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I dedicate these notes to Michel Talagrand,
at the occasion of the Fermat Prize,
with admiration and friendship.

Ces notes sont un resume d’un mini-cours presente a 1’Ecole
Polytechnique Federale de Zurich en novembre 1998. Elles ont pour but
d’exposer quelqu’unes des idees geometriques de l’étude des generateurs
de diffusion developpees par D. Bakry et ses collaborateurs au cours
des dernieres annees. Les notions abstraites de courbure et dimension,
qui etendent les definitions geometriques, sont mises a profit dans des
demonstrations fonctionnelles de theoremes de comparaison riemanniens.
Constantes optimales et modeles de reference forment un aspect essen-
tiel de l’analyse. Ces notes, qui pour l’essentiel ne comportent pas de
demonstrations, se proposent de decrire les grandes lignes et les principes
generaux de cette etude.

ABSTRACT. - These notes form a summary of a mini-course given at
the Eidgenossische Technische Hochschule in Zurich in November 1998.
They aim to present some of the basic ideas in the geometric investiga-
tion of Markov diffusion generators, as developed during the last decade
by D. Bakry and his collaborators. In particular, abstract notions of cur-
vature and dimension that extend the corresponding ones in Riemannian
geometry are introduced and studied. Using functional tools, new analytic
proofs of some classical comparison theorems in Riemannian geometry are
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presented together with their counterparts in infinite dimension. Partic-
ular emphasis is put on sharp constants, optimal inequalities and model
spaces and generators. These notes are far from complete (in particu-
lar most proofs are only outlined) and only aim to give a flavour of the
subject.

Thanks are due to A.-S. Sznitman and E. Bolthausen for their
invitation and to all the participants for their interest in these lectures.
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0. Introduction

A basic source for several of the functional inequalities on Riemannian
manifolds are isoperimetric inequalities. The classical isoperimetric inequal-
ity in IRn asserts that among all bounded open sets A in IRn with smooth
boundary âA and with fixed volume, Euclidean balls are the ones with the
minimal surface measure. In other words, if = voln(B) where B is
a ball (and n > 2), ,

Similarly, on a sphere Sn in equipped with its (normalized) invariant
measure o~, geodesic balls (caps) are the extremal sets for isoperimetry. That



is, if = r(J3) where B is a cap on Sn, then

where denotes surface measure of the (smooth) boundary 8A of A
on sn. One main interest in such inequalities is the explicit description of
the extremal sets.

The isoperimetric inequality on spheres has been extended by M. Gro-
mov, using ideas going back to P. Levy, as a comparison theorem for Rie-
mannian manifolds with strictly positive curvature. Let (M, g) be a compact
connected smooth Riemannian manifold of dimension n ( > 2 ) equipped with
the normalized Riemanian volume element dp = ~ where V is the volume
of M. Denote by R = R(M) the infimum of the Ricci curvature tensor over
all unit tangent vectors, and assume that R > 0. Note that the n-sphere
S’~ with radius r > 0 is of constant curvature with R(S’r ) = nr-;l. Given M
with dimension n and R = R(M) > 0, let S) be the n-sphere with constant
curvature R(~S~ ) = ~ = R. Then, for any open set A on M with smooth
boundary such that = a(B) where B is a cap on S) and a~ is the
normalized invariant measure on 

In other words, the isoperimetric function = p~, p E E0,1~,
of M is bounded below by the isoperimetric function of the sphere with
the same dimension and c onstant curvature equal to the lower bound on
the curvature of M. Such a comparison property strongly emphasizes the
importance of a model space, here the canonical sphere, to which manifolds
may be compared. Equality in (1) occurs only if M is a sphere and A a
cap on this sphere. Notice furthermore that (1) applied to sets the diam-
eter of which tends to zero implies the classical isoperimetric inequality in
Euclidean space.

The distributional isoperimetric inequalities allow one to transfer opti-
mal functional inequalities on the sphere to inequalities on manifolds with
a strictly positive lower bound on the Ricci curvature. For example, the
classical Sobolev inequality on the sphere ,5’T with radius r in n > 3,
indicates that for every smooth function f on S;, ,

where p = 2n/(n - 2) and ~ is the length of the gradient of f. By the
comparison inequalities (1), one can then show that if M is as before a



Riemannian manifold with dimension n (~ 3) and R = R(M) > 0, for any
smooth function f on M,

where now ~~ f is the Riemannian length of the gradient of f on M.

It is an old observation in probability theory that uniform measures on
spheres with dimension n and radius ~/~ converge (weakly) as n -> oo to
the canonical Gaussian measure on IRJN (product measure on ]RJN of stan-
dard Gaussian distributions on each coordinate). This limiting procedure
may be performed on (2) to yield a Sobolev inequality of logarithmic type
for Gaussian measures. Denote for example by T the canonical Gaussian
measure on IR~. Then, for any smooth function f on IRk,

where ~V~ is the Euclidean length of the gradient of f on The spherical
Laplacian actually approaches in this limit the Ornstein-Uhlenbeck gener-
ator with 1 as invariant measure. The left-hand side of (4), called the en-
tropy of f (or rather f 2), has to be interpreted as a limit of LP-norms as
p = 2 + ,~4 2 --~ 2 since, if ~~ L denotes the LP-norm with respect to some
measure v, 

’~

On the other hand, when r = J1i and since p - 2 = n 4 2 the constant in
front of the energy in the right-hand side of (2) is stabilized so to yield (4).
The main feature of inequality (4) is that it is dimension free, reflecting
this infinite dimensional construction of Gaussian measures. In a geometric
language, Gaussian measures appear in this limit as objects of constant
curvature (one) and infinite dimension.

The preceding examples form the basis for an abstract analysis of func-
tional inequalities of Sobolev type that would include in the same pattern
examples such as the sphere or Gauss space by functional notions of curva-
ture and dimension. Such a setting is provided to us by Markov diffusion

generators and semigroups for which the notions of carre du champ and it-
erated carre du champ yield, in analogy with the classical Bochner formula
in differential geometry, abstract definitions of curvature and dimension. In

particular, we can reach in this way non-integer dimension as well as infinite



dimensional examples with the models of one-dimensional diffusion genera-
tors. This framework suggests a functional approach to both isoperimetric
and Sobolev type inequalities and leads to a functional analysis of various
classical results in Riemannian geometry.

To illustrate some of the results that may be investigated in this way,
let us recall for example Myers’s theorem that asserts that a compact Rie-
mannian manifold (M, g) with dimension n and Ricci curvature bounded
below by R = R(M) > 0 has a diameter less than or equal to the diameter
~rr = ~ nR 1 of the constant curvature sphere ST with dimension n and

= 1~1 = R. This result may actually be seen as a consequence of
the sharp Sobolev inequality (3). We will namely observe that a manifold
satisfying the Sobolev inequality (3) with the sharp constant of the sphere
has a diameter less than or equal to the diameter of the sphere. In the
same way, when R = R(M) > 0, the spectral gap of the Laplace operator
on M is bounded below by the spectral gap of the sphere with constant
curvature R. Recent work by D. Bakry and Z. Qian describes optimal com-
parison theorems for eigenvalues using curvature, dimension and diameter
by means of one-dimensional diffusion generators whatsoever the sign of
curvature. We also provide an infinite dimensional interpretation of Gro-
mov’s comparison theorem. If J.t is the invariant probability measure of a
Markov diffusion generator with strictly positive curvature R and infinite
dimension, then its isoperimetric function is bounded below by the isoperi-
metric function of the corresponding model space, or rather generator, here
Gaussian measures as invariant measures of the Ornstein-Uhlenbeck gener-
ator. Extremal sets in Gauss space are half-spaces, the Gaussian measure of
which is evaluated in dimension one. Therefore, if for example R = 1 and if

= 2~ e-~2 ~2dx, then

These results concern comparison theorems for manifolds with positive
curvature and their extensions to infinite dimension. The model space for
manifolds with non-negative Ricci curvature is simply the classical Eu-
clidean space. Although the picture is less complete here, we present a sam-
ple of results on optimal heat kernel bounds under a Sobolev type inequality,
as well as rigidity statements. For example, a Riemannian manifold with di-
mension n and non-negative Ricci curvature satisfying one of the classical
Sobolev inequalities with the best constant of IRn must be isometric to IRn .
Negative curvature is still under study.



The first chapter presents the basic framework of Markov diffusion gen-
erators and the notions of curvature and dimension in this setting. We also
discuss here the functional inequalities of interest, from Poincare to Sobolev
and logarithmic Sobolev inequalities. In Chapter 2, we investigate the case of
infinite dimensional generators for which we describe a version of Gromov’s

comparison theorem and discuss some of its applications to logarithmic
Sobolev inequalities. Chapter 3 is concerned with finite dimensional gen-
erators of strictly positive curvature. We present new analytic approaches
to several classical results in Riemannian geometry such as volume, diame-
ter and eigenvalue comparisons. In the last chapter, we study optimal heat
kernel bounds and rigidity theorems in a non-compact setting. Complete
references for the results only outlined in these notes are provided in the
bibliography.

1. Geometric aspects of diffusion generators

We review here the basic definitions on the geometric aspects of diffusion

generators. The main reference is the St-Flour notes by D. Bakry [Ba3] from
which we extract most of the material presented here and to which we refer
for complete details.

1.1. Semigroups and generators

We consider a measurable space (E, E) equipped with a u-finite measure
~. When J-L is finite, we always normalize it into a probability measure. We
denote by LP = 1  p  oo, the Lebesgue spaces with respect to ~c,
and sometimes for the norm in LP.

Our fundamental object of interest is a family non-negative
operators acting on the bounded mesurable functions f on E by

and satisfying the basic semigroup property: Ps oPt = Ps+t, s, t > 0, Po = Id.
The non-negative kernels pt (x, dy) are called transition kernels. We will also
assume that the operators Pt are bounded and continuous on LZ (~c) in the
sense that, for every f in L2(J-t), C(t) ~) f ~~ 2 for every t > 0 and
~~Ptf -f~~2~~ast--~0.

We say that Markov if Ptl = 1 for every t. Markov semigroups
are naturally associated to Markov processes with values in E by
the relation 

’



The prime example is of course Brownian motion with values in 
and starting from the origin with transition (heat) kernels

We denote by the domain in L2 (~) of the infinitesimal generator
L of the semigroup is defined as the set of all functions f in

for which the limit

exists. D2(L) is dense in L2(~c) and may be equipped with the topology
given by

(cf. [Yo]). The semigroup Pt leaves the domain D2(L) stable, and for every
f in 

Conversely, the generator L and its domain D2 (L) completely determine
there exists a unique semigroup of bounded operators on

L2(J-t) satisfying (1.1) for all functions of the domain D2 (L) . For example,
the Brownian semigroup has generator half of the usual Laplacian A on ]Rn
and equation (1.1) is the classical heat equation.

