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RESUME. - Dans cet article, nous etudions le probleme de la compacite
de 1’operateur de Neumann sur des domaines dans une variete hermi-
tienne. En particulier, nous demontrons la compacite de cet operateur sur
des intersections q-convexes et sur des domaines strictement q-convexes a
bord non-lisse.

ABSTRACT. - In this article, we study the problem of the compactness of
the Neumann operator in subdomains of hermitian manifolds. In partic-
ular, we show the compactness of this operator in q-convex intersections
and in strictly q-convex domains with nonsmooth boundary.

1. Introduction

It is a well-known fact that the a-Neumann operator Nq on a smoothly
bounded, relatively compact domain D cc ~’~ is a compact operator on

(the space of (0, q)-forms on D with square-integrable coefficients)
if D satisfies Hormander’s condition Z(q), i. e. if the Levi form of a smooth
defining function of D has, at every boundary point of D, at least n - q
positive or at least q + 1 negative eigenvalues (cf. the work of G. Folland and
J. J. Kohn ~4~ ) . In particular, the operators Ns, s > q, are compact on every
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smoothly bounded, strictly q-convex domain D CC en. Here, a smooth,
strictly q-convex domain is a domain given by a C°°-smooth function r as

such that the complex Hessian form of r at each p E D

has at least n - q + 1 positive eigenvalues. In particular, the operators 
1, are compact for any bounded, smoothly bounded strictly pseudoconvex
domain. In two independent papers G. M. Henkin and A. Iordan [9] as well as
J. Michel and M.-C. Shaw [18] showed that the compactness property of Ns
remains true for transversal intersections of strictly pseudoconvex domains,
thus answering a question posed by Kohn. Michel and Shaw derived their
result from a subelliptic 2-estimate for Ns ; this stronger statement was also
proved (using a different method) by Henkin, Iordan and Kohn in [10].

It seems that the question whether the a-Neumann operator is compact
on bounded transversal intersections of q-convex domains in (Cn cannot be

answered using the methods of Henkin-Iordan and Michel-Shaw . There are
some papers on this subject where compactness of the Neumann operator
on q-convex intersections and nonsmooth q-convex domains, respectively,
is shown under some (quite strong) additional assumptions, cf. the work

of S. K. Vassiliadou [25], of M. Nieten [19] and of T. Hefer, L. Ma and
S. K. Vassiliadou [8]. These works are based on the ideas of the papers [9],
[18] mentioned above; the additional assumptions rely on an idea of L.-H. Ho
[11]. However, the seemingly simple question whether Nq is compact on the
transversal intersection of a strictly pseudoconvex and a strictly q-convex
domain in en remained open. One of the difficult problems in generalizing
the papers of Henkin-Iordan and Michel-Shaw, respectively, was the fact
that on strictly q-convex intersections (which are not q-convex in the sense of
Ho, cp. [11], [25] and [8]), there is no good control of the C2-norms of defining
functions for smooth exhaustions of the intersection domains. As opposed
to that, on transversal intersections of strictly pseudoconvex domains, the

1-convexity condition of Ho is automatic.

In this paper we prove compactness of the Neumann operator by com-
bining two ideas:

1. If there are compact solution operators for the 9-equation on (0, q)-
and (0, q + I)-forms, then the Neumann operator is compact on (0, q)-
forms.



2. The Henkin-Ramirez type integral formulae provide compact solution
operators.

The first idea already turns up in a paper by S. Fu and E. Straube [5].
Our method can in particular be applied to the open problems mentioned
above using a result of Ma and Vassiliadou [16] on estimates for solutions
of the 8-equation on q-convex intersections. It also gives a result on the
nonexistence of integral solution operators for 9 with uniformly integrable
kernels on certain convex domains. Finally, we present an application con-
cerning the compactness of the Neumann operator in L2-Sobolev spaces of
higher order.

Most of the results which we derive from our general compactness theo-
rems have previously been proved by other methods, but we think that our
approach is simpler as it avoids some delicate density problems.

