subdifferential inequality:

But v E D(~~) ==~ ~ E V n C(o, T; H) c r = 2(1 + N ). If we take
p = r, p’ = r’, we have a + 1  1 +  2N+2 N = r from which we deduce
the following estimates

(ii) Let r’ = 1 + be the conjugate exponent of r. We shall derive
a two-sided estimate for the functions ~H which implies the two desired
properties. From lemma 3.1 and (i) we have:

By taking the conjugates in H2, we obtain:

THEOREM 3.1.2014 We have the uniform estimates:



Proof. - By lemmas 3.1 and 3.2, the null function v(t) = 0 a.e. belongs
to Kn and to for every n E N. Then we have for v~ :

which gives us easily the desired estimates. D

Let us now define the following space:

Equipped with the norm

X is a reflexive and separable Banach space, and the embedding X -~ H2 is
compact. Thus the sequence vn is bounded in X. We can therefore extract
a subsequence, still denoted vn, of solutions of the variational problems Vn
which converges weakly in X and strongly in H2 to a function .

We can also extract a subsequence En s.t. En -~ E in LP(Q) for p 
1 + 2/N. The question is then: In what sense is u = v + E a solution

of the initial problem ? To answer this question, we pass to the limit in
the variational problems Vn and in the corresponding Euler equations Pn.
For the variational convergence, which is our main motivation, we give two

approaches:

1) The first one is to seek the epigraphical limit of the ~H for the topol-
ogy of X. In doing so, we use only the a priori estimates obtained from the
variational formulations Vn, and never the fact that vn is also solution of

the partial differential equation Pn. In this respect, this approach can be
called purely variational. The resulting minimization problem is identified
over the space L~(Q). .

2) The second approach uses much more the equivalence Vn o Pn, to
obtain more estimates for the derivatives The determination of the epi-
limit is then easier and yields us a convex minimization problem over the

space W, which is strictly contained in Lr(Q). .

3.2. First variational formulation

To begin, we shall improve slightly the estimates of theorem 2.

LEMMA 3.3. - It holds



Proof. - For every t in (0, T) define Hn(t, .) as the function:
u -+ fo cpH(r, u(T))dT + fo (T, -u’( r) )dT + 2 on the
moving convex set Kn(t) obtained from Kn by setting t instead of T. Since

for v in Kn(t), Hn (t, u) is , for fixed u , a nonnegative monotone increasing
function of t bounded by hence 0 ~ = 0 on

Kn(t), that is v~ is a minimizer of Hn(t, .). But then

from which follows in particular:

and by interpolation

Theorem 3.1 and lemma 3.3 show that vn should be seeked in a ball of
the space X n To this end, let BQ be this ball of radius a, and IBa
its characteristic function. We then consider the following functions:

Then

LEMMA 3.4. is a minimizer of G’~ on the convex set

Proof. First, v~ E Ba yields = ~H (v~ )
Then, for every w E H2, we have



Indeed 0 E H2 and I*Ba (0) = 0, IBa being a positively homogeneous func-
tion. Consequently, we have: vn E and

which means exactly = 0 and vn minimizes Gn. 0

LEMMA 3.5. - We have

Proof. - Let v E Then a and

which gives

By the preceeding lemma, vn minimizes Gn on Cn , 0 ~ Cn and supn Gn(0) 
+00, hence

Remark. This estimate could be in fact obtained starting from the
Euler equation

by using classical regularity results ([10]) for the linear heat equation, since
,Q{En + v~) E (~).

The following result will be frequently used in the sequel:

PROPOSITION 3.1.2014 Let a sequence in . Then:

converges to v in Lr(Q) weakly and in measure } ===~ --~ J(v)}

Proof. Let v E = v(t, En(t~ x))
and let f > 0 be given. Then, for every pair of conjugate exponents r, f’ we
have



Take r = 1 + E’ and let 7(e) = e) = 03B1 -1 (1 + e) = aT_ i+E (1 + f)
Then is continuous at e = 0 and ,(0) = ar’  1+2/N. For e sufficiently
small, we have  1 + 2/N. With this choice of e , we have

If vn converges weakly to v in we have consequently

that is the sequence jn(vn) is equi-integrable on Q. Moreover, En --~ E in
LP(Q) for p  1 + 2/N, hence in measure. By dominated convergence, we
obtain:

Thus -~ J(v). D

Lemmas 3.4 and 3.5 show that v~ lies in fact in the Banach space II.

Let then:

(i) ~T be the restriction of ~" to L’’(Q)

where ~~ ® is the Young-Fenchel conjugate of ~~ in the duality,
 (~) >.