The measure  will be related to the semigroup by two properties.
The measure ~c is said to be time reversible with respect to or 

is symmetric with respect to if for every f, g in 

J.L is invariant with respect to if for every f in L1(~), ,

When ~c is finite, one may choose g = 1 to see that time reversible measures
are invariant. Time reversible, resp. invariant, measures  are described
equivalently as those for which f Lgd  = gLf, resp. Lfd  = 0, for
every f, g in the domain of L.

When J.L is a probability measure, we will also say that is ergodic
if Pt f -~ J ~-almost everywhere as t -~ oo. 

’



In order to determine the semigroup from its generator, it suffices
to know L on some dense subspace of the domain. Indeed, in general only
the generator is given and usually only a dense subset of the domain is
known. Moreover, explicit formulas for the semigroup such as for Brownian
motion are usually not available.

For simplicity, we will thus work with a nice algebra A of bounded
functions on E, dense in D2(L) and in all and stable by L.
When JL is finite, we assume that A contains the constants and is stable by
C°° functions of several variables. (In this case, it is easily seen that the
semigroup is Markov if and only if L1 = 0.) When JL is infinite, we replace
this condition by the fact that A is stable by C°° functions which are zero
at the origin.

Amongst Markov generators, a class of particular interest consists in
the so-called diffusion generators. To this aim, we first introduce, following
P.-A. Meyer, the "carre du champ" operator r as the symmetric bilinear
operator on A x A defined by

The operator r measures how far L is from a derivation. A fundamental
property is the positivity of the carre du champ. Namely, since pt (x, dy) is
a probability measure, by Jensen’s inequality

(at every point x). On the other hand, the definition of r shows that

so that it immediately follows that

(pointwise) for every As a consequence of (1.2), note that 

We then say that L is a diffusion if for every C°° function ~ on and

every finite family F = (/i,..., fk) in A,

In particular, if 1/J is C°° on ]R, for every f in A,



This hypothesis essentially expresses that L is a second order differential
operator with no constant term and that we have a chain rule formula for
r,

Applying (1.3) to ~ ( f g, h) , f g, h E A, moreover shows that r is a deriva-
tion in each argument:

The diffusion property is related to the regularity properties of the Markov
process associated to diffusion semigroup on
some algebra ,~1, the processes f E ,~4, have continuous paths.

When Jj is invariant,the following basic integration by parts formula is
satisfied 

, ,

In 0.

To illustrate these abstract definitions, let us describe the main examples
we wish to consider in these notes.

Let first E be finite with N elements, and  charging all the points. A
Markov generator L is described by an N x N matrix with non-negative
entries so that

for every f on E. The operator Pt is the exponential of the matrix tL. The
carre du champ r may be written

The only diffusion operator is L = is invariant if 03A3i Lij i = 0 for
every j. It is classical that the invariant measure is unique as soon as L is
irreducible.

We already mentioned the heat or Brownian semigroup IRn.
In this case therefore, E is IRn equipped with its Borel u-field and Lebesgue
measure dx. The generator of the heat semigroup is half of the classical
Laplacian A on IRn and the associated Markov process is Brownian motion



In order to simplify a number of analytical definitions later on, we
will work throughout these notes with A rather than 2 0 so that, for every
sufficiently integrable function f on 

where -y is the canonical Gaussian measure on ]Rn with density (27r)-n/2
with respect to Lebesgue measure. On the class A, say, of all C°°

compactly supported functions, we then have

Lebesgue measure is invariant and time reversible with respect to .

More generally, let us consider a smooth (C~ say) function U on IRn
and let = e-U(x)dx. As is well-known,  may be described as the time
reversible and invariant measure of the generator

Alternatively, 2 L is the generator of the Markov semigroup of the

Kolmogorov process X = solution of the Langevin stochastic differ-
ential equation 

’

Similarly, r( f, g) = V/ ’ for smooth functions f and g. The choice of
with invariant measure the canonical Gaussian measure I

corresponds to the Ornstein-Uhlenbeck generator

Since in this case Xt = J’o the Ornstein-Uhlenbeck semigroup
may be represented as

Due to the integrability properties of Gaussian densities, one can choose here
for A the class of C°° functions whose derivatives are rapidly decreasing.

Let further E = M be an n-dimensional smooth connected manifold

equipped with a measure ~c on the Borel sets equivalent to Lebesgue mea-
sure. On the algebra A of, say, all C°° compactly supported functions, let



L be a second order differential operator that may be written in a chart as

where the functions bi are C°° and the matrix is non-negative
definite at each x. The generator L is then elliptic, and, when M is compact,
each solution of (1.1) with f in A is such that Pt f is in A. Furthermore,

This is the origin of the terminology carre du champ. Indeed, the matrix
(when non-degenerate) defines a symmetric tensor field on M. The

inverse tensor then defines on M a Riemannian metric, and r( f, f )
is the square of the length of the gradient 0 f in this metric. This example
covers the Laplace-Beltrami generator

with d = det(gZ3 ) on a complete Riemannian manifold (M, g) with, under
some mild geometric conditions such as R3cci curvature bounded below (cf.
(Da~ ), associated heat semigroup 

Throughout these notes, we consider a Markov diffusion generator L with
semigroup on a measure space (E, ~, ~), acting on some algebra A
of bounded , functions on E, dense in D2 (L) and in all The

algebra A is also assumed to be stable by L, and stable by C°° functions of
several variables and containing the constants if ~c is finite, and stable by
C°° functions which are zero at the origin when ~c is infinite. We assume ~c
to be time reversible and invariant with respect to L (or When  is

finite, we assume that it is a probability measure and that is ergodic
with respect to u.

1.2. Curvature and dimension

Using the carré du champ, we define here functional notions of curvature
and dimension. We start with the abstract setting described in Section 1.1
and consider thus a Markov generator L with semigroup on (E, ~, ~c)
and algebra A. Reproducing the definition of the carré du champ by replac-
ing the product by r, one may define the so-called iterated carré du champ



as the symmetric bilinear operator on A x A

For simplicity, we write r f = F( f) for r( f, f ) and similarly with r2. (One
could define similarly the whole family of iterated gradient I‘n, n > 1, by

with Fi = r (see We will however not use them here.)

It is a classical exercise to check that for the usual Laplacian A on IR,n,

is the Hilbert-Schmidt norm of the tensor of the second derivatives of 1.
When L = A - V with U of class C2,

In particular, for the Ornstein-Uhlenbeck generator L = A - x V,

In a Riemannian setting, for the Laplace-Beltrami operator A on a smooth
manifold (M,g) with dimension n, Bochner’s formula (cf. [Cha2], [G-H-L])
indicates that for any smooth function f on M,

where Ric is the Ricci tensor on M. If we assume that the Ricci curvature
of M is bounded below in the sense that Ricx (u, v) > Rgx (u, v) for every
tangent vectors ~, v E Tx(M), and if we observe, by Cauchy-Schwarz, that
I I Hess f ~ ~ 2 > n ( L1, f ) 2 (since is the trace of Hess f) , we see that

On the basis of these examples and observations, we introduce (func-
tional) notions of curvature and dimension for abstract Markov generators.



DEFINITION 1.2. - A generator L satifies a curvature-dimension in-
equality CD(R, n) of curvature R E IR and dimension n ~ 1 if, for all
functions f in A,

Inequalities in Definition 1.2 are understood either at every point or
~-almost everywhere.

This definition does not separate curvature and dimension. If L is of
curvature-dimension CD(R, n), it is of curvature-dimension CD(R’, n’) for
R’  R and n’ > n. (Moreover, it depends on the choice of the algebra
A.) According to (1.8), an n-dimensional complete Riemannian manifold
(M, g) with Ricci curvature bounded below, or rather the Laplacian A on
M, satisfies the inequality CD(R, n) with R the infimum of the Ricci tensor
and n the geometric dimension. If L = A + Vh for a smooth function h,
and if (and only if), as symmetric tensors,

with m > n, then L satifies CD(p, m) (cf. [Ba3] , Proposition 6.2). Conditions
for more general differential operators of the form

where A(x) = symmetric positive definite at every point,
to be of some curvature may be given in the same spirit.

The classical Laplacian A on IRn thus satisfies CD(0, n), whereas the
Laplace-Beltrami operator on the unit sphere sn is of curvature dimension
CD(n - 1, n) since curvature is constant and equal to n - 1 in this case.
(By homogeneity, the sphere 5~ with dimension n and radius r > 0 has
constant curvature equal to n,:; 1 .) But the preceding definition allows us to
consider examples that do not enter a Riemannian setting. For example, by
( 1.7), the Ornstein-Uhlenbeck generator L = A - x V satifies CD ( 1, oo) . It
does not satisfy any better condition with a finite dimension. Indeed, there
is no c > 0 and R ~ IR such that

for every f as can be seen by choosing for example f (x) = Ixl2 and by
letting x ~ oo. This observation connects with the description of Gaussian
measures as limiting distributions of spherical measures as dimension goes



to infinity. More generally, if L = A - VU . V on IRn, L satifies CD(R, oo)
for some R E IR, as soon as, at every point x, and as symmetric matrices,
Hess U(x)  R Id. We will say more simply that L is of curvature R ~ IR if
it satisfies CD(R, oo) that is if, for all functions f in A,

(and also write sometimes Rr).

Besides allowing infinite dimension, Definition 1.2 also allows us to con-
sider non-integer dimension through the family of (symmetric) Jacobi op-
erators. Let namely, on (-1, +1),

for every f smooth enough, where n > 0. In this example, r(f) = (1 -
x2) f’(x)2 and the invariant measure is given by = a",(1 - 
on (-1, +1). When n is an integer, Ln is known as the ultraspheric generator
which is obtained as the projection of the Laplace operator of S’~ on a
diameter. It is easily checked that

Therefore, L satisfies CD(n-1, n) for every n > 1. (Note that the curvature-
dimension inequality is reversed when n  1. ) In particular, the dimension
in CD(R, n) does not refer to any dimension of the underlying state space.
Actually, by the change of variables y = sin-l x, L can be described as the
differential operator

on the interval ( - 2 , +~) (this choice will be explained in Section 3.3). More
generally, when L f = f " - a(x) f’, CD(R, n) for L is equivalent to saying
that 

,

Note that the (one-dimensional) Ornstein-Uhlenbeck generator on the line
L f = f" - x f’ enters this description with a(x) = x and that (1.11) takes
the form a’ > (=) 1 (that is CD(l,oo)). For a complete description of one-
dimensional diffusion generators along these lines, cf. [Ma].

Together with the infinite dimensional Ornstein-Uhlenbeck generator,
the Jacobi operators will be our models of generators with strictly positive
curvature (extending thus the finite dimensional example of the sphere). We



discuss more precisely the negative curvature in connection with eigenvalue
comparison theorems in Section 3.3.

