
ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

LEIF ARKERYD

ANNE NOURI
L1 solutions to the stationary Boltzmann
equation in a slab
Annales de la faculté des sciences de Toulouse 6e série, tome 9, no 3
(2000), p. 375-413
<http://www.numdam.org/item?id=AFST_2000_6_9_3_375_0>

© Université Paul Sabatier, 2000, tous droits réservés.

L’accès aux archives de la revue « Annales de la faculté des sciences de
Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l’accord avec les
conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitu-
tive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AFST_2000_6_9_3_375_0
http://picard.ups-tlse.fr/~annales/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


- 375 -

L1 solutions to the stationary
Boltzmann equation in a slab(*)

LEIF ARKERYD (1) AND ANNE NOURI (2)

e-mail: arkeryd@math.chalmers.se

e-mail: nouri@laninsa.insa-lyon.fr

Annales de la Faculte des Sciences de Toulouse Vol. IX, n° 3, 2000
pp. 375-413

RÉSUMÉ. 2014 On considere 1’equation de Boltzmann stationnaire en une
dimension d’espace et trois dimensions de vitesse, pour des conditions
aux limites de reflexion maxwellienne diffuse. On montre l’existence d’une
solution appartenant a L1, en utilisant le terme de production d’entropie
et un changement de variables d’espace classique.

ABSTRACT. - The stationary Boltzmann equation for pseudo-maxwellian
and hard forces is considered in the slab. An L1 existence theorem is
proven in the case of diffuse reflection boundary conditions. The method
of proof is based on properties of the entropy dissipation term. The ap-
proach is simplified by a classical transformation of the space variable
resulting in a homogeneous equation of degree one. The case of given
indata is also briefly discussed.

1. Introduction

Consider the stationary Boltzmann equation in a slab of length L
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The nonnegative function f(x, v) represents the density of a rarefied gas
at position x and velocity v, with ~ the velocity component in the slab
direction. The boundary conditions are of diffuse reflection type,

where Mo and ML are given normalized half-space maxwellians =

1 203C0T2e-|v|2 2Ti, z E (0, L). The collision operator Q is the classical Boltzmann
operator with angular cut-off

where Q+ is the gain part and Q- the loss part of the collision term, and
where

Here, (v - v*, 03C9) denotes the Euclidean inner product in IR3. Let w be
represented by the polar angle 6 (with polar axis along v - v* ) and the
azimuthal angle cp. The function B(v - v*, v) is the kernel of the collision
operator Q, and for convenience taken as ~ v - v* ~~ b(8), with

Let us first recall that in the case of the time-dependent Boltzmann equation

where n is a subset of the Cauchy problem has been studied intensely,
most important being the time-dependent existence proof by R. DiPerna
and P.L. Lions [17], based on the use of the averaging technique and new
solution concepts. For a survey and references to the time-dependent prob-
lem, see [13].

In this paper we focus on solutions to the stationary Boltzmann equa-
tion in the slab under diffuse reflection boundary conditions. Stationary
solutions are of interest as candidates for the time asymptotics of evolu-
tionary problems (cf [10], [5]). They also appear naturally in the resolution



of boundary layer problems, when studying hydrodynamical limits of time-
dependent solutions. However, stationary solutions cannot be obtained di-
rectly by the techniques so far used in the time-dependent case, since for the
latter natural bounds on mass, energy and entropy provide an initial math-
ematical framework, whereas in the stationary case only bounds on flows of
mass,energy, and entropy through the boundary are easily available. Instead
our technique is based on a systematic use of suitable parts of the entropy
dissipation term with its natural bounds. The range of applicability of this
idea for kinetic equations goes well beyond the present problem.

A number of results are known concerning the cases of the non-linear
stationary Boltzmann equation close to equilibrium, and solutions of the
corresponding linearized equation. There, more general techniques - such as
contraction mapping based ones - can be utilized. So e.g. in an IRn setting,
the solvability of boundary value problems for the Boltzmann equation in
situations close to equilibrium is studied in [18], [19], [21], [33]. Stationary
problems in small domains for the non-linear Boltzmann equation are stud-
ied in [28], [22]. The unique solvability of internal stationary problems for
the Boltzmann equation at large Knudsen numbers is established in [26].
Existence and uniqueness of stationary solutions for the linearized Boltz-
mann equation in a bounded domain are proven in [25], and for the linear
Boltzmann equation uniqueness in [29], [31], and existence in [12] and oth-
ers. A classification of the well-posedness of some boundary value problems
for the linearized Boltzmann equation is made in [16]. For discrete velocity
models, in particular the Broadwell model, there are a number of stationary
results in two dimensions, among them [8], [9], [14], [15].