Acknowledgements. We wish to thank Ma Lan and Martin Nieten for
interesting discussions on this subject. Part of this work was done while the
second author was a visiting professor at the Universite Paul Sabatier at
Toulouse. He thanks the above university and in particular the members of
the Laboratoire Emile Picard for their interest and their support.

2. Definitions

Let us collect some definitions and notations which will be used through-
out the rest of this paper. Let X be a complex manifold of dimension n > 2,
equipped with a hermitian metric ds2 on the tangent bundle TX. Then X
is an orientable Riemannian manifold with respect to the metric Re ds2 We
denote by dV a volume form on X and by * the associated Hodge-operator.
If D cc X is a domain, we let L,q(D) be the space of (p, q)-forms on D
with square-integrable coefficients; this is a Hilbert space with respect to
the inner product

The 9-operator is extended to (in the sense of distributions) as the
closed, densely defined operator

with f E Dom a and a f = g if the equation



holds for all cp E with compact support; a* denotes the
Hilbert space adjoint of a. The complex Laplacian operator o is defined as

on the domain

The a-Neumann problem consists in proving existence and regularity of
solutions of the equation

If the range of the complex Laplacian 0 is closed on (p, q)-forms, the Neu-
mann operator

is well-defined by the conditions

where Hp,q is the orthogonal projection onto ker o in L~,q (D) In case the
a-equation au = f (for a f = 0) is always solvable on (p, q)-forms, we have
Hp,q = 0. For example, if D is a smoothly bounded strictly q-convex domain
in en, we have ker o n = {0~ and o(Np,q f) = f .

If ~ is a point in we denote by the euclidean ball of radius e

around ~.

In this article, we will concentrate on results for (0, q)-forms. We use the
abbreviation Nq := No,q, and we denote 0 by Dq if we wish to clarify its
domain of definition.

3. Compactness of the Neumann Operator

In the following theorem we show that compactness of the Neumann

operator Nq on a domain D can be checked by results on the solvability of
the a-equation on D which, in some cases, seem to be more accessible than
direct consideration of the Neumann operator.

THEOREM 3.1.2014 Let D CC X be a relatively compact open set and
let q E ~ 1, ... , n_~ . Suppose there exist closed vector subspaces Vq C ker a q
and C ker 8q+1 of finite codimension and suppose there exist compact
linear operators



such that ~k-1Skf = f for all f E Vk, k = q, q + 1. Then the Neumann
operator Nq is compact.1

Proo f. For k = q, q + 1, we have Vk C im ~k-1 C ker8k, and Vk is
closed and of finite codimension, so the image of the operator 8k-l is closed
in L20,k(D). By an argument of Hörmander [12], the same is true for the
image of 8;-1’ and it is then easily checked that the image of oq is closed.
This yields the existence of the operator Nq . .

Now let Uq and Uq+1 be finite dimensional orthogonal complements of Vq
and Vq+1 in im ~q-1 and im 8q with bases (f1,q,...,frq,q) and (f1,q+1,... ,

respectively. Choose with = fj,k and define the
linear operators Tq and Tq+i on im ~q-1 and im ~q by

Then Tk, k = q, q + 1, are compact linear solution operators for 8 on the
images of the respective 8-operators. We extend these operators to be zero
on ( im a ) 1.

Consider the orthogonal decompositions

For k E {q,q+1}, let Pk L20,k-1(D) ~ (ker ~) and Qk L20,k(D) ~ im ~,
respectively, be the orthogonal projections on these closed subspaces. Then
we define

We will show that

Observe that this is not obvious since we don’t have existence of the operator
Nq+i (in that case one can show that Kk = Denote the right hand
side of (3.2) by Mq.

Firstly, if a E kero, then we have a E ker 8 n ker9*, so Qqa = 0 and
Pq+la: = 0 which gives Mqa: = Nqcx = 0. Now suppose a 1 kero, i. e.