In the last part of this section, we turn to some equivalent descriptions
of curvature of L as commutation properties of the associated semigroup

We thereby face quite an annoying question, namely the stability of
our algebra A by Pt It is clear that, in very basic examples such as the heat
semigroup on a non-compact manifold, compactly supported C°°
functions are not stable by Pt. We however wish to work with expressions
such as r ( Pt f ) or r2 ( Pt f ) . In concrete examples, the latter may usually
be defined without too many difhculties (see [Ba4] e.g. and the references
therein). This stability is basically the only property really needed in the
proofs below concerning A, which we thus implicitely assume throughout
these notes. We actually put emphasis in this work on the structure of the
algebraic methods. In this regard, the stability of A by Pt removes all kind of
analytic problems which are of a different nature. The question of extending
the results to large classes of functions in the domain of given generators is
thus another issue not adressed here.

As announced, the curvature assumption r2 > RF on the infinitesimal
generator L may be translated equivalently on the semigroup To
better understand this relation, it might be important to notice that in the
case of the classical heat semigroup on IRn (with curvature R = 0),
for any smooth function /, 

’

(which is immediate on the representation formula (1.5)). Similarly, for the
Ornstein-Uhlenbeck semigroup (with curvature R = 1),

(by (1.6)). The general situation is the content of the following lemma.
Since J.L is invariant for Pt, the respective inequalities are understood either
everywhere or -almost everywhere.

LEMMA 1.2. r2 > R r if and only if for every f in A and every t > 0,

Proof Let, for f E A and t > 0 fixed, F(s) = 
0  s  t. Now, by definition of F2,



Hence, by (1.9) applied to Pt-s f for every s, F is non-decreasing and (1.12)
follows. For the converse, note that (1.12) is an equality at t = 0. Therefore,

The preceding lemma does not make use of the diffusion property. It is
a remarkable observation by D. Bakry [Bal] that (1.12) may considerably
be reinforced in this case.

LEMMA 1.3. - When L is a diffusion, 03932  R r if and only if for every
f in A and every t ~ 0,

Inequality (1.13) is actually classical in Riemannian geometry but the
proof of [Bal] is completely algebraic. We take it from [Ba4].

Proof. - Arguing as in the proof of Lemma 1.2 shows that the equivalent
infinitesimal version of (1.13) is that for every f in A,

We thus need to show that (1.14) follows from r2 > RF using the diffusion
property. The proof is based on the change of variable formula for F2. For
f, g, h in A, set

This notation stands for the Hessian of f since, in a differentiable context, it
is easily seen that H( f )(g, h) = Hess f (~g, Vh) . Let 03A8 be a smooth function
on ]Rk and let F = (11, ... in A. By the diffusion property (1.3) for L,
we get (after cumbersome algebra!)

where we use the shorthand notation



A similar change of variable formula for Q = F2 - R r easily follows. Now,
when ~ varies among all second order polynomials in k 
is, under (1.9), a positive quadratric expression in the variables XZ, X~k.
Let us specify this expression for two variables fl = f and f 2 = g but with
X2 = X11 = X 22 = 0. We get

Since H( f ) ( f, g) = 2 r(g, T f ), it follows that

If we rewrite this inequality for g = r( f ), we see that

Now, r~ f, g~2 ~ r( f)r(g) so that

from which the claim follows. The proof of Lemma 1.3 is complete. D

Lemmas 1.2 and 1.3 will be the key to various proofs of functional in-
equalities using curvature assumption. It is at this point one difficult ques-
tion to understand these lemmas under some additional finite dimension,
i.e. under a CD(R, n) condition.

1.3. Functional inequalities

The functional inequalities we will deal with are part of the family of
Sobolev inequalities. Typically, on a Riemannian manifold (M, g) with its
Riemannian volume element dv, a Sobolev inequality is of the type

for p > q > 0, constants A, B > 0 and all smooth f on M. These estimates
describe quantitatively the Sobolev embeddings. When A = 0, we will speak
of global inequalities (holding for compactly supported functions on the non-
compact manifold M), whereas when A > 0, we speak of local inequalities.
In the clasical case of IR’~, it was proved by S. Sobolev [So] that (1.15) holds
for all smooth functions f whenever 1 /p = q  n. For simplicity,
and since in our abstract setting of Markov generators F( f) = ~ ~7 f ~ 2, we
reduce ourselves to the case q = 2 in (1.15).



The next definitions put a view on sharp constants in inequalities such
as (1.15). Below, we reduce ourselves to the case where the reference mea-
sure is finite (probability measure). We come back to infinite measures in
Chapter 4 through several examples. To illustrate the various constants we
will investigate, let us start with the basic example of the unit sphere 
equipped with its uniform normalized measure (j. It has been shown by Th.
Aubin [Au] that for every smooth function f on 3,

where p = 2n/(n - 2). As was shown later on by W. Beckner [Be], this
inequality extends to all values of 1 ~ p ~ 2n/(n - 2) in the form

The latter inequality actually contains a number of limiting cases of interest.
Namely, when p = 1, it reads as the Poincare or spectral gap inequality

Since J |~f|2d03C3 = f f (-Of)dQ, (1.18) expresses by the min-max principle
that the largest non-trivial eigenvalue Ai of the Laplacian A on the n-sphere
S’~ is larger than or equal to n (actually equal to n) . Another limiting value
is p = 2. Since it is easily seen that, for a probability measure v,

we deduce from (1.17) a so-called logarithmic Sobolev inequality, or entropy-
energy inequality, for 7,

Inequalities (1.16)-(1.19) will be the main inequalities that will be ana-
lyzed in Chapter 3, and for which we would like to provide sharp constants.
Variations will be considered in the process of the notes. The following defi-
nitions extend to the general setting introduced in Section 1.1 the preceding
example of the sphere. In the following, v is a probability measure on (E, ~) .
Usually, v will simply be the invariant measure but the inequalities intro-
duced in the definitions below may be considered similarly for the so-called



heat-kernel measures. More precisely, for any x E E and t > 0, one may
be interested in the previous inequalities and constants for the (probabil-
ity) measure v(dy) = pt(x, dy). For example, inequalities for the classical
(Brownian) heat kernel on IR,n amount to inequalities for Gaussian mea-
sures. When the semigroup is ergodic, one may recover inequalities
for the invariant measure from the heat-kernel measures. This will be used
in Chapter 2.

DEFINITION 1.4. - The generator L, or rather its carré du champ r, is
said to satisfy a Poincaré or spectral gap inequality on A with respect to
a probability measure v on (E, ~), if there exists c > 0 such that for any
f E A, 

-

The largest c for which this inequality holds is denoted by aZ .

DEFINITION 1.5. - The generator L, or rather its carré du champ T, is
said to satisfy a logarithmic Sobolev inequality inequality on A with respect
to a probability measure v on (E, ~), if there exists c > 0 such that for any
f ~ A, 

- -

The largest c for which this inequality holds is denoted by po.

DEFINITION 1.6. - The generator L, or rather its carré du champ r, is
said to satisfy a Sobolev inequality of order p > 2 on A with respect to a
probability measure v on (E, E), if there exist constants A > 0 and B > 0
such that for any f E A,

The last definition has to be examined more carefully. Since it involves
2 constants, one has to emphasize which one is under investigation. In the
example of the standard sphere Sn with v = a, we have seen that for
p = 2n/(n - 2), n > 3, one may take B = 1 and A = 4/n(n - 2). With B
being equal to the latter value, Riemannian geometers concentrated their
efforts on constant A (see [Hel] , [He2] and Chapter 3). We will be concerned
here with constant A. It should be mentioned first of all that whenever

Ai > 0, one may always take B = 1 in the preceding definition. This is
a consequence of the following simple lemma ([Ba3], going back to [Ro2],
[D-S]).



LEMMA 1.7. - Let p > 2 and let f be a function in LP(v) where v is a
probability measure. Then

According to this lemma, if r satisfies a Sobolev inequality of order p > 2
with constants A, B > 0, and if Ai > 0, we may apply Lemma 1.7 and the
Sobolev inequality of Definition 1.6 to to get

from which the claims follows. On the basis of this observation, we concen-
trate below on Sobolev inequalities with B = 1. Furthermore, in order to
compare the family of Sobolev inequalities we investigate, we introduce a
new definition of the Sobolev constant.

DEFINITION 1.8. The generator L, or rather its carré du champ r,
is said to satis,fy a Sobolev inequality of order p > 1 on A with respect to
a probability measure v on (E, E), if there exists B > 0 such that for any
f E A, ..

The largest B for which this inequality holds is denoted by sp.

The last definition of course contains the two previous ones so that

s 1 = Ai and, in the limit as p -~ 2, s2 = Po. It is usually enough to consider

non-negative functions f in A in the preceding definitions. The dependance
of the constants Ai, po, s p on the measure v will be clear from the context.

Definition 1.4 and the notation Ai is motivated by the analogy with
Riemannian geometry and the equivalent description of A i as the first non-
trivial eigenvalue of the Laplacian on a compact manifold. There are more-
over a number of relations between the preceding definitions and the con-
stants Ai, po, sp. Some of these are summarized by the inequalities

In particular, po  al. This may be seen by applying either the logarithmic
Sobolev inequality or the Sobolev inequality to 1 + ef and by letting c - 0



by a simple Taylor expansion. They justify our conventions in the previous
definitions. We would not know how to compare sp and sq for 1  p  q.
When 1  p  q, we can only show by simple convexity argument that sq 
(q /p) sp. (With the tool of hypercontractivity, R. Latala and K. Oleszkiewicz
[L-O] recently showed that Ai = sp > s2 = po for any 1 ~ p  2.) Note
finally that, in this terminology, sp = n for every 1 ~ p  2n/(n - 2)
on the standard sphere 3, equipped with its invariant probability
measure a.

The concept of logarithmic Sobolev inequality suggests a more general
family of inequalities between entropy and energy as

for every f in A with J f2dv = 1 where ~ is a function on IR+ . Here v need
not be a probability measure. Logarithmic Sobolev inequalities correspond
to linear ~’s. It is customary to only consider concave functions ~. In this
case, the preceding entropy-energy inequality amounts to the family of so-
called defective logarithmic Sobolev inequalities

where, for every v > 0, ’l1(v) = ~ ( v ) - ~~(t;). We investigate such families
of logarithmic Sobolev inequalities in connection with heat kernel bounds
in Chapter 4.