Moreover, existence results far from equilibrium have been obtained for
the stationary nonlinear Povzner equation in a bounded region in (see
[6]). The Povzner collision operator ([30]) is a modified Boltzmann operator
with a ’smearing’ process for the pair collisions, whereas in the derivation
of the Boltzmann collision operator, each separate collision between two
molecules occurs at one point in space.

In the slab case mathematical results on boundary value problems with
large indata for the BGK equation are presented in [32], and for the Boltz-
mann equation in a measure setting in [I], [11] and in an L1 setting in [4] for
cases of pseudo-maxwellian and soft forces. In the paper [4] a criterium is
derived for obtaining weak L1 compactness from the boundedness of the en-
tropy dissipation term. It allows an existence proof for a weak L 1 solution to
the Boltzmann equation in the slab when the collision kernel is truncated for
small velocities. In the present paper we use the entropy dissipation term
also to get rid of such truncations, and prove an existence result for the



genuine stationary Boltzmann equation with pseudo-maxwellian and hard
forces in the slab.

Let us conclude this introduction by detailing our results and methods
of proofs. First recall the exponential, mild and weak solution concepts in
the stationary context.

DEFINITION 1.1. - f is an exponential solution to the stationary Boltz-
mann problem (1.1-~), if f E L1 ( ~0, L] x v E L] x and if
for almost all (x, v) in [0, L] x IR3,

Here v is the collision frequency defined by

DEFINITION 1.2. - f is a mild solution to the stationary Boltzmann

problem (1 . 1-2), if f E L1([0, L] x , and for almost all (z, v) in [0, L] x
IR3 ,

Here the integrals for Q+ and Q- are assumed to exist separately.

DEFINITION 1.3. - f is a weak solution to the stationary Boltzmann

problem (1.1-2), if f E Ll ([0, L] Q+( f, f) and Q- ( f, f) E L] x

{v E ~> ~}), and for every test function cp E C~ (~0, L~ x 
such that cp vanishes in a neighbourhood of ~ = 0, and on {(0, v); ~ 
0} U {(L, v); ~ > 0},



Remark. This weak form is stronger than the mild and exponential
ones.

In the paper [6] the main equation, quadratic and of Povzner type in
is shown to be equivalent to a similar one but homogeneous of degree

one via a transform of the space variables and involving the mass. An
analogous transform involving the mass density instead of the mass was
first used in radiative transfer and boundary layer studies, and later in
the mid 1950 ies introduced by M. Krook [23] into gas kinetics for the BGK
equation. It was recently applied by C. Cercignani [11] for measure solutions
to the Boltzmann equation for pseudo-maxwellian forces in a slab. Under
this transform the Boltzmann equation in the slab transforms as follows.
Set

Let Q = [ri, r2] be the image of [0, L] under this transformation. Then, with
F(y, v) = the equation (1.1) becomes

and (1.2) becomes

Any nonzero solution of (1.1-2) generates via the transform a solution
to a problem of type (1.3-4). In that sense the problem (1.3-4) is a gener-
alization of the problem (1.1-2). Reciprocally, let a slab of length L and a



positive constant M be given. Choose (rl, r2) such that r2 - rl = M |S2 | .

If the problem (1.3-4) has a solution F satisfying

then define the function y(x) by

where

and define the function f by

Then y maps [0, L] into [ri, r2] , f is a solution to (1.1-2), and the total mass
of f is

Remark. - In contrast to the Povzner equation, it is not obvious in
the Boltzmann equation case how to extend the transform in a useful way
from one to several space dimensions. On the other hand, the existence
problem for (1.1-2) - in this paper solved with the above transform - can
alternatively be solved via a direct approach without the transform, instead
using a certain coupling between mass and boundary flow (see [7]).

The main result of this paper is the following.

THEOREM 1.1. - Given a slab of length L, ,Q E (0, 2( in the collision
kernel, and a positive constant M, there is a weak solution to the stationary
problem (1.1-2) with f Kp(v)f(x,v)dxdv = M for Ka(v) = (1+ ~ v ~)~.