1 ~ ) In the case q = n, we only suppose the existence of Sn, of course.



a = aa* Nqa + Then, dropping indices for convenience, we get

since 9T = Q by construction. Similarly, we obtain

which shows = QqNqa + Pq+1Nq03B1 = Nqa also in this case. But Mq is
obviously compact, so the same is true for Nq .2 D

In particular, the Neumann operator Nn is compact on any bounded
domain for which the Bochner-Martinelli integral formula holds (cf.
R. M. Range [22]), and Nq is compact on any bounded domain in en for
which the 8-equation on (0, q)-forms and (0, q + I)-forms can be solved by
integral operators of the form

the kernels of which satisfy the hypotheses of one of the two following the-
orems.

THEOREM 3.3.- Let D CC Cn be open, and let S be Lebesgue-measu-
rable on D x D. Suppose there exists a positive function C(6) defined for
6 > 0 with lim03B4~0 C(6) = 0 such that for all 6 > 0

Then the linear integral operator S : LP (D) - LP(D) defined by

is compact for all p with 1  p  oo.

(2) The idea of representing Nq is due to R. M.

Range [21].



Proof. This theorem was proved by Range ~22~, Appendix C. 0

THEOREM 3.4. - Let D C C Cn be open, and let S be Lebesgue-measur-
able on D x D. Suppose S satisfies the estimates

for some ~y > 1. Then the integral operator defined by S is compact on
L2 (D) .

Proof. - The proof is a slight modification of an idea of J. Michel [17]. .
By the theorem in Appendix B of [22], S is bounded from to Lq (D)
for § = ~ + ~ -1  ~; so, for k E N, S’k is bounded from to L~~ (D), ,
where pk - ~, + 1~( ,~-~ -1 ). Consider the normal operator T := S*S on L2 (D) .
By the regularity of S, applied to the kernel function itself, there exists an
integer m E N such that the kernel of belongs to L2 ( D x D) . Therefore,
Tm is a Hilbert-Schmidt operator, hence compact. This implies that T"z
satisfies the following two conditions:

1. The spectrum has no limit point except possibly 0.

2. 0, then Aid)  oo.

But then the operator T, too, has these two properties. By Theorem (12.30)
in [23], T is compact. This shows that the operator S is also compact since

which implies that for each bounded sequence (Iv) for which (T f v ) is a

Cauchy sequence, (S is also a Cauchy sequence. D

Theorem 3.1 can of course be applied to convex domains of finite type
using the kernels of K. Diederich and J. E. Fornaess constructed in [1] - see
also [2], [3] and [7], but these domains are perhaps more easily handled by
Catlin’s subelliptic estimates which also give the general case of finite type
pseudoconvex domains. Moreover, Fu and Straube have given the following
beautiful necessary and sufficient geometric condition for the compactness
of Nq in the case of convex domains.

THEOREM 3.5. - Let D C C en be a convex domain, and let 1  q fi n.
Then the following conditions are equivalent:

1. . There is an L2-compact solution operator for a on (0, q) -forms.



2. The boundary bS2 contains no affine variety of dimension > q.

3. The boundary bS2 contains no analytic variety of dimension > q.

4. The a-Neumann operator Nq is compact.

Proof. This is Theorem 1.1 in ~5~ . D

In fact, in order to prove the implication 1. ==~ 2. of this theorem, Fu and
Straube use an explicit construction involving estimates on the Bergman
kernel of a convex domain and an extension theorem of T. Ohsawa and
K. Takegoshi [20] to show that if bSZ contains an affine variety of dimension
q, then there cannot exist a compact solution operator for a on (0, q)-forms.
Before, S. G. Krantz [14] had already given examples of convex domains
with noncompact Neumann operators.

As a consequence we get the following negative result on - necessarily -
infinite type domains.

COROLLARY 3.6. - Let D CC (C2 be a convex domain with noncompact
Neumann operator N1. . Then there exists no compact linear solution oper-
ator for the 8-equation on Lo,l(D). In particular, there exists no integral
solution operator for 8 with a uniformly integrable kernel (in the sense of
Theorems 3.3 or 3.l~).