We conclude this section by mentioning the important stability property
by products of both Poincare and logarithmic Sobolev inequality. Somewhat
informally, let two carre du champ operators rl and r2 on two independent
spaces El and E2, for which we have the inequalities

i = 1, 2, f on Ei, where are Markov operators (which essentially represent
vi or Pf, t > 0). Then, in the product space E~ x E2,



These inequalities may be shown to follow from simple convexity argument
together with the necessary details about the underlying tensorization of
the generators and the carres du champ. As a consequence, to prove for

example the Poincare and logarithmic Sobolev inequalities for the Gaussian
measure q in IR/B it is enough to work out the dimension one and then use
the preceding. This feature emphasizes the infinite dimensional character
of logarithmic Sobolev inequalities as opposed to the dimensional Sobolev
inequalities (cf. Chapters 2,3).

2. Infinite dimensional generators

We present in this section, in the abstract diffusion generator setting,
the infinite dimensional version of Gromov’s comparison theorem for man-
ifolds with positive curvature. The model space is provided here by the
Ornstein-Uhlenbeck semigroup with Gaussian measure as invariant mea-
sure. We start our investigation by the similar questions for Poincare and

logarithmic Sobolev inequalities.

2.1. Logarithmic Sobolev inequalities

We consider here a diffusion Markov generator L acting on some algebra
A with associated semigroup as fixed in Section 1.1. As described

in Section 1.2, we assume for simplicity that A is stable by Pt. In this

chapter, we assume that L has curvature R, that is satisfies CD(R, oo). In
the first theorem, we establish both Poincare and logarithmic Sobolev in-

equalities for the heat kernel measures pt (x, ~ ) We make essential use of the
commutation properties (1.12) and (1.13). As we have seen, these relations
are rather simple in case of the classical heat semigroup or the Ornstein-
Uhlenbeck semigroup so that the arguments below in these particular cases

provide minimal proofs of Poincare and logarithmic Sobolev inequalities for
Gaussian measures. Since the inequalities below are valid for for all

or almost all x, we write for simplicity Pt f for Ptf(x).

THEOREM 2.1.2014 Let L satisfying CD(R, oo) for some R E Iil. Then,

for every f in A and t > 0,



We have seen in (1.20) that actually (2.1) follows from (2.2). However,
to better illustrate the principle of the proof, we establish (2.1) and (2.2)
separately. Before turning to the proof, let us illustrate the content of this
result. If the heat semigroup on IRn (with generator A with our
convention), the heat kernel measures are Gaussian measures. Since R = 0,
Theorem 2.1 thus contains the classical Poincare and logarithmic Sobolev
inequalities with optimal constants for the canonical Gaussian measure q
on in the form of

Therefore, for the Ornstein-Uhlenbeck generator L = 0 -x - ~7 with invariant
measure -~, Ai = po = 1 in the notation of Section 1.3 ( a 1  1 by choosing
f(x) = x in the above Poincare inequality).

If is ergodic probability) and R > 0, we can let t - oo in
Theorem 2.1 to see that, for the carre du champ r of L, R. We
also recover in this way the example of the Ornstein-Uhlenbeck generator the
curvature of which is 1. More generally, if L = A - has invariant and
ergodic probability measure = and if Hess U(x) > R Id at
every x for some R > 0, R.

Proof. - We use the same principle as the one used in the proofs of
Lemmas 1.2 and 1.3 but at the level of F rather than r2. (Setting the two
arguments together, we are actually performing two derivations, which is
one main aspect of the f2-calculus.) Namely, fix f in A and t > 0. Write
then 

By the definition of r,

Now, by Lemma 1.2, f) so that

where we used the semigroup property in the last step. This establishes
the Poincare inequality (2.1). The proof of the logarithmic Sobolev inequal-
ity (2.2) is similar but relies on the refined property (1.13) of Lemma 1.3.



Namely, replace first f 2 by f > 0 to make the notation more simple. We
then write

By (1.13), and by Cauchy-Schwarz,

Hence, as before,

Changing back f > 0 into f 2 concludes the proof. D

It might be worthwhile noting that the preceding inequalities may be
reversed. Namely, using that we get that

In particular, for the canonical Gaussian measure 1 on IRn and f smooth

enough,

and, if f2d03B3 = 1,

Observe furthermore that the CD(R, oo) condition in Theorem 2.1 is

also necessary for (2.1) or (2.2) to hold (and similarly (2.3), (2.4)). It is



enough to consider (2.1) (since (2.2) is a stronger inequality). For fixed f,
the function of t ~ 0

is non-negative and is equal to 0 at t = 0 as well as its derivative. Therefore
cp"(0) ~ 0 which amounts to r2( f ) ~ Rr(f). .

2.2. Levy-Gromov isoperimetric inequality

The Levy-Gromov isoperimetric inequality [Le], [Gro] (cf. e.g. [G-H-L])
indicates that if M is a (compact) connected Riemannian manifold of di-
mension n ( 2) and of Ricci curvature bounded below by R > 0, then its
isoperimetric function is larger than or equal to the isoperimetric function
of the sphere Sr of dimension n and constant curvature R(ST ) = ~ = R.
In other words, if we denote by r(r) the normalized volume of a geodesic
ball of radius r ~ 0 on the n-sphere with curvature R, for every open set A
in M with smooth boundary 8A,

where /~ denotes the normalized Riemannian measure on M and 
stands for the surface measure of the boundary 8A of A (see below). This
holds in particular for = a itself ([Le], [Sc]).

As we have seen in the introduction, spherical measures on spheres with
dimension n and radius ~/~ converge, as n - oo, to Gaussian distributions.
This limiting procedure, known as Poincare’s limit (cf. [MK], although it
seems to go back to Maxwell and Mehler! ) may be used to yield an isoperi-
metric inequality for Gaussian measures [Bor] , [S-T]. Let indeed denote by
q the canonical Gaussian measure on IR/B Then, for every Borel set A in
1R n with smooth boundary,

where $(r) = (2~r) -1~2 f ’’~ e-~2 ~2dx, r E IR, is the distribution function
of the canonical Gaussian measure in dimension one and p = ~’. In par-
ticular, half-spaces satisfy the equality in (2.6) and are the extremal sets
of the Gaussian isoperimetric inequality. It is known also that the infinites-
imal versions (2.5) or (2.6) of the isoperimetric statement may easily be
integrated. It yields, in the Gaussian case for example, that if A is a Borel
set in IRk with 03B3(A)  03A6(a), then, for every r > 0, 03A6(a + r) where
Ar is the Euclidean (or Hilbertian in case of an abstract Wiener measure
[Le4]) neighborhood of order r of A. (This was actually established directly
in [F-L-M], [Bor], [S-T].)



In this section, we present a version of the Levy-Gromov comparison
theorem for infinite dimensional generator with isoperimetric model the
Gaussian isoperimetric function U = p o ~-1. That is, in our framework,
we consider L with strictly positive curvature and infinite dimension, and
compare the isoperimetric function of the invariant (probability) /~ of L
to the isoperimetric function of the Gaussian measure, invariant measure
of the Ornstein-Uhlenbeck generator. For further purposes, note that the
function U = ~p o ~ -1 defined on [0,1] is non-negative, concave, symmetric
with respect to the vertical line going through 2 with a maximum there
equal to (27r)-1/2 and such that U(0) = Ll (1) = 0. Its behavior at 0, or at 1
by symmetry, is given by the equivalence

This is easily seen by noting that the derivative of U(x) is -~ ~) which
is of the order of 2 log 1 x as x ~ 0. Of basic importance for the subsequent
developments, observe furthermore that U satisfies the differential equation
uu~~ _ -i.

Isoperimetric inequalities on spheres or in Gauss space are usually estab-
lished through delicate symmetrization arguments ([Sc], [F-L-M] - cf. e.g.
[B-Z], [Os] and the references therein -, and [Eh] for the Gaussian case). We
will work here in our Markov generator setting and will deal with functional

inequalities rather than inequalities on sets. The appropriate functional in-

equality is provided by a remarkable observation of S. Bobkov [Bob] who
showed that, for the canonical Gaussian / measure on]Rk and every smooth
function f with values in [0,1],

When restricted to the characteristic function of some open set A with

smooth boundary 8A, this inequality amounts to the Gaussian isoperimetric
inequality (2.6).

Inequality (2.8) may defined for some probability measure v on (E, E)
with respect to a carre du champ r, and may actually be included in the

family of inequalities discussed in Section 1.3. In particular, the inequality

for some c > 0 and all f in A with values in [0,1] shares a number of prop-
erties similar to spectral gap and logarithmic Sobolev inequalities. Denote



by is the best c in (2.9). First of all,

The second inequality has been pointed out in (1.20). We owe the first one to
W. Beckner [Be2] who observed that (2.9) applied to ~f2 as e - 0 together
with (2.7) yields a logarithmic Sobolev inequality with constant c. Moreover,
the preceding isoperimetric inequalities (2.9) are stable by products. Indeed,
as in (1.23) and (1.24), if for two carre du champ operators rl and r2 on
two independent spaces El and E2, we have the inequalities

where P2 are Markov operators, then

As we have seen in Section 2.1, a Markov diffusion generator L of cur-
vature R > 0 with finite (normalized) invariant measure  satisfies the

logarithmic Sobolev inequality

(for every f in A) , that is Our purpose here will actually be to prove
that under the same curvature assumption we also have an isoperimetric
inequality for the measure /~ in the form of the functional inequalities (2.8)
and (2.9) with, more precisely, is ~ R. More generally, we deal with heat
kernel measures as in Section 2.1. Recall the Gaussian isoperimetric function

.

THEOREM 2.2. - Let L be a Markov diffusion generator satisfying
CD(R, oo) for some jR ~ IR. Then, for every f in A with values in [0, 1] and
every ~0~ 

/ ~___u_n_"

Theorem 2.2 admits several corollaries. In particular, when the invariant
measure /~ is finite and normalized to a probability measure, and when
R > 0, we may let t - oo to get the following corollary.



COROLLARY 2.3. Let L be a Markov diffusion generator of curvature
R > 0 with invariant probability measure Then, for every f in A with
values in ~0,1~,

In other words, is ~ R.

We recover in this way the Gaussian inequality (1.8) that also follows
directly from Theorem 2.2 applied to the heat kernel on 

Let us now comment about the isoperimetric aspects of the preceding
inequalities, especially (2.12) with say R = 1 for simplicity. It namely gives
rise to a geometric Levy-Gromov isoperimetric inequality in this infinite
dimensional setting. On more concrete spaces, (2.12) indeed really turn into
a geometric inequality. We may define a pseudo-metric d on E by setting

the supremum being running over all f’s in A with r( f ) ~ 1 almost surely.
Assume actually for what follows that functions f in A are true func-
tions (rather than classes), and that d is a true metric and J.L a separable
non-atomic Borel probability measure on (E, d). Assume furthermore that

may be identified to a modulus of gradient as

These requirements are in particular fulfilled in differentiable structures
such as Riemannian manifolds with Riemannian measures. Then, when f
approximates the indicator function of some closed set A in 

approaches the lower-outer Minkowski content of the boundary of A

where A,. = {x E E; d(x, A)  r}. Since = U(1) = 0, (2.12) (with thus
R = 1) therefore read on sets as

Hence, the isoperimetric function of ~ is larger than or equal to the Gaussian
isoperimetric function U, which is the analogue of Lévy-Gromov’s result.
In particular, we recover the full strength of the Gaussian isoperimetric



inequality with half-spaces as extremal sets [Bor] , [S-T]. We refer to [Bob]
and [B-H] for a proof of the equivalence between (2.12) and (2.13) and
for further general comments and results on the geometric aspects of these
functional inequalities.