Remark. - S. Mischler observed in [27] that in the context of boundary
conditions for the Boltzmann equation in n dimensions, the biting lemma
of Brook and Chacon can be used to obtain (1.2) instead of earlier weaker
alternatives (cf [20], [2], [3]). In our one dimensional case the biting lemma
is not needed. Instead (1.2) follows directly via weak compactness from a
control of entropy outflow.



The theorem holds with an analogous proof for velocities in 2.
It will be clear from the proofs that problems with given indata boundary
conditions can also be treated by the methods of this paper (no singular
boundary measure coming up there). The maxwellians in (1.2) can be re-
placed by other reentry profiles under suitable conditions on the functions
replacing the maxwellians. A number of generalizations of B which take
v E 2, and -n  /3  2, such as cases of b(0) > 0 a.e., or j5 not of
the product b(9), can also be analyzed straightforwardly by
the same approach.

The second section of the paper is devoted to a crucial construction of

approximated solutions to the transformed problem with a modified asym-
metric collision operator. The proofs are carried out with the transformed
slab for convenience equal to [-1,1] throughout the paper. The asymmetry
introduced in the collision operator allows monotonicity arguments which
lead to uniqueness of the approximate solution. In the third section the
symmetry of the collision operator is reintroduced. The weak compactness
in L1 ([-1,1] x IR3) utilized for this step, is obtained by using the trans-
formed representation to get pointwise bounds for the collision frequency,
and by controlling the approximate solutions inside [-1,1] x 1R3 by their
values at the outgoing boundary. In the last two sections some remaining
truncations in the collision operator are removed. A certain convergence in
measure plays an important role. Such information is mainly extracted from
the geometry of the collision process and uniform estimates for the entropy
dissipation term. Throughout the paper, various constants are denoted by
the letter c, sometimes with indices.

2. Approximate solutions to the transformed problem

Let r > 0, ~c > 0, and ( j, m) E JN2 r be given. The aim of this
section is to construct via strong L1 compactness and fixed point arguments,
solutions to the following approximation of the transformed problem



This problem is normalized in order that the total inflow through the
boundary be one. Here, x’" is a COO function with range [0,1] invariant under
the collision transformation J, where

with x’’ also invariant under the exchange of v and ~ and such that

The modified collision kernel is a positive Coo function approxi-
mating when

The truncation x’" and the boundedness of the collision kernel by 
will be removed only at the very end of the proof in Section 5, and the
truncation with m will be removed together with j in Section 3. So we shall
in this section skip the indices r in x’’, ~c and m in = Bj, and write

= Let mollifiers in the x-variable be defined by = 

where

Let K x [0,1] be the closed and convex subset of Ll ((-1,1) x IR3) x [0,1],
where



where co := Mo(v)dv, For a > 0 and

k > 0 given and j sufficiently large, let T be the map defined on K x ~0, 1~
by T( f, B) = (F, B), where (F, B) is the solution to

Denote by

LEMMA 2.1. - There is a positive lower bound co for f F(x, v)dv, with
co independent of x E (-1,1), 0  a x 1, and of ( f, 9) E K x ~0,1~. .

Proof of Lemma 2.1. . - It follows from the exponential form of (2.3) and
the boundedness from above of vj by J-L, that

Then, uniformly in x E (-1,1),

For ( f, B) E K x [0, 1], one solution F of (2.3) is obtained as the strong
Ll limit of the nonnegative monotone sequence (F~), bounded from above,
defined by F° = 0 and



There is uniqueness of the solution to (2.3). Otherwise, if there were an-
other solution G, then multiplying the equation for the difference F - G by
sign(F - G) and integrating with respect to (x, v) one obtains after some
computations that

Consequently, F = G. Moreover, by Lemma 2.1, T maps K x [0,1] into
itself.