Proof. - There exists a compact (integral) solution operator for the a-
equation on (0,2)-forms on D, given by the Bochner-Martinelli kernel. By
Theorem 3.1 there cannot exist any compact linear solution operator for a
on (0,1 )-forms. D

In order to give our principal applications of Theorem 3.1, we will de-
scribe two methods of how to pass from certain locally defined compact
solution operators for a to global compact solution operators. The first
method - a variation of the bump method - is inspired by an article of
N. Kerzman [13]. .

THEOREM 3.7. - Let D CC en be a domain, and let q E {I,..., n~.
Suppose there exists a neighborhood basis V of D such that for every V E V
there is a continuous, linear operator

such that f = f for f E and such that for any ( E Co(V)
the operator f H ( Tv f is compact. Suppose furthermore that there exist an
~ > 0 and finitely many points ... , E bD such that the following two
conditions are fulfilled:



1. bD cc UM 1 B(2 ~~). .
2. Let Do := D and Dj := j = 1, ... , M. Suppose

there exists a linear, compact solution operator for the a-equation on
forj=1,...,M-1. .

Then there exists a compact solution operator

for the a-equation on D.

Proof. - Let P : - ker a be the orthogonal projection onto the
kernel of 8. We choose functions ~3 E = 1, ... , M, such
that Xj == 1 on a neighborhood of B( 2 , ~~ ). Given f E we define

fl E Lo,q ( D1 ) as follows. Let be the restriction of P f to Do n ~1 ) .
Set 

’

We extend trivially outside of D n B (~, ~1 ) The form f 1 obviously can
be extended to P f in D outside of B (~, ~1 ) and it vanishes on 
Therefore, we can extend f 1 to Di = and we have the equation

It is evident from the construction that ~f1 = 0, that the map f H fi is
linear and continuous in L2 and that the map f ~ ~o is linear and compact
(by hypothesis on Ti). Now let f(2) be the restriction of fi to Di n B(e, ~2).
Set

as above; again, we see that f 2 E Then we have f 1 - f 2 = on

Di and a f 2 = 0. We continue this procedure until we arrive at a 9-closed
form f M E and at 03C8 := + ... + with

The result of this operation is a continuous linear operator

and a compact linear operator



Now let V E V be a neighborhood of D as in the hypothesis of the theorem
with

and let Tv be the associated solution operator for 8. Let ( E be a

function which is identically 1 in a neighborhood of D. Then, by hypothesis
on Tv, the operator

is a compact solution operator for a on D. D

The second method has the advantage of being purely local (this time
with respect to the entire domain, not only its boundary) .

THEOREM 3.8. - Let D CC X be a relatively compact domain in the
hermitian manifold X .

1. Suppose there are compact operators Pk, Sk and Tk on Dom 8 such
that the following homotopy formula holds for k = q, q + 1 :

Then the Neumann operator Nq is compact.
2. Suppose there is a finite covering of D by open sets Ul , ... such

that for each j E {1, ... , m} there exists a homotopy formula

for the 8-equation with compact operators and . Then there

exist compact operators P~, Sk and Tk such that (3.9) holds.

Proo f. Let x 1, ... , be smooth, nonnegative functions on X such
m 

_

that supp ~j C C Uj and 03A3~j ~ 1 on D. Define linear operators Sk, Tk
j=1

and Pk by the formulas



By hypothesis on Skj) and Tk~ ~ , these operators are compact. This gives
formula (3.9). For k = q, q + 1, let Fk be the restriction of id - Pk to the
closed subspace Zk := ker 8k of Lo,~(D). Then Fk is a Fredholm operator
on Zk, so Vk := im fk is a closed subspace of finite codimension in Zk. If
we denote by Gk the restriction of Fk to the closed, finitely codimensional
subspace (ker c Zk, we see that the operator 

’

is, in fact, a compact solution operator for 8 on Vk, so Theorem 3.1

applies. D

It is possible to find local integral homotopy operators for the a-equation
(as in the last theorem) in quite general situations. In most of the cases
we know, such formulas are proved, initially, only for forms which are C1-
smooth up to the boundary of the domain. This is usually sufficient if the
domain in question is smoothly bounded. For the nonsmooth cases, we add
a theorem on the extension of such homotopy formulas to n Dom9.
The hypotheses of the next theorem can be easily verified for the local
homotopy formulas in our later applications.