(iii) Kr = ~v E  +oo, ~T ® (-v’)  +oo, v(o) = 0~ C 

Then we can prove the following theorem:

THEOREM 3.2. (i) ~n is coercive and lower-semi-continuous (l.s.c.)
on Lr(Q). .

(ii) vn is the unique solution of the convex minimization problem

Proof. 2014 (i) The coercivity is quite obvious, we prove only the lower
semi-continuity.



Let u in and un a sequence such that un converges to u in
and  +oo. But then (after extracting a subsequence

if necessary) u~ --~ u in X n weak, in L2 (Q) strong and in mea-
sure. Moreover u~ --> u’ in Lr’ weak, hence u~ converges to u in II weak.
From the continuity of the trace map, u (T) in H weakly and
lim infn The conclusion follows by invoking the lower-
semi-continuity of 03A6nr and 03A6n~r for the Lr and Lr’ topologies respectively.

(ii) We remark first that vn belongs to KT and that = 0. For u
in II we use the identity:

which permits us to write

hence

The uniqueness follows from the strong convexity . 0

Thus, we have proved the equivalence of the three problems

We shall now pass to the limit on the last problem by studying the epi-
convergence of the functionals ~’~ . First, we recall some basic features con-
cerning epigraphical convergence in Banach spaces (see E1~ for details) :

DEFINITION 3.1. Let (X, T) be a Banach space equipped with its strong
topology T and let pn, F : X --~~ - oo, be a sequence of T -l.s.c proper
functions. Then F is the T-epi-limit of the sequence Fn at x E X 

(i) ~xn x, we have: lim inf n > F(x). .

(ii) There ex~ists a sequence x~ ~ x s. t. lim supn Fn(xn)  F(x). . If this
takes place at every point x EX, , we say that F is the T-epi-limit of the
sequence Fn. .

Another, closely related notion of epigrapical convergence is the Mosco-
convergence, which is obtained from the preceding one if we use the weak



convergence in the first sentence. Hence it implies T - epiconvergence. We
recall also that epi-convergence implies the convergence of the minima and
that the Mosco-convergence is bi-continuous with respect to the Young-
Fenchel transformation.

We are going first to precise a little more the domains of our fonctions,
more precisely we shall show that they are independent of n.

PROPOSITION 3.2. - It holds

i) = dom03A6r

ii) = 

iii) dom03A8n = domw.

Proof. - We start from the majorizations:

Hence = But since c dom03A6nH c
V, we obtain:

and consequently dom03A6rn = dom03A6r C Ba. .

For ~T ® , we remark that if w E we have

By interchanging ~~ ® and ~®, we obtain the desired result, from which
domwn = domw follows obviously. D

LEMMA 3.6. - We have: ~~ Mosco-converges to in . 

’

Proof. 2014 (i) Let u E and un converging weakly to u in .



We can assume that is bounded, otherwise there is nothing
to prove. Then, there exists a subsequence, still denoted un, such that

is bounded, un converges to u in X weakly, in L2(Q) strongly ,
almost everywhere and u belongs to Ba, from what we deduce easily that
lim inf ~T {u~) > 

(ii) Let u E Then

i) If u E domor, we have u E dom and In(u) -~ J(u) by propositionl,
so that ~r (u) -~ u.
ii) If not, we have +00 = &#x26;~(tt) --~ = +00. Hence the constant

sequence un = u works too. 0

COROLLARY 3.1. - ~T ® Mosco-converges to ~® in ~ {Q) .

THEOREM 3.3.2014 ~’~ Mosco-converges to ~ in 

Proof. - (i) Let u E and un converging weakly to u in We

may suppose that is bounded, which gives:
supn  +~, supn  +°°, supn~un(T)~2H  +oo

Then (at least for a subsequence):
i ) in X weak and in weak.

ii) in L2 {Q) strong and a.e.
iii) un -+ u’ in Lr’ (Q) weak
This implies that u E domw, Jn(u) ~ J(u), lim infn > 

lim infn ~r® (-un) > and finally lim infn > 

(ii)Let u E 

a) Suppose first: u E domw.

Let (un), n E be the sequence defined by un = tnu, where tn denotes
a sequence of real numbers 0  1, tn ~ 1. Then un E dom03A8 =

U strongly in and

But



which yields:

By Proposition 2.9 in [I], we know that if F is the epi-limit of the sequence
Fn in some Banach space X then: inf x F > lim supn(infX Fn). If we apply
this to the sequence Fn(.) = -u’, . . >Lr~L,.~ -~r (.), with X = (Q), we
obtain: 

’

hence

and

b) If u E then u E and the constant se-
quence un = u works. D

We can then state our first variational formulation:

THEOREM 3.4. - (i) The sequence un = converges in LP(Q) , p 
1/2 + 2 /N, to u = v + E the unique solution of the variational problem:

(ii) u is also the weak solution of the problem Pa and

Preuve. - (i) That v is the solution of the variational problem is a
straightforward consequence of the preceding theorem.