Let us prove that T is continuous for the strong topology of 1~ x [0,1]. Let
(/~) converge to (/, 0) and write ~) = and (F, 9) = T(f, 0).
By the uniqueness of the solution of (2.3), it is enough to prove that there
is a subsequence of converging to (F,~). By the strong Z~ con-
vergence of to f and the condition  f1(x,v)dv  Co, the bounded

sequence converges in L~ a suit-

able subsequence let G~ := := := 

qi := infml 03B8l, with decreasingly converging to f, increasingly
converging to f, (/3~) decreasingly converging to 0 and (~) increasingly con-
verging to 0. Let be the sequences of solutions to

is a non-increasing sequence, and is a non-decreasing sequence.
Moreover,

But (,Sl ) decreasingly converges in L1 to some S and (sl ) increasingly con-
verges in L1 to some s which are solutions to



By the uniqueness of the solution to such systems, S = s = F. It follows
from (2.4) that (Fl) converges to F.
Let us prove that T is compact for the strong topology of L1. Let Bl) be
a bounded sequence in L1 x [0,1] and (Fl, B~) = T( fi, Fi can be written
in exponential form Fl = Gl + Hl, where for ~ > 0,

and similarly for $  0. The sequence (Gl ) is strongly compact because of
the convolution of f with Namely, we can pick a subsequence so that
 fl * ’Pkdv* as well as J xBj dv*dw are strongly convergent. For the

same reason, for proving the strong compactness of (Hl), it is enough to
prove it for

The argument is similar to the corresponding one in the limit when k tends
to infinity on next page, where details are given.



So, T is a continuous and compact map from the closed and convex
subset K x [0,1] of L1 x [0,1] into itself. It follows from the Schauder theorem
that T has a fixed point solution to

Keeping a and j fixed, let us write = F~ and study the passage
to the limit when k tends to infinity. The sequence of mappings

is uniformly bounded by j, hence is weakly compact in L1. Moreover,

Here the right-hand side is uniformly bounded with respect to x, v, k,
hence weakly compact in L~. Using the first equation in (2.5), and that



B~ E C~ , it follows that

is strongly compact in L1((-1, 1) Analogously, ( f w)dwd03C9)
is strongly compact in L1((-1,1)). Finally let us recall the argument from
[24] that

is strongly compact in L 1. For 6 > 0, let P6 be a mollifier in the v-variable.
There is a function R E L~ such that for any 8 > 0, a subsequence of

* p~) strongly converges in L1 to R * P6. Indeed,

so that, by the change of variables (w, w* ) -> (w’, w:),

As above for (2.6), up to subsequences,

strongly converges in L1 to some



strongly converges in L 1 to some function

Hence (Qt * p~) converges in L1 to R * pa, for any 6 > 0, where

Let us prove that Qt * C~~ tends to zero in L1 when 6 tends to zero,
uniformly with respect to k. If 9 denotes the Fourier transform of a function

g(x, v) with respect to the variable v, then for any x E (-1,1 ),

But DvQ+k satisfies

(cf [24], [34]), so that ~ ~~ DvQt tends to zero when A tends to

infinity. Finally, for any A, 
"

since p(0) = 1, p is uniformly continuous ~~ 1, and

f ~ Qk (x, ~) ~Z d~  c. This ends the proof of the strong L1-compactness of
)~



Writing (2.5) in exponential form implies that, for ~ > 0,

Here (9k) .- ( ~0|03BE|Fk(-1,v)dv ~0|03BE|Fk(-1,v)dv+f03BE>003BEFk(1,v)dv) is a bounded sequence of
~0,1 ~ , so converges up to a subsequence. Then, from the strong compactness
of

and (Q+k), as well as the boundedness from above of 1  Fk*03C6k(x,v*)dv*, it

follows that strongly converges in L1 to some F. Passing to the limit
when k tends to infinity in (2.5) implies that F := is a solution to

The passage to the limit in (2.8) when a tends to zero is similar, and
implies that the limit F of is a solution to (2.1), which was the aim of
the present section.



Remark. The construction so far also holds for SZ c IRn.

The solution F of (2.1) depends on the parameters j, r, F = 
The following lemma gives an estimate of its boundary fluxes independent
of j and r.

LEMMA 2.2. - Let F = denote a solution to the approximate
problem (~.1). Set

Then

with c~ only depending on MZ, i E ~0, L~ but not on j, r.