The differential inequality (2.13) may also be integrated to yield that
whenever A is a Borel set in (E, d) with ~.(A) ~ ~(a) for some real number
a, for every r ~ 0,

For example, if f is such that r( f ) ~ 1 and if ~c( f f ~ m}) ~ 2 = ~(0), for
every r ~ 0,

Such a result is part of the concentration of measure phenomenon, of pow-
erful importance in applications (cf. [Le2]), and whose connections with
logarithmic Sobolev inequalities are presented in [Le4]. The property (2.15)
may also be seen as an infinite dimensional analogue of the Riemannian
comparison theorems of volumes of balls (cf. [Cha2]).

We refer to [B-L2] for the proof of Theorem 2.2. It is actually similar in
its basic principle to the proof of Theorem 2.1, although more involved at
the technical level. If f G A with values in [0,1] and t > 0 are fixed, let for
every 0 ~ ~ x t,

Since c(0) = 0, it is enough to show that F is non-decreasing. Making basis
use of the relation UU" = -1, one actually proves that F’(s) > 0 from
which the result follows. This is established from the curvature condition

(1.14) after a number of changes of variables in r2.

As for (2.3) and (2.4), there is a reverse form of Theorem 2.2. Under the
CD(R, oo) condition, for every f in A with values in [0,1], and every t > 0,

where we recall that d (t) = (e2Rt - 1 ) ~R (cf. [B-L2]).
To conclude this section, let us mention that we of course would like to

follow a similar procedure in case of the original Levy-Gromov inequality
involving the dimension parameter n of the Markov generator. This however
turns out to be much more involved since, as we have seen, there is no equiv-
alent formulation at this point of the CD(R, n) hypothesis on the semigroup

similar to (1.12) and (1.13). In particular, we cannot reach in this
way (dimensional) Sobolev type inequalities.



3. Sharp Sobolev Inequalities and Comparison Theorems

In this chapter, we concentrate on finite dimensional curvature-dimension
hypotheses for which we would like to provide comparison theorems espe-
cially with the family of Jacobi generators. Starting with the example of
the sphere, we examine in this way volume, diameter and eigenvalue com-
parisons. Since we cannot reach in this setting the full dimensional Levy-
Gromov isoperimetric inequality, we rather concentrate on related state-
ments that may be established by alternate arguments.

3.1. Sobolev inequalities

The first step in our program will be to establish the Sobolev inequal-
ities (1.16) for a generator L satisfying the curvature-dimension condition
CD (R, n) with R > 0. It should be first mentioned that, in a Rieman-
nian setting, these inequalities were established by S. Ilias [11] on the basis
of the Aubin-Beckner result on the sphere and the Levy-Gromov compar-
ison theorem (2.5) of the isoperimetric functions together with standard
rearrangement inequalities. While we do not know whether (2.5) can be
extended to our setting, we however show here how to reach directly these
Sobolev inequalities for an abstract Markov generator. We should mention
that the proof we suggest is actually much simpler that the combination of
the preceding deep results.

Let us start to recall that by Sobolev inequality (with dimension n) we
understand an inequality of the type

for all f in some nice class A and p = 2n/(n - 2). We have seen that in the
case of the classical unit sphere 3, equipped with its normalized
invariant measure, the optimal constants are B = 1 and A = 4/n(n - 2). .
In an inequality such as (3.1), one may be interested in either A or B as a
function of one another. It has been shown by Th. Aubin (cf. [Au]) that on a
compact n-dimensional Riemannian manifold (M, g) with J.L the normalized
Riemannian measure v and r(f) for every B > 1,

where V(M) = V, resp. is the Riemannian volume of M, resp. of
S’n. Moreover, as a deep important contribution, E. Hebey and M. Vaughon



(see [Hel], [He2]) proved that, on any manifold M, there is Bo such that
A(Bo) achieves equality in (3.2).

On the other hand, we have seen with Lemma 1.7 that one can always
choose B = 1 in (3.1) so that one may ask for the best possible value of
A in this case. This is the question that we examine in this section, and
answer under curvature assumptions. We take again the setting described
in Section 1.1. In all the chapter, J.t is the invariant probability measure of
our Markov diffusion generator L.

THEOREM 3.1. - Let L be a Markov generator satisfying CD(R, n) for
some R > 0 and n > 2. Then, for every 1 ~ p ~ 2n/(n - 2) and f E A,

with c = nR/(n - 1). In other words, with the notation of Definition 1.8,

This result extends the case of spheres due to Th. Aubin [Au] and W.
Beckner [Be]. In particular, since si = Ai, Theorem 3.1 contains the famous
Lichnerowicz minoration 

,...

of the first non-trivial eigenvalue Ai of the Laplacian on a compact Rie-
mannian manifold with Ricci curvature bounded below by R > 0. Similarly,
since s2 = po, we recover the important result of D. Bakry and M. Emery
[B-E] about the logarithmic Sobolev constant

Note in particular that since Ai = n on the unit sphere we have on sn,
sp = n for every 1 ~ p  2n /(n - 2), and in particular Ai = po = n, a result
first obtained in [M-W]. We will see in Section 3.3 that the equality Ai = po
has no reason to hold in general.

In [Fo], a somewhat sharper bound than Theorem 3.1 is obtained in-
volving the spectral gap Ai, R and n as a convex combination. Namely, for
every 1 ~ p  2n/(n - 2),



Note that a(p) = 1 for the critical exponent p = 2n/n - 2 while a(0) = 0
when p = 1. When p = 2, the lower bound (3.5) of the logarithmic Sobolev
constant 

,

goes back to O. Rothaus [Ro2], and contains both (3.3) and (3.4) (since
Po). Furthermore, (3.5) is still of interest when the curvature R is

somewhat negative (depending on n). In (3.5), it is assumed more precisely
that we already know that some Sobolev inequality (of dimension n) holds
for L (as for example on compact Riemannian manifolds). Theorem 3.1 also
has a version for n = 1, 2 and in fact any value of P ~ 1 is then allowed.
As p -~ oo, the power type Sobolev inequalities of Theorem 3.1 then turn
into exponential type inequalities studied by N. Trudinger, J. Moser and E.
Onofri. We refer to [Fo] for more details in this respect. Inequality (3.5) will
be used below to bound above Ai in terms of n, R and the diameter D. Note
also that, together with Obata’s theorem [Ob], a compact n-dimensional
Riemannian manifold with Ricci curvature bounded below and with sp = n

for some p  2n/(r~ - 2) is isometric to the standard n-sphere 

Furthermore, with (3.2), we can already state a geometric consequence
of Theorem 3.1 known as Bishop’s volume comparison in Riemannian ge-
ometry.

COROLLARY 3.2. - Let (M, g) be an n-dimensional Riemannian man-
ifold with Ricci curvature bounded below by R > 0. Then V(M) x 
where Sr is the n-sphere with constant curvature = ~ = R.

Proof. - By homogeneity of the Riemannian metric, it is enough to deal
with the case R = n - 1 (and thus r = 1). Theorem 3.1 then shows that

Together with (3.2), the result follows. D

The proof of Theorem 3.1 moreover shows that the optimal Bo in (3.2)
satisfies Bo ~ R/(n - 1) (cf. [Fo]).

The proof of Theorem 3.1 relies on the study of the non-linear equation



and existence of a non-constant minimizer f. This is a standard procedure
in non-linear analysis. Starting from the best constant c in the Sobolev
inequality, one construct an approximating sequence of solutions from which
one can extract, by compactness, a non-trivial solution f of (3.7). We refer to
[Ba3] and [Fo] for details about the existence of a non-trivial solution f > 0
of (3.7) and briefly discuss the subsequent algebraic argument. (Actually, the
arguments require to work with 1  p  2~/(?T. 2014 2) and c(fP-1 - (1+e) f ) =
- L f .) Lower bounds on c > 0 are then obtained by a comparison with the
CD(R, n) inequality following ideas introduced by O. S. Rothaus [Ro2] in the
context of logarithmic Sobolev inequalities (see also [BV-V]). The method
consists in performing the change of variables f - IT, r # 0 ( f > 0), in
this non-linear equation as well as another change f - 0, into
the CD(R, n) inequality. Then, by the diffusion property and integration
by parts, the result may be shown to follow from optimal choices of the
parameters r and s. Let thus f > 0 be a non-constant solution of (3.7) and
set f = u’’. We get, by the change of variable formula (1.3) for L,

Multiplying (3.8) by u-’’r(u) and integrating with respect yields

Now, by integration by parts,

Multiplying (3.8) by and integrating with respect to J.L yields

Combining the latter,

We thus get



Now, we perform a similar change of functions on the CD (R, n) condition
applied to f = us . We get

After integration, and integration by parts, we see that

where s’ = s - 1 > 0. Combining (3.9) and (3.10), we eliminate the term
Setting

the coefficient in front of is 0 and we are left with

The constant K(s’, r) is easily seen to be non-negative as soon as 1 ~ p x
2n/(n - 2) which thus yields

since f, and thus u, is assumed to be non-constant. Therefore, Theorem 3.1
is established in this way.

3.2. Myers’s diameter theorem

The classical theorem of (Bonnet-) Myers on the diameter [My] (see
[Cha2], [G-H-L]) states that if (M, g) is a complete connected Riemannian
manifold of dimension n (> 2) such that Ric > (n - then its diameter
D = D(M) is less than or equal to 7r (and in particular M is compact).
Equivalently, after a change of scale, if Ric > Rg with R > 0, and if S’r is
the sphere of dimension n and constant curvature R = n;; 1 where r > 0
is the radius of 6’~, , then the diameter of M is less than or equal to the
diameter of S’T , that is



Our aim in this section is to provide a functional proof of this geo-
metric statement. That is, rather than to work with curvature, we will
deduce (3.11) from a Sobolev inequality. According to the sharp constants
in Sobolev inequalities described by Theorem 3.1, we then recover the ge-
ometric statement (3.11 ) about the diameter. The approach consists in an
analysis of extremal functions. In our abstract context, we may define the
"diameter" of a carre du champ r as

where f (x, y) = f (x) - f(y), ~, y E E. Of course, D(r) is relative to A
(and is as smaller as A is small). When L is the Laplace-Beltrami operator
on a compact manifold M and A the algebra of Coo functions on M, it is
easily seen that the functional definition (3.12) of the diameter coincides
with the geometric definition of the diameter. Note that D(r) = oo for the
Ornstein-Uhlenbeck generator.