THEOREM 3.10 Let D C C X be a relatively compact domain. Suppose
there exist homotopy operators Sq and Tq for the a-equation on D such that

for all f E and such that Sq and Tq are linear and continuous on
Lo,q+ 1 (D) and Lo,q+1 (D), respectively. Let S ~~ bD be a subset

of the boundary of D such that bD - S is smooth and such that there is
a neighborhood basis of S (relative to X) satisfying the following
conditions :3

1. 

2. The volume of V~ satisfies the estimate C~2 for a constant
C independent of ~.

3. There are smooth functions ~~ such that supp C C V~, 1 on

V~ , 0  1 and sup a~~ ~ for the constant C above.

/. For each ~ > 0 and for each f E n Dom ~ which vanishes
identically in V~, the homotopy formula (3.11) remains valid.

~ 3 ~ In case q = n, we have Tq = 0, and the problem of extending the homotopy formula
to L2 is trivial. Thus, in our later applications, the hypotheses of this theorem (concerning
the singular subset of the boundary) have to be checked only in case q  n.



Then the homotopy formula is valid (in the sense of distributions) on
n Dom 8 .

Proof. Let x~ := 1 - ~E, and let f E n Dom a be given. By
hypothesis, the homotopy formula is valid for (e f, so we have

Now, and TQ(xEa f ) converge to f and Tq8 f in as ~ ~ 0,

respectively, whereas converges to 8Sq f in the sense of distribu-
tions. We only have to show that the remaining term Tq(~~~ n f ) converges
to zero. To see this, it suffices to show that 8xe A f converges to zero in

(D). But we have, by the Cauchy-Schwarz inequality,

fore-~0. D

To later verify the fourth condition of this theorem, we prove

LEMMA 3.12. - Let D C C ~n be a domain and let S C C bD be a

subset of the boundary such that bD - S consists of smooth points. Let V be
an open neighborhood of S. Suppose there are L2-continuous operators Sq
and Tq such that - - . ,

for all f E Let f E n Dom 8 be given with f = 0 in V n D.
Then (3.13) also holds for f . 

’

~roof. Let W cc V be a neighborhood of S. We deform bD inside
W to obtain a smooth domain G C D with the property bG - bD CC V.

Let r be a defining function for G with IVrl = 1 on bG. For a point z E bG
let v(z) = -Vr(z) be the unit inner normal to bG at z. If zo E bG is given,
we may choose a ball Bo = zo) around zo such that for any z E Bo n G
we have

for all sufficiently small 6 > 0 and all T with  82. Cover bG with a finite

number B1, ... of such balls and denote the corresponding normal
vectors by v1, ... , Choose 60 so small that condition (3.14) is satisfied
in each Bj n G for 0  6  80. Choose an open set Bm C C G such that



set := 0, and let x 1, ~ ~ ~ , be smooth functions with supp x~ C Bj
such that

on G. Now let ’P be a smooth nonnegative, radially symmetric function on
supported in B(1, 0), such that

and let := We define an approximation f6 for the given
form f by

where these integrals are to be interpreted in the obvious manner. This is
well-defined because of condition (3.14). Clearly the forms f b are smooth
on G and satisfy f 6 -> f in Lo,9 (G) for 6 -~ 0. But for every j E { l, ... , m}
we also have 

’

since vj does not depend on z and since f E Dom 8 by hypothesis. Therefore
we get a f a -~ 8 f in Now let Y C C V be an open neighborhood
of bG - bD and let zo be a point in Y n Bj for a j x m. We claim that
f6 ( Zo ) = 0 for all 6 with 0  6  60 if 60 is sufficiently small. In fact, if