Proof of Lemma ~. ~. ~ ( 1 ) ~- ~ ( -1 ) = 1, so one of them is bigger than or
equal to 2 , say ~ ( -1 ) > 2 . From the exponential form

Moreover, integrating (2.1) on ( -1,1 ) x 1R3 implies, by Green’s formula

Hence Q(1) ~ c. Then

3. Reintroduction of the gain-loss symmetry

In this section the asymmetry between the gain and the loss terms will be
removed by taking the limit j -~ oo. The smoothness of was needed
in Section 2 for the Radon transform argument in the proof of (2.7). That



smoothness will now be removed from and ~r by keeping r and p fixed,
but letting converge to times the characteristic
function for the set where ~r equals one, when m = j -> oo. We start with
a j (= m)-independent estimate of the ~-flux of F~ .

LEMMA 3.1.2014 If F3 is a solution to (~.1), then

Proof of Lemma 3.1. Multiplying (2.1) by 1 and ~ v ~2 respectively,
and integrating it over ( -1,1 ) x IR3 implies that

By the exponential representation of r

with Cr independent of j. But

so (3.2-3) imply (3.1). D

LEMMA 3.2. - The sequence of solutions (pj) to (2.1) is weakly pre-
compact in L~((2014l) 1) x .

Proof of Lemma 3.2. - Let us prove that f 11 f is

uniformly in j bounded from above. By the truncation x’’,



since 0  ~~ ( -1 )  1 and 0  ~~ ( 1 )  1. Take j > T . By Lemma 3.1,
( f ~~~~,_ 9 1 is uniformly bounded from above. Denote by

It follows from the exponential form of (2.1) that

Hence, for j large enough

By (3.1), the first two terms to the right are uniformly in j bounded. As for
the last two terms, the following estimates are chosen also with a view to
next lemma.

Denote by

Multiplying ( 2 .1 ) by and integrating over ( -1,1 ) x IR3 implies



Then the two first terms of the right-hand side are bounded because
0  1 and 0 ~ 1. Moreover, with log-x:= logx, if x  1,
log- x := 0 otherwise, then for the third term

It follows from this, that (3.5) becomes

Here

But



Since F~ is bounded by j3 for j large enough, it follows from (3.6) that

Also,

by (3.3). Moreover,

Consequently,

Hence, the remaining term of the right-hand side of (3.4) is uniformly
bounded from above, thus also the entropy of (F~ ) . From here the desired
precompactness holds, since the mass is uniformly bounded from above

(cf. {3.1 ) ), and the contribution to the integral from large velocities can
be made arbitrarily small by using a comparison with outgoing boundary
values. This ends the proof of Lemma 3.2. 0

LEMMA 3.3. The sequence ( F" 1  IR3 ~Bj Fj 1+Fj j (x, v’)
Fj 1+Fj i (x, v’*)d03C9dv* ) is weakly precompact in L1 { ( -1,1 ) x IR3 ) .



Proof of Lemma 3. 3. - The weak L1 precompactness of

follows from the weak precompactness of (F~). Then the weak L1 precom-
pactness of the corresponding gain terms, is a consequence of the
weak L1 precompactness of and the boundedness from above of

which is a consequence of (3.8). D

We are now in a position to remove the asymmetry between the gain
and the loss term by taking the limit j -~ oo. It is enough to consider the
weak formulation of (2.1); for Fj and test functions ( E C~([2014l, 1] x 

First,

by the weak L1-compactness of (Fj). Then, by the change of variables
(v, v* ) ~ (v’, v* ),



(Fj), as well as (03BE~Fj ~x) are weakly compact in L1((-1,1) x IR3) by Lemmas
3.2-3. Consequently, F~ (x, v*)~(x, v’)dv,dcv) is compact in L1((-l,1) x
JR3) and converges (for a subsequence) to F(x, v*)~(~, v’)dv.d,w, where
F is a weak L1 limit of (F-~). Hence

Moreover, (y~F~) converges weakly (for a subsequence) to (~y~F), since
(Fj) and are weakly compact in L1((-1,1) Here 03B3±Fj denote
the traces of F~ on

and on aS2- defined above. Hence we can pass to the limit when j --~ +00
in (3.9) and obtain 

.

which means that F := F’’~~‘ is a weak solution to the stationary transformed

problem

Integrating (3.10) on (-1,1) x implies that

so that the boundary conditions satisfied by Fr,J.L are indeed



And so the aim of this section has been achieved, to obtain a solution
for an approximate equation with gain and loss terms of the same type,
with the truncation xr a characteristic function, and with total inflow one
through the boundary.