Using a simple iteration procedure (in the spirit of Moser’s iteration
[Mo] ), it is not difficult to see that the existence of a Sobolev inequality
(3.1) with A = 1 forces the diameter D to be finite. The next statement
produces the optimal bound.

THEOREM 3.3. - Let r be a carre du champ satisfying the Sobolev in-
equality

for some n > 2 where p = 2n/(n - 2). . Then

If r is changed in ar for some a > 0, then D(ar) = a-1~2D(r). There-
fore, if r satifies the inequality

for some p > 2, then

Together with Theorem 3.1, Theorem 3.3 answers our initial question.



COROLLARY 3.4. - Let L be a Markov generator satisfying the curvature-
dimension inequality CD(R, n) for some R > 0 and n ~ 2. Then

The case n = 2, and by extension 1  n  2, is somewhat particular.
Since Theorem 3.1 holds for every p > 1 in this case, we get together with
(3.14)

for every p > 2. When p - oo,

However, this is optimal only for n = 2.

When (3.5) holds, we also see that

for every 2  p  2n/n - 2. Optimizing over p, we can obtain upper bounds
on Ai. For example, if R = 0, we get

(the constant is not sharp). If R > -K, 1~ > 0, then

for some C(n) > 0 only depending on n. Thus, we recover with these func-
tional tools geometric bounds first established in [Ch], [Che] (see [Chal]).

The proof of Theorem 3.2 is based again on non-linear analysis. Actually,
we make advantage of the form of the extremal functions of the Sobolev
inequality on the (unit) sphere As was shown by Th. Aubin [Au], the
functions f a = (1 + ~1 SlIl~d) ) 1- U/2) , _ 1  A  +1, where d is the distance
to a fixed point, are solutions of the non-linear equation



p - 1 = (n + 2)/(n - 2), and satisfy the equality in the Sobolev inequal-
ity (3.13). In general, we let f be a function in A such that 1

and apply Sobolev’s inequality (3.13) to the family of functions fx = (1 +
a sin( f ))1n~2~, _i  a  +1, to deduce a (non-linear) differential inequal-
ity on 

...

This differential inequality takes a nice form due to the optimal constant in
the Sobolev inequality and the miracle is that it may be integrated to exactly
bound the diameter of L by its Sobolev constant. The crucial argument of
the proof consists in showing that > 0 (resp.  0), then
(essentially) 

-

(resp. F(-1)  oo). Iterating the result on the basis again of the Sobolev
inequality, we actually have that

from which the conclusion then easily follows. We refer to [B-L1] for the
complete proof.

If (M, g) is a Riemannian manifold with dimension n and Ric ~ (n - 1) 9
and if the diameter of M is equal to 7r, S.-Y. Cheng [Che] showed that
M is isometric to the unit sphere generalizing the Topogonov theorem
[To] that was dealing with the sectional curvature (cf. [Cha2] for a mod-
ern geometric proof of the Topogonov-Cheng result). Our next theorem is
an analogue of this result. It is again formulated in terms of the Sobolev
constant and shows that if D(r) = 7r, the constant in (3.13) is reached on
functions of the form fx = (1 + .~ sin( f ))l’~/2), _1  ~  +1, for some
non-constant function f with sin(f)d  = 0. In particular, we include in
this way the example of the spheres themselves.

THEOREM 3.5. - Let r be a carre du champ satisfying the Sobolev in-
equality (3.13) for some n > 2. If there is a function f in A such that

and ~f~~ = 1r, then there exist non-constant extremal func-
tions of (3.13). More precisely, if we translate f such that f = 0,
for every -1  A  +1,

p = 2n/(n - 2), where fa = (1 + ~sin(f))1-(n~2). Furthermore, if we set
X = sin( f ), L agrees on the functions of X with the ultraspheric generator



of dimension n, that is, for every smooth function w on IR,

In particular, if L = 0 is the Laplace-Beltrami operator on a n-dimensional
compact manifold (M, g) with Ric ~ (n - 1)g and with diameter equal to ~r,
then M is isometric to the sphere 

As we have seen in (1.20), applying the Sobolev inequality (3.13) to
f = 1 + ecp where f = 0, and using a Taylor expansion at e = 0
shows that (i.e. (3.3)). In the same way, a Taylor expansion on the
functions fx at A = 0 in Theorem 3.5 shows that Ai = n. Therefore, if L
is the Laplace-Beltrami operator on a n-dimensional Riemannian manifold
(M, g) with Ric ~ (n - l)g and if D = ~r, then al = n and therefore,
by Obata’s theorem [Ob] ([G-H-L]), M is isometric to the unit sphere sn,
proving the last assertion of Theorem 3.5. This functional approach thus
provides a new proof of the Topogonov-Cheng theorem.

We may also note to conclude that since ha is extremal in the Sobolev

inequality (3.13), 

After a change of variables, we get, with X = sin(f), ,

When a = 0, we recover that -LX = nX, and if we replace then LX by
- nX and symplify by a, we see that F(X, X) = 1- X2. These observations
thus indicate that on the functions of X, L coincide with the Jacobi gen-
erator Ln of dimension n (1.10). In a Riemannian setting, we used Obata’s
theorem to conclude that L is "isometric" to the Laplacian of a sphere.
In general however, we do not know exactly what kind of rigidity can be
expected.

3.3. Eigenvalue comparison theorems

In this section, we present some recent results of D. Bakry and Z. Qian
on comparison theorems for spectral gap using curvature, dimension and
diameter. Let (M, g) be a compact connected Riemannian manifold with
dimension n. Denote by Ai = Ai(M) the first non-trivial eigenvalue of
the Laplacian A on M. A huge literature (see e.g. [Be] and the references
therein) has been devoted to both upper and lower bounds of Ai in terms
of the geometry of the manifold. The modern analysis has demons trated



in particular that Ai may be estimated by the dimension, an upper bound
on the diameter and a lower bound on the Ricci curvature. Instances of

particular interest are the following. As we have seen, if Ric > (n - 
Lichnerowicz’s minoration (3.3) shows that

that is, ~1(Sn). Thus (3.16) is a comparison theorem. When Ric =
0, it has been shown by P. Li [Lil] and H. C. Yang and J. Q. Zhong [Y-Z]
that 

_

where D is the diameter of M. This lower bound is optimal since achieved
on the one-dimensional torus. It is important to realize that both (3.16) and
(3.17) may also be seen as comparison theorems at the level of generators
rather than manifolds. To this aim, recall the family of one-dimensional
generators L f = of Section 1.2 for which CD(R, n) is equivalent
to saying that

Then (3.16) amounts equivalently to the fact that

where the first non-zero eigenvalue of the Neumann problem

on the interval ( - 2 , + 2 ) . Similarly, (3.17) is equivalent to

where Ai(0, oo, D) is the first non-zero eigenvalue of the Neumann problem
v" = -Av on ( - D , + D ) . Two remarks are here in order. The diameter ~r
appears naturally in (3.19) since when Ric > (n - 1 )g, D  7r by Myers’s
theorem. The natural family of operators for the comparison (3.20) is L f =
f" + f’. It remains to determine the appropriate interval to consider.
The right choice turn out to be the interval with length D symmetric with
respect to the center. Since the center may be chosen to be either 0 or oo,
the dimension vanishes as x -4 oo and the operator of interest becomes
L f = f ". Notice then that since the latter is invariant under translation,
one may take any interval of length D.

In order to deal with arbitrary curvature-dimension CD(R, n) conditions,
D. Bakry and Z. Qian introduced in [B-Q] general one-dimensional models
LR,n described in the following way.



When R > 0, n > 1, L R,n is the operator on the interval

When R  0, n > 1, LR,n is the operator on an extended line

defined by

When R = 0 and n > 1, the operator Lo,n is defined by

Finally, for R ~ 0 and n = oo, LR,oo is defined on the real line by

while the special case Lo,oo consists of the operators on the real line defined
by

where a is a constant.

When the curvature parameter R is strictly positive, the operators Lr,n
describe the family of Jacobi operators (1.10) when n is finite, or the
Ornstein-Uhlenbeck and Laguerre generators when n = oo. The negative
curvature is obtained by a continuous extension to the negative numbers.

The main result of [B-Q] is the following statement.

THEOREM 3.6. - Let (M, g) be an n-dimensional compact Riemannian
manifold such that Ric > Rg where R E IR. Denote moreover by D an upper



bound on the diameter of M (recall that D 03C0/ "R1 when K > O). Then
03BB1 (M) 03BB1 (R, n, D) where al (R, n, D) is the first non-zero eigenvalue of
the Neumann problem

on the interval (- D , -~- D ) .
The proof of Theorem 3.6 is based on a comparison on gradients of eigen-

functions going back to [Kr]. Although Theorem 3.6 is stated for Rieman-
nian manifolds, many ideas of its proof are inspired by the abstract Markov
generator setting. In particular, the comparison with one-dimensional oper-
ators is one main aspect of this investigation. We refer to [B-Q] for complete
details.

The logarithmic Sobolev constant of a Riemannian manifold (with finite
volume) also shares some relations to dimension, diameter and curvature.
Let (M, g) be a Riemannian manifold with dimension n and finite volume
V. Denote by d/~ = y the normalized Riemannian volume element on M.
According to Definition 1.4, denote by po the logarithmic Sobolev constant
of the Laplacian A on M.

As we have seen in Section 3.2, the existence of Sobolev inequality on
M forces M to be compact, and the diameter to be bounded above by
the Sobolev constant (and the dimension). On the other hand, there exist
compact manifolds of constant negative sectional curvature with spectral
gaps uniformly bounded away from zero, and arbitrarily large diameters
(cf. [SC] ) . It is one main observation by L. Saloff-Coste [SC] that the exis-
tence of a logarithmic Sobolev inequality on a manifold with Ricci curvature
bounded below forces the manifold to be compact. This yield examples for
which the ratio 03C10/03BB1 can be made arbitrarily small. Quantitatively, it was
shown in [Le4] that if Ric > -Kg, K > 0,

where C > 0 is a numerical constant. (It is known from the theory of hy-
percontractive semigroups (cf. [D-S]) that conversely there exists C(n, ~, 6-)
such that

when particular, if Ric > 0,



for some numerical constant C > 0. (3.21) has to be compared to Cheng’s
upper bound on the spectral gap [Che] of compact manifolds with non-
negative Ricci curvature

so that, generically, the difference between the upper bound on Ai and po
seems to be of the order of n.