60  1 is so small that z + 6vj + T E V for all T with ITI  62  bo the
definition of f ~ and the hypothesis on f immediately prove the claim. Note
that 60 can be chosen independently of zo E Y. Thus, we may extend f6
trivially to a smooth form on D, and we obtain

in and (D), respectively. Since f a E and since the
operators Sq and Tq are continuous with respect to L2-norm, the assertion
of the lemma is now obvious. D

The above proof is essentially due to Kerzman [13]. Theorem 3.10 and
Lemma 3.12 imply that in the following examples of domains D with non-
smooth boundaries the smooth forms on D are dense in Dom 8 with respect
to the graph + It is well-known that such a density theorem



holds for fairly general boundaries, but we preferred to include a direct proof
for the domains we consider.

As a first application, we now study q-convex intersections as in the

following definition (which is due to Ma and Vassiliadou ~16~ ) . .

DEFINITION 3.15. A domain D CC X is called a G3 q-convex inter-
section if there exist an open neighborhood U of bD and a finite number of
real G3 functions rl, ... r N, n > N+2, defined on U such that the following
three conditions are fulfilled:

1. . .

2. For 1  il  i2  ..  ie  N the 1 forms dri1, .., dril are R-linearly
independent on  0~.

3. For 1  il  ...  i~  N, for every z E 0~, if we set
I = (il, .., ii) , there exists a complex linear subspace Tz of TzX of
complex dimension at least n - q -E-1 such that for i E I the complex
Hessian forms L (r2 ) restricted to Tz are positive definite.

We obtain the following theorem on the compactness of the Neumann

operator on such intersections.

THEOREM 3.16. - Let D C C X be a q-convex intersection in the her-

mitian manifold X. . Then the Neumann operator Ns is compact for s > q.

In particular, let D C C be the transversal intersection of strictly qj -
convex domains, j = 1, ... , N  n - 2, and let q := ql + ... + qN - N + 1. .

Then the Neumann operator Ns on D is compact for s > q.

Proof. As an illustration of Theorem 3.7, we first present a proof

in case X = ~n. It was shown by Ma and Vassiliadou in that the

a-equation on q-convex intersections in can be solved on forms of type

(0, s) s > q, by the method described in Theorem 3.7 with local compact in-

tegral homotopy operators that satisfy the hypotheses of Theorem 3.4. The

corresponding homotopy formulas extend to LZ by Theorem 3.10 (the set S

being the singular subset of the boundary). It was also shown in [16] that a
q-convex intersection in has a neighborhood basis consisting of smoothly
bounded strictly q-convex domains V (the domains in [16] are only smooth
of class C3, but it is easily seen that we can obtain C~-neighborhoods by
the same method; compare also [19] where a C~-smooth so-called regular-
ized max-function is constructed which can be used to construct the smooth

neighborhoods we need). On such domains the canonical solution operator
Tv = a * Nq to the a-equation exists by [4], and if we take ( E Go ( V ) ,



the operator ( Tv is compact by Proposition (3.1.16) in [4] and by Rellich’s
lemma. Therefore, all the hypotheses of Theorem 3.7 are satisfied. An ap-
plication of Theorem 3.1 then yields the first assertion for X = If D is
a q-convex intersection in a general manifold X, we can still use the local
construction of Ma-Vassiliadou at the boundary of D. Since D is compact
and since we clearly have local compact homotopy operators for a in the
interior of D, we can apply Theorem 3.8 and Theorem 3.10 to get the result
in full generality.

For the second assertion, it suffices to remark that in [19] it was shown
in detail that an intersection of the form mentioned above is a q-convex
intersection in the sense of Ma and Vassiliadou, where q = ql + ... + qN -
N + 1.

In particular, this yields a new proof for the compactness of the Neumann
operator on intersections of strictly pseudoconvex domains.4 0

As a further application, we show the compactness of the Neumann oper-
ator on nonsmooth, strictly q-convex domains as in the following definition.