4. Removal of the small velocity truncation;
some preparatory lemmas

In the previous section solutions F~’~~ to (3.10-12) were obtained corre-
sponding to the approximations involving xr and B~. Writing Fr := F’’~~,
we shall in this section make some necessary preparations to remove the
small velocity truncation while keeping 1 fixed. As in the previous
section we start with some estimates independent of the relevant parameter,
here r.

LEMMA 4.1. - There are c > 0, c > 0, and for 6 > 0, constants c~ > 0
and C6 > 0, such that uniformly with respect to r

Proof of Lemma 4.1. - (4.1) follows from Green’s formula. By the ex-
ponential form of (3.10), and by Lemma 2.2,

Hence

for some c independent of r. Then



the last step by using (3.3). D

From (4.1), it follows that for any 6,

From Lemma 4.1 it also follows that the contribution to this integral from
large v’s, uniformly in r can be made arbitrarily small. Also for ~ ~ ~ > S, by
the exponential form

By a change of variables,

with c5 independent of r. In the last step we used Green’s formula applied to

(3.10) successively multiplied by 1 and logFr and integrated on ( -1,1 ) 
Using Lemma 4.1, it follows that

Hence

LEMMA 4.2. - For 8 > 0, the family weakly precompact
in L1((-1,1) x ~v E ~R3; ~ ~ ~> b~)~

Take (rj) with r~ = 0, so that converges weakly in ( -1,1 ) x

(v E IR3; | 03BE | ~ 03B4}) to F for each b > 0. Write := xrj. We
shall next prove the



LEMMA 4. 3. -

Proof of Lemma 1~.3. - Assume that, given r~ > 0, there is jo E IN such
that for all j E 

(The property (4.3) of (Fj) is proved on next page.) Since the Qt (F) inte-
grals are equal, we discuss the Q-(F) case. The case follows from
the same proof. Suppose that for some 7? > = oo on

S C [-1,1] with |S|  ~ > 0. Then there is a subset Si C S with |S1 |= ~ 2
such that F(x, v)dv = oo, uniformly with respect to x E Sl.
Hence there is a sequence (bk) with limk~~03B4k = 0 such that

Multiplying (3.10) by logFj and integrating it on (-1,1) x IR3 implies

But for all j

since I E [0,1]. is
uniformly in j bounded. Hence uniformly with respect to j, ,



The collision frequency is bounded by p, so Lemma 4.2 implies the same
compactness for the loss term (Q-(F~)) as for (F~). That together with the
bound (4.6) implies this compactness property for (Q+(F~)). From Egoroff’s
theorem and a Cantor diagonalization argument, there is a subset S2 C Sl,
with S2 ~= 4 such that for all k E W and uniformly with respect to x E S2,

By (4.4) this contradicts (4.3) for k > jo.

Let us prove (4.3) by contradiction. If (4.3) does not hold, there is r~ > 0
and a subsequence of (F~ ), still denoted by (F~ ), such that ~ Sj ~ ~ 8 , where

By (4.6), there is a subset of Sj, with ( > 6 , such that

The last inequality holds for j large enough, since by Lemma 4.1 and the
definition of S j ,

Let us estimate from above the right-hand side of

where

Here



Either and then

Or j 2, and then

Given v, let

By Lemma 4.1,

Then, from the geometry of the velocities involved, and from

c, given v with 6 j ~ , it holds for v* in a

half volume of V* and given (v, v* ) for W in a subset Uj(v,v*) of S2 with
measure a small fixed fraction of the measure of S’2, that

It follows for some c > 0, for v, v* E V*, w E Uj(v,v*), for j large, and with
c independent of v, v* , w, j, that

By (4.7), in this case,

Moreover,



Hence for x 

Let us bound 1j from above. By Lemma 4.1,

For (v, v* ) such that ~ ~ ~  ~ , ~ V*, we 1 > cji for
j large. Hence, for a set n of w with a small fixed fraction of the total area
of ,SZ , it holds that ( ~’ ~ > c j 3 , ( ~* ~ > cji. From

it follows that

Hence

Then, for some c > 0 independent of j,

Choosing K large enough, this gives a contradiction for j large. 0

Remark. We have proven that for any r~ > 0, there is jo E IN such
that for all j E jo, (4.3) holds.