As another application, assume that Ric > Rg > 0. As we have seen in
Theorem 3.1, po > . Therefore, by (3.21)

Up to the numerical constant, this is just Myers’ theorem on the diameter of
a compact manifold D ~ ~r This could suggest that the best numerical

constant in (3.21) is 

Dimension free lower bounds on the logarithmic Sobolev constant in
manifolds with non-negative Ricci curvature, similar to the lower bound
(3.17) on the spectral gap, are also available. It has been shown by F.-Y.
Wang [Wa] (see also [B-L-Q] and [Le4] for slightly improved quantitative
estimates) that, if Ric ~ 0,

In particular, together with (3.17),

The proof is based on a variation of the semigroup techniques developed
in Section 2.1 with differentiation along a path. We refer to the previous
references for further details.

4. Sobolev Inequalities and Heat Kernel Bounds

In this chapter, we present some of the connections between the func-
tional Sobolev type inequalities and heat kernel bounds. In particular, loga-
rithmic Sobolev inequalities will be shown to usually produce sharp bounds.
Finally, we mention some rigidity theorems for manifolds satisfying optimal
Sobolev type inequalities.



4.1. Equivalent Sobolev inequalities

It has been one important feature of the analysis of abstract symmetric
semigroups in the eighties to show that functional Sobolev inequalities are
equivalent to heat kernel bounds in a rather wide setting. A basic theorem
of N. Varopoulos [Val], [Va2] (cf. [Va3]) indeed shows that the Sobolev
inequality - -

with p = 2n/(n - 2), n > 2, holding for some constants A, B is equivalent
to saying that 

,-

for every t > 0 or to ~ t > 0 according as B = 0 or not, where 
is the semigroup with generator L and associated carre du champ r. Note
that when ~~Pt~~m~  oo, the heat kernel measures have densi-
ties pt(x, y) with respect to the reference measure ~c so that ~~Pt~~l-.~ -
sUpx,y pt(x, y). Such equivalences have been produced similarly with Nash
type inequalities in [C-K-S] and with families of logarithmic Sobolev in-
equalities in [Da] and [Ba3]. The uniform heat kernel bound (4.2) has been
completed by off-diagonal bounds

in [Va], [C-K-S], [Da] , [Ba3] and others. Of particular efhcient use to estab-
lish (4.3) is the Davies method the idea of which is to perform the uniform
bound for the semigroup Pt f = e-hPt (eh f ) for Lipschitz functions h. Lower
bounds may be obtained under further geometric conditions (cf. [Da]). As
a main contribution of the works of N. Varopoulos and P. Li and S.-T. Yau,
heat kernels are actually controled by volume growths (see [Va3], [L-Y] for
details). We refer to the previous references for further aspects on this geo-
metric investigation and restrict ourselves here to the functional equivalence
between (4.1) and (4.2).

Sobolev inequalities such as (4.1) are actually parts of more general
families of inequalities considered by E. Gagliardo and J. Nirenberg in the
late fifties that include a number of limiting cases of interest. Consider
namely the inequalities

for every f E A, where 0  r, s x E (0,1]. Various cases have to be
distinguished according to the value of the parameter 0 defined by



According to the example of IRn for which 1 /p = 1 /2 - 1 /n, n > 2, the
parameter p should be considered as a dimensional parameter. One interest
for the family (4.4) is that it describes in an unified way several inequalities
that appear in the literature. For example, in > 2, with 1/p =
1/2 - 1/n fixed, the choice of r = 2, s = 1, 0 = n/(n + 2), yields the Nash
inequality

which is one of the main tools used by J. Nash in his celebrated 1958 paper
on the Holder regularity of solutions of divergence form uniformly elliptic
equations [Na]. In the subsequent work [Mo] on the subject, J. Moser con-
siders r = 2 + 4/n, s = 2 and 6 = n/(n + 2). One limiting case appears as
0 - 0, with r = 2 for example, in which case (4.4) takes the form

for all f with = 1, as parts of the entropy-energy inequalities (1.21).

Let us be somewhat more precise in these implications. Set for simplicity

Holder’s inequality first shows that the Sobolev inequality

implies all the inequalities of the family (4.4) with fixed p (and with the
same constants). It also shows that, when r  p is fixed, the inequalities
(4.4) are stronger as 0 decreases. Let us discuss more carefully the limiting
case 0=0. Fix r = 2 for simplicity. Taking logarithms in (4.4) shows that

with 1/2 = 6/p + (1 - B)/s. Since

we get that



Consider = log IIfIl1/u’ u > 0. ~ is convex by Holder’s inequality, so its
slope

is non-decreasing and equal to fjJ’(1/2) at u = 1/2. Moreover,

Hence, as B --> 0 (s - 2), if = 1,

Note that p/(p - 2) = n/2 if p = 2n/(n - 2). Conversely, since ’Ø is non-
decreasing, if we start from a logarithmic Sobolev inequality as above

we see that for every s  2,

that amounts (by homogeneity) to (4.4) with r = 2 and

In particular, if p = 2n/(n - 2), s = 1 and 0 = n/(n + 2) , we see that Nash’s
inequality (4.5) follows from the logarithmic Sobolev inequality (4.6).

As mentioned above, Nash’s inequality (4.5) and the logarithmic Sobolev
inequality (4.6) have been considered in connection with regularity of heat
equation solutions, and, once the dimensional parameter p = 2n/(n - 2),
n > 2, is fixed, both produce the same dimensional heat kernel bound (4.2)
(cf. [C-K-S], [Da], [Ba3]). In particular, inequalities (4.1), (4.5) and (4.6)
are equivalent up to the constants A and B.

Actually, it may be shown directly that all the inequalities of the family
(4.4) are equivalent. Whenever 0  P ~ oo is fixed, an inequality such as
(4.4) holding for some constants A, B and all f in A is equivalent to the
Sobolev inequality (4.1) holding for some possibly different (but explicit)
constants A, B. We refer to the work [B-C-L-SC] for a self-contained proof of
this claim, as well as for a careful examination of the other cases -oo  p  0



and p = oo. In order to give the spirit of the idea, we however would like to
outline the proof of the equivalence (up to constants) between the Sobolev
inequality 

...

where p = 2?~/(~ 2014 2), and the Nash inequality

where, as before, we write, for simplicity, W ( f ) = + A f As
discussed before, the proof of this implication also shows that the logarith-
mic Sobolev inequality (4.6) is equivalent to the Sobolev inequality (4.1). Let
f ~ 0 be fixed in some nice class A. For each k E 2Z, set fk = ( f - 2k)+ A 2k
which we assume also in A. Note that

so that

If we let ak = 2~ ~ ) k E 7.Z, and if we apply Nash’s inequality to
we get, for every k,

where we recall that 0 = n/(n + 2) in case of Nash’s inequality. Summing
up over k E 7l the inequalities (4.7) and applying Holder’s inequality, we
get

Therefore,

Now, since r(fk) = r(f)IBk where Bk = ~2k  f  2~+i~, k E ~Z,



By a standard argument,

Hence, as a consequence of (4.8) and (4.9),

Hence,

since 29-1 = 1/(p-1) and B/(29-1) = p/2. The argument is thus complete.
Note that ( 22p is bounded above uniformly in 2  p  po, that is uniformly

no.

4.2. Logarithmic Sobolev inequalities and hypercontractivity

In this section, we present the famous equivalence between logarithmic
Sobolev inequalities and hypercontractivity due to L. Gross [Gr1]. Hyper-
contractivity is a smoothing property introduced in quantum field theory
that roughly expresses that Pt maps L2 in to L~ for some t > 0. It actually
gives rise to bounds on the operator norm of Pt from LP into Lq,
1 ~ p  q  oo. Below, we deal with more general inequalities between
entropy and energy. In particular, the approach will imply the heat kernel
bound (4.2) under the logarithmic Sobolev inequality (4.6) with optimal
constants as shown in the next section.

Let us start again with our abstract setting of a Markov diffusion gener-
ator L with semigroup as presented in Chapter 1. Following (1.21),
consider a general inequality

for every f in A with f2d  = 1. /z need not be a probability measure. In
most examples + : 1R + - IR+ is concave, strictly increasing, and of class
C1, which we assume throughout the argument below. Therefore, for every
u and v > 0,

so that (4.10) reads, for every v > 0 and every f (together with homogene-
ity),



where W (v) = ~ (v) - (v) . We thus deal equivalently with a family of log-
arithmic Sobolev inequalities. Now, by the diffusion property of L, changing
f > 0 into f s~2 shows that, for every f > 0, v > 0, s > 1,

Choose now in this inequality a function v - v(s) > 0, s > 1. Then, we
make use of the fundamental argument of L. Gross [Grl] . Namely, if

the preceding inequality will show that V’  0 and V is non-increasing as
soon as s and m are chosen so that

Fix then 1 ~ p  q  oo and consider the differential system

Thus, we may conclude to the following statement (see [Ba3] for the detailed
proof ) .

THEOREM 4.1. - Under the entropy-energy inequality (4.10), for every

provided we can find a function v for which these two integrals are finite.

The optimal choice for the function v that will be used throughout this
work is given by v ( s) = - 1 ), where a > 0 is a parameter.

It might be worthwhile noting that, conversely, the previous bounds on

IIPtllp,q imply that the corresponding entropy-energy inequality (4.12) holds.
This is a consequence of the following proposition.



PROPOSITION 4.2. - Under the previous notation, assume that, for
some 1  p  oo and every q in some neighborhood of p, ~Pt~p,q  e’’’z
where t and m are defined with (,~.13b) through some function ~. . Then, for
every non-negative f in A,

The proof reduces to check that if, for f > 0 in A,

where t(e) = tp,p+e, m(e) = mp,p+e, then U’(o)  0 amounts to the inequal-
ity of the proposition.

Now, we describe with some examples the range of application of The-
orem 4.1. We start with the famous hypercontractivity property. Further
examples will be examined in the next section.

Assume that + is linear, more precisely, in accordance with Definition
1.5, that 03A6(x) = po x, x > 0. Since 03A6’ = po and 03A8 = 0, it follows from
(4.13) that ~Pt~p,q  1 with 

As a consequence of Theorem 4.1 and Proposition 4.2, we may state.

COROLLARY 4.3. L satisfies a logarithmic Sobolev inequality with con-
stant po if and only if, for (some) every 1  p  q  oo and every t > 0
such that > f ,

The typical and first example of hypercontractive semigroup is the
Ornstein-Uhlenbeck semigroup. As po = 1, 1 when e2t > ~. .
It is not difficult to see that = oo when e2t  ~ in this example.

The equivalence between logarithmic Sobolev inequality and hypercon-
tractivity is an important issue when studying rates of convergence to the
equilibrium (cf. [Gr2] and the references therein).