DEFINITION 3. 17. - A domain D C C X is called strictly q-convex if
there exists an open neighborhood U of bD and a function r E C2 {U) such
that r is strictly q-convex on U (compare the introduction) and such that
D n U = {z E U : r(z)  0~. . We do not suppose dr ~ 0 on bD.

In her paper [15], Ma has shown the existence of local integral homotopy
operators for the 8-equation on (0, q, on such domains.5 These
integral operators satisfy the hypotheses of Theorem 3.3 and Theorem 3.8.
By the following theorem, we have a good local description of the singular
set of the boundary of a strictly q-convex domain which will allow us to
verify the hypotheses of Theorem 3.10 (note that this is trivial in the case
q=n).

THEOREM 3.18. - Let D CC X be strictly q-convex, q fi n. Let r be a
defining function for D as in Definition 3.17, and let S := {z : dr(z) = 0~
be the singular subset of the boundary of D. Then for every z E S there
exists a neighborhood U of z in X and a smooth real submanifold Y of U
of real dimension n - 1 + q such that S n U C Y. In particular, the real
codimension of Y is greater or equal to 2 if q  n.

Proof. This was proved by G. Schmalz, see Lemma 1.3 in ~24~ . 0

4 > See also the note added in proof.
~ Ma only considers the case X = but again, the local construction carries over

to any complex manifold X.



Thus, if e > 0 is given and if q  n, we may construct local tubular

neighborhoods of the singular set S of bD with a volume dominated by e2.
Since the boundary is compact, the union of a finite number of such neigh-
borhoods satisfies the hypotheses imposed on the sets VE in Theorem 3.10.
This yields the following result.

THEOREM 3. 19. - Let D CC X be strictly q-convex. Then the Neu-
mann operator Ns on D is compact for s > q. D

In the case q = 1, this theorem was proved by Henkin and Iordan who
consider also less regular boundaries.

Finally, we will give an application concerning the Neumann operators
on Sobolev spaces other than Let D C C (~n be a smoothly bounded
domain. Consider the Sobolev spaces of (0, q)-forms on D the co-
efficients of which have weak derivatives in L~ up to order k E N. This is a
Hilbert space with respect to the interior product

where Da and D denote the differential operators (acting on the coefficients
of f and g) defined by

respectively. Let Nq be the Neumann operator on which is defined

with respect to ( ~ , ~ ) ~ j ust as Nq is defined with respect to ( ~ , ~ ) , and let 
be the Hilbert space adjoint of 8q on (D) .

THEOREM 3.20. - Let D CC en be a smoothly bounded domain which
satisfies conditions Z(q) and Z(q + 1 ) . Then the Neumann operator Nq
exists and is compact.

Proof. The existence of N9 follows from the closedness of the image of
a as in Theorem 3.1. If D satisfies conditions Z(q) and Z(q-~-1), the (usual)
canonical solution operators 8 * N~ , j - q, q -E- 1, satisfy Kohn’s subelliptic
2 -estimate

and are therefore compact as operators from Lo;~ (D) to Lo;~ _ I (D) . This
implies that the canonical solution operators are a fortiori compact.
Just as in the proof of Theorem 3.1, we derive the compactness of Nq . D



Note added in proof. In an interesting survey ~6~, Fu and Straube have
shown the following: Let U C en be open, smoothly bounded and strictly
pseudoconvex, and let H C C en be a pseudoconvex domain such that the
a-Neumann operator on (0, q)-forms is compact on H and such that U~03A9 is
a domain. Then the corresponding ~-Neumann operator is compact on the
intersection U n SZ. The proof of this result (with only minor modifications)
also applies to the following situation: Let U be as above, and suppose that
H C C (Cn is a smoothly bounded strictly q-convex domain such that U ~ 03A9
is a domain (S2 need not be pseudoconvex). Then the a-Neumann operator
on U ~ 03A9 is compact on (0, s)-forms for s > q. For n > 2, this is a special
case of Theorem 3.16.
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