LEMMA 4.4. - Given r~ > 0, there is jo such that for j > jo and outside
a j-dependent set in x of measure less than r~, f p~~~ v)dv converges
to zero when a - uniformly with respect to x and j.

Proof of Lemma .~.l~. It follows from the geometry of the velocities
involved and the inequality

that for each (v, v* ) with p > A » 10, and v* in

there is a subset of w E S2 with measure (say) S2 ~ such that

Moreover,

Hence for r~  ~ ~ ~  cA,

Let us integrate this inequality on the above set of (v, v*, c,~), so that

Given ~ > 0, by (4.3) there is jo such that for j > jo, outside of a set in x
of measure ~, it holds that



By (4.6),

outside of a set of measure (say) ’If-, so that

for x outside of a set of measure rl. Choosing K so that x is small enough and
then taking ~ so that is small enough, implies that f p~~~ F~ (x, v)dv
tends to zero uniformly outside of j -dependent sets of measure bounded

CI

LEMMA 4.5. - Given ~ > 0 and r~ > 0, there is jo such that for
j > jo and outside of a j-dependent set in x of measure less than r~,

F’~ (x, v)dv converges to zero when i --~ +oo, uniformly with re-

spect to x and j .

Proof of Lemma 1.5. Given r~ > 0, 0  E  ~ and x, j, either

In the latter case

For each (x, v) such that F~ (x, v) > take v* in



Then Fj (x, v* ) > c > 0 for v* E V* . Given v we may take v* in a half
volume of V* and w in a subset of 82 of measure (say) I S’2 ~, so that
v’ == ~ 2014 (v - v*, w)w and v* = v* + (v - v*, w)w satisfy

with c independent of j. Hence, for such x, v, v* and w,

if ~ ~ ~ ~ Since the integral

is bounded outside of a set of measure 2 in x, it follows using (4.3) that
outside of a set of measure 8 ~ in x,

for i large enough. 0

5. Proof of the main theorem

In this section the small velocity truncation will first be removed while
keeping 0  tc fixed. The bounds from below of the approximations by
their boundary values imply that the condition (1.5) holds in the limit, and
that the function y(x) from (1.6) is well defined. This will prove Theorem
1.1 in the pseudo-maxwellian case, i.e. when ,~ = 0. In a final step the
generalization to hard forces will be treated, using generalizations of the
previous approach.

LEMMA 5.1.2014 There is a subsequence of that converges to a weak
solution of



with co > 1, CL  1, and

Remark. - This proves Theorem 1.1 in the pseudo-maxwellian case.

Proof of Lemma 5.1.- Let cp be a test function vanishing 
and 6 . By Lemma 4.2, there is a measurable function F, such
that (Fj) weakly converges to F in L~([-l, 1] x {v E If~3; ~ ~ ~% b}). Hence

converges to when

j tends to infinity. Let us prove that converges to

f when j tends to infinity. (Q~ (F~)) are weakly compact
in L1(~-1,1) x {v E 1f~3; ~ ~ ~~ $}), since 0 ~ (,~-(F~)  cF~,

and the integral of the entropy dissipation term is bounded uniformly with

respect to j. Consequently for any a > 0 and A > 0

converge strongly in I~([-l, 1] x {v E c}), hence uniformly outside
of certain arbitrarily small sets, to

respectively, when j tends to infinity. By Lemmas 4.4 and 4.5, uniformly
with respect to j > jo c,



tend to zero in measure when a tends to zero, and

tend to zero in measure when A tends to infinity, uniformly with respect to
j and c. Together with the weak L1((-1,1) x {v E IR3; ~ ~ ~% 6})
compactness of (F~ ), this implies that

converges to j v)dxdv when j --; oo. Performing the change of
variables (v,v*) - (v’,v*) in  Q+j(Fj)03C6(x,v)dxdv, and using similar argu-
ments, we obtain that ( f v)dxdv) converges to  Q+(F)03C6(x, v)
dxdv when j tends to infinity. Finally, using the arguments leading up to
F’’~~‘ satisfying (3.11-12) together with Lemma 4.4, we may conclude that
F satisfies (3.11). For (3.12) we also notice that (4.5) and convexity imply
that the present weak limits Fj satisfy

uniformly in j. It follows that (y~F~) converges weakly (for a subsequence)
to so that (3.12) holds. D