(ii) Consider the sequence un. It satisfies the Euler equation

~tun-0394un E a.e. in Q , un {o) = in 03A9, un, = 0 on a. e

Let zn = (at - then zn E ~3(., ~cn) and C(1 + #

supn|zn|Lr(Q)  +oo, whence the equi-integrability of the zn . We can thus
extract subsequences s.t:
zn -~ z in 

r  1 + -~, and in D’(Q).
In fact, un --~ fi quasi-uniformly on Q. For every e > 0, there exists

QE C Q,  E and a constant C(E) s.t. t)~ [  C(E).
Hence in strongly and z~ -~ z in weakly.

As the Nemitskii operator associated with ~3 on is strong x weak
closed, we obtain that

Since this is true for every f > 0, it follows that

But since zn = ( at - we obtain, taking the limit in D’(Q): :

f (8t - 0394)u(x,t) E 03B2(x,u(x,t)) a.e. (x,t) E Q
Thus u(x,t) = 0 on ~03A9 ]0,T[a.e.ess - limtlo u(t) = ess - limtlo v(t) + ess - limt~0 E(t) = 0 +  = 

The regularity of u is immediate. D

3.3. Second variational formulation

We explain now very briefly the second approach.

C(~,, T) being the constant of Lemma 4, let a = C(~,, T)+1; let BH( resp.Boo)
be the closed ball of radius a of H (resp. of L°° (O, T; H) ), and IBH (resp.

its characteristic function. We consider the functions cp" +

= p H + IB~ and the associated functionals:

As in the previous paragraph, we have the following result:

PROPOSITION 3.3. - (i) are equi-coercive on V (resp. V’)



(ii) For each n, the evolution equation Pn : {u’(t) + u(t)) 9
0, un(0) = 0} possesses a unique strong solution vn, which is also the
unique solution of the minimization problem:

where:

(iii) The problems Pn and Pn have the same solution v~ and the esti-
mate : supn~vn~W  +oo holds.

The behaviour of the sequence ~n is then given by the following lemma:

LEMMA 3.7. ~n --~ ~ in the Mosco sense on X .

Proof. (i) Let u E X and un --~ u weakly in X . Let un be a subse-
quence s.t. supn03A6n(un)  Then:

Besides this, u hence in measure, and so

Finally

and for a.e. t we have: un (t) H wt E H weakly. By the continuity of
the trace map X -> H-1(S2), u~(t) ~ ut weakly in H-1(SZ) and hence

= u’(t) a.e. Thus:

that is [ [u(t) [ [ H  a a.e., u G Bm and IB~ (u) = 0.

In short we have
. - - - - , , 



(ii) Let u E X.
1) If = +oo, then ~(u) = +oo, = +oo. The sequence vn = u

converges strongly in X to u and -~ 

2) If = 0, then  a and as u E V, we have u E 
Hence u E n dom03A6H. Then 03A6n(u) = 03A6nH(u) + IB~ (u) = 03A6nH(u). But
u E implies that Jn(u) --~ J(u), hence

The constant sequence is still suitable. D

Remark 3.2. If r’ = 2 we obtain that ~n 2014~ &#x26; in the Mosco-sense on

Let us now define the following functions:

Here ® is the conjugation in the duality  V, V’ >.

Then, using the same kind of arguments as in the proof of theorem 3.3,
we obtain:

THEOREM 3.5. - The sequence Fn converges in the Mosco-sense to F

in W. .

We can then state our second variational formulation:

THEOREM 3.6. (i) The sequence vn of solutions of the variational

problems (Vn) converges weakly in W (and strongly in H2) to v, unique
solution of the variational problem:

(ii) v, = v + E~ is the weak solution of the problem Pp and

. (iii) Let cpv : Ho -~ R be the restriction of p to Ho (S2). Then v is the
strong solution of the following evolution equation in H-1(S2):



Proof. - (i) and (ii) are immediate consequences of the previous state-
ments.

(iii) From the basic properties of epigraphical convergence, we assert
that:

thus infw F = 0.

We remark that F may be written, for u E domF, as:

where cpv is the conjugate of ~pv in the duality  Ho , H~ 1 >. But then
infw F = 0 =~ F(v) = 0, that is

or equivalently

4. Concluding Remarks

Many aspects of this work may be enlarged and deepened. Some ex-
tensions, as to other boundary conditions, are easy. On the other hand
the extension to time dependent measures is more involved. Numeri-
cal aspects, asymptotic behaviour, periodic datum, abruptly changing data
require a deeper investigation. Applications to mechanics of continua, for
example to evolution problems in plasticity (quasi-static case) are possible.
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