4.3. Optimal heat kernel bounds

As we have seen, one essential feature of the equivalence between the
Sobolev, Nash and logarithmic Sobolev inequalities (4.1), (4.5) and (4.6) is
that they all yield the heat kernel bound (4.2) with the same dimensional
parameter n (although n need not be an integer here). (Nash’s inequality
perhaps provides the simplest proof of this heat kernel bound [Da].) Con-
stants are however not preserved in general in this procedure. One may
however ask, in simple cases such as whether or not any of the Sobolev

inequalities (4.4) (with B = 0) could imply the optimal Euclidean heat
kernel bound 

,

To expect (4.14) to hold, it seems necessary to already start with a Sobolev
inequality with optimal constant. Amongst (4.4), and in IRn, only few ex-
amples of optimal constants are known. Namely [Au]

where is the volume of the standard sphere (in IR’~+1 ), in case of
the Sobolev inequality

(p = 2n/(n - 2)). As was proved in [C-L],

where Af denotes the first non-zero Neumann eigenvalue of the Laplacian
on radial functions on the unit ball Bn in IR" and Wn the volume of B’~, in
case of the Nash inequality

(that corresponds to r = 2, s = 1, f) = n/(n + 2) ) . In case of the logarithmic
Sobolev inequality that corresponds to the limiting case r = 2 and 03B8 - 0,
the task is easier [Ca]. One may simply start with the logarithmic Sobolev
inequality for the canonical Gaussian measure q



for every smooth function g on IRn with = 1. Set

so that f2dx = 1. Then

An integration by parts easily yields

Changing f into f (ax), A > 0, which still satisfies the normalization
f f2dx = 1, shows that, for every A > 0 thus,

Optimizing in A, we get that for every smooth f on IRn with f2dx = 1,

Since we started from the logarithmic Sobolev inequality for 03B3 with its best
constant for which exponential functions are extremal,

is the best constant in (4.17) on ]R/B To further convince ourselves that this
constant is optimal, one may note that among all functions ~ : 1Ft +
such that, for every smooth function f on IRn with J f2dx = 1,

the function

is actually best possible. Indeed, apply (4.18) to f 2(x~ _ 
A > 0. Since f2dx = 1, we get



The claim follows by setting u = nÀ2/4.
Our main observation here is that the general Theorem 4.1 actually

produces the optimal heat kernel bound (4.14) if we start from a logarithmic
Sobolev inequality (4.10) for the generator L (or rather the carre du champ
r) with the best entropy-energy function In particular, Theorem 4.4
provides a proof of the heat kernel bound (4.2) under one of the (equivalent)
Sobolev type inequalities (4.4) (with p = 2n/(n - 2), n > 3).

THEOREM 4.4. - Assume that for every f in A with f = 1 ,

Then,

(where the supremum is understood in the esssup sense).

If

for some C > 0, by a simple change of variables,

It is worthwhile mentioning that the logarithmic Sobolev inequality
(4.19) of Theorem 4.4 behaves correctly under tensor product. Namely, if
two carres du champ Fi and r2 satisfies such an inequality with dimensions
n1 and n2 respectively, then the product operator Fi will sat-

isfy this inequality with dimension nl -~- n2. This immediately follows from
the classic product property of entropy (Section 1.3) together with the lin-
earized version (4.11) of (4.18). This stability property is reflected similarly
on the heat kernel bound as can be seen from the example of the Euclidean
spaces.

Proof of Theorem 1~.4. - We simply use (4.13) with

and v(s) = ~s2/(s - 1), A > 0, s > 1. Hence ~’(~,) = n/2u and



Then e"‘ with

From the first equality, A = n//8t. The second yields

with the change of variable r = 1/s. Since A = n/8t,

which yields

and the result. The proof is complete. D

It is clear that the same proof yields upper bounds for for every
1 ~ p  q ~ oo. Namely em where 

’

After some calculations very similar to the previous ones, we find that

It is less clear however why these bounds should be optimal on IR7B The
next proposition answers this question positively. These bounds (4.20) and



their optimality may also be shown to follow from the work of E. Lieb [Lie]
on Gaussian maximizers of Gaussian kernels.

PROPOSITION 4.5. - With the preceding notation, let ~ be such that

(~.10) holds and = e"‘ where

for some A > 0. Then, for every 1  p  q  oo,

The proof of the proposition is easy. By the hypothesis,

By the semigroup property,

so that it is impossible that  for some p  q. Clearly, this
result applies in the Euclidean case to prove that (4.20) are actually equal-
ities in this case. Moreover, it implies the somewhat surprising following
observation. For every and every t > 0, there is an
unique t’ such that

Indeed, since ~’ (~c) = n/2u in this case, one may define A > 0 by

Then set t’ = and the claim follows from the preceding argument.



As further explained in the paper [B-C-L] the optimal Euclidean log-
arithmic Sobolev inequality may also be used to yield sharp off-diagonal
bounds that are optimal for a special class of metrics (given by harmonic
functions). More precisely, under the logarithmic Sobolev inequality (4.19),

Note that dH = d on IRn that thus improves in this case upon (4.3) (while
dH = 0 on a compact Riemannian manifold).

It is easy to see finally that Theorem 4.4 has a local version. Under a
entropy-energy inequality

one concludes to the semigroup bound for the small values of t

4.4. Rigidity properties

In order to efficiently use Theorem 4.4, it would be worthwhile knowing
how to establish (4.19) with sharp constant in a Riemannian or abstract
setting using curvature-dimension hypotheses. Let us consider the case of
a (non-compact) Riemannian manifold M with dimension n and volume
element dv. Denote by the heat semigroup on M. We conjecture
that if 

’ 

,

for every smooth f on a manifold M with dimension n and non-negative
Ricci curvature, then the logarithmic Sobolev inequality (4.19) holds with
its sharp constant from JRn, i.e.

Here the constant c > 0 refers to a possible normalization of the volume
that is not fixed in our setting. We have not been able to prove such a result
although we strongly conjecture that it must be true. So far, we have only



been able to prove the inequality with a constant that misses the optimal
one by a factor 1/ log 2 (see [B-C-L]).

Now we turn to the question of identifying manifolds with non-negative
Ricci curvature satisfying a global Sobolev inequality with the optimal Eu-
clidean constant. Two results have been obtained in this direction. The first
one concerns Euclidean type logarithmic Sobolev inequalities and relies on
heat kernel bounds. The second one concerns classical Sobolev inequalities
and makes use of extremal functions and non-linear analysis. We briefly con-
clude these notes with these results. For rigidity theorems in the compact
case, we refer to [Dr] and [He2] .

The following statement has been observed in [B-C-L]. We sketch the
proof.

THEOREM 4.6. - Let (M, g) be a complete Riemannian manifold of di-
mension n with non-negative Ricci curvature satisfying a logarithmic Sobolev
inequality with the best constant i.e.

Then M is isometric to 

Proof. Denote by V(z, r) the volume of the ball with center x E M
and radius r > 0 in M. By Theorem 4.4, for every x, y E M, t > 0,

In particular, by the results of [L-Y], since Ric > 0, M has maximal volume
growth, that is 

T ., / ..

Li’s result [L2] then indicates that, for every x, y, z E M,

where we recall that wn is the volume of the Euclidean unit ball. Together
with (4.22), we thus see that

Now, by Gromov’s comparison theorem (cf. [Cha2]), for s  r,



and, in particular, V (x, r) ~ as s - 0. But now, by (4.23), we also get
V (x, s) > cansn as r - oo. Therefore V(x,r) = for every x E M and
r > 0. By the case of equality in the volume comparison theorem [Cha2],
M is isometric to ]R/B The theorem is established. D

Now, let us consider the family of Sobolev inequalities

1  q  n, 1/p = 1 /q - 1/n, f Coo and compactly supported on M. The
best constants C = K(n, q) for which (4.24) holds in IR,n are known and
were described by Th. Aubin [Au] and G. Talenti [Ta]. Namely, K(n,1) =

where is the volume of the Euclidean unit ball in IRn, while

if q > 1. Moreover, for q > 1, the equality in (4.24) is attained by the
functions (A + Ixlq/(q-1»)1-(n/q), A > 0, where Ixl is the Euclidean length
of the vector x in IR/B The following is the analogue of Theorem 4.6 for
Sobolev inequalities.

THEOREM 4.7. - Let (M, g) be a complete n-dimensional Riemannian
manifold with non-negative Ricci curvature. If one of the Sobolev inequalities
(4.24) is satisfied with C = K(n, q) , then M is isometric to 

The particular case q = 1 (p = n/(n - 1)) is of course well-known. In
this case indeed, the Sobolev inequality is equivalent to the isoperimetric
inequality 

..

where 8A is the boundary of a smooth bounded open set A in M. If we
let = V(r) be the volume of the geodesic ball B(x,r) = B(r) with
center x and radius r > 0 in M, we have

Hence, setting A = B(x, r) in the isoperimetric inequality, we get

for all r > 0. Integrating yields V(r) ~ and since K(n,1 ) =

n _ 1 w~ 1 / n , for every r > 0,



If M has non-negative Ricci curvature, by Bishop’s comparison theorem
(cf. e.g. [Cha2]) V (x, r)  wnrn for every r, and by (4.25) and the case of
equality, M is isometric to IR’~ . The main interest of Theorem 4.7 therefore
lies in the case q > 1. As usual, the classical value q = 2 (and p = 2n/ (n - 2) )
is of particular interest. It should be noticed that known results already
imply that the scalar curvature of M is zero in this case (cf. [Hel], Prop.
4.10).

The proof of Theorem 4.7 is inspired by the technique developed in
Chapter 3 for Myers’s theorem on the diameter of a compact Riemannian
manifold satisfying a Sobolev inequality. We assume that the Sobolev in-

equality (4.24) is satisfied with C = K(n, q) for some q > 1. Recall first

that the extremal functions of this inequality in IRn are the functions

(À + a > 0. Let now x be a fixed point in M and let
0 > 1. Set f = x) where d is the distance function on M. The
idea is then to apply the Sobolev inequality (4.24), with C = K(n, q) , to
(À + ~ for every A > 0 to deduce a differential inequality
whose solutions may be compared to the extremal Euclidean case. We refer
to [Le3] or [He2] for the proof of this result.

It is natural to conjecture that Theorem 4.7 may actually be turned into
a volume comparison statement as it is the case for q = 1. That is, in a
Riemannian manifold (M, g) satisfying the Sobolev inequality (4.24) with
the constant K (n, q) for some q > 1, and without any curvature assumption,
for every x and every r > 0,

This is well-known ([Va3], [Ba3]) up to a constant (depending only on n
and q) but the preceding proof does not seem to be able to yield such a
conclusion.

Recently, the analogue of Theorems 4.6 and 4.7 for the Nash inequality
(4.5) has been proved, however for simply connected manifolds, by O. Druet,
E. Hebey and M. Vaugon [D-H-V].
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