Proof of Theorem 1.1 for hard forces. - The solution procedure in the
pseudo-maxwellian case can be applied in the same way to prove the exis-
tence of a solution to

with boundary conditions (1.7) and



Here, Kw(v) := (1+ ~ v ~)a). We shall prove Theorem 1.1 in the hard
force case by passing to the limit in this equation when ~c tends to infinity.
Similarly to the corresponding proof in Lemma 4.1, uniformly in ~,

For any 6 > 0, the family (F~)w,~o is weakly precompact in Ll((-1,1) x
{v E IR3; ~ ~ ~% ~, ~ v ~5 b}). Indeed,

so that

The weak precompactness of (F~) implies by (5.2) the weak precom-
pactness of (Q~ (F~)) in L1((-1,1) x {v E IR3; ~ ~ ~> 6, ~ v ~S b~). But
the entropy dissipation estimate (4.6) holds in this case uniformly in  with

f as denominator,

Also, for k  2,

Hence (Q~ (F~‘)) is weakly precompact in L1((-1,1) x {v E ~ ~ ~~ b,
1 v ~ a }). And so ( f is compact in Ll (-1,1) for any test
function cp vanishing 6 and |v|  6 .

To end the proof, the following three lemmas will be needed.



LEMMA 5.2. - Given r~ > 0, there are po, jo and constants co and c,
such that for > 

Proof of Lemma 5.2. - By the exponential form of (5.1), there is a
constant c such that

We shall prove Lemma 5.2 for c = 2c by contradiction. If the lemma does
not hold, then for some r~ > 0 there are sequences and ,

such that limj~~ j = oo, Fj = , Bj = , and 

with 77, where

Recall that

This implies that

Also, by the exponential form of (5.1),

For (say) p > 100, and v* such that ~’* ~ > o , ( v* ~  10, there is a set of
w E 82 of measure (say) 150 ( S’2 ~ such that



Then

For x in half of Sj , ,

Hence

Choose k so that 2. For the above x-es, it follows from (5.5) and

(5.6) that 

so that

by the definition of Sj. From here the proof follows the lines of the proof of
(4.3) in Lemma 4.3, and using a variant of (5.6) for Y~. Again the assumption
1 7; for j E lV leads to a contradiction. This completes the proof of
the lemma. D



LEMMA 5.3. - Given c > ~ and ~ > 0, there is ~o such that for ~c > ~co
and outside a -dependent set in x of measure less than ~,

tends to zero when ~ -~ oo, uniformly with respect to ~ v ( c, x and ~c > .

Proof of Lemma 5. 3. - For v ~  c, is of the same magnitude
as . Then the proof of Lemma 5.3 follows the lines of the proof of
Lemma 4.4. D

LEMMA 5.4. - Given c > 0, ~ > 0, and r~ > 0, there is such that for
~c > and outside a p-dependent set in x of measure less than r~,

tends to zero when j - oo, uniformly with respect to ~ v (  c, x and ~ > .

Proof of Lemma 5.,~. The proof follows the lines of the proof of Lemma
4.5, after noticing that

End of proof for hard forces. Using the weak L1 compactness of 
(Q±(F n)), (5.4), and Lemma 5.3, it follows for some sequence n tending
to +0oo with n, that

in L1((-1, 1) x {v E ~~ c~) for c > 0. This convergence, together
with the results from Lemma 5.2-4, imply that for ~ v ~ ~ c,

in measure on [-1,1] when n - oo. Together with the weak compactness in
L1 ( ~-1,1J x {v E IR3; ~ ~ ~ > S, ( v ~  ~ ~), the convergence in measure implies
that if cp is a test function in C1 ( ~-1,1~, L°° (IR3) ) vanishing  b and
for ( v ~ > ~ , then



The above argument holds for a subsequence of if, instead of BJ.£n’ we
use throughout. And so for a subsequence of ,

As in the pseudo-maxwellian case, we may conclude that F satisfies (3.11-
12). This implies that F is a weak solution to the stationary Boltzmann
equation with maxwellian diffuse reflection boundary conditions in the hard
force case (for test functions having compact support and vanish for ~ small).
That in turn implies that F is a mild solution. On the other hand, the in-

tegrability properties of (F, F) in the above weak solutions, are stronger
than what is required for a mild solution. Hence the present solutions are
somewhat stronger than mild solutions. 0
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