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On montre que les perturbations singulieres hyperboliques
(1.1) des problemes paraboliques quasilineaires (1.2) admettent des so-
lutions locales dans des espaces du type Kato-Sobolev, définies sur un
intervalle de temps commun, sur lequel on peut etudier leur convergence
singuliere vers une solution de (1.2). On en deduit aussi que si (1.2) admet
des solutions Kato-Sobolev globales, le temps de vie des solutions de (1.1) )
croit jusqu’a l’infini quand ~ tends vers zero.

ABSTRACT. - We show that the hyperbolic singular perturbations (1.1) )
of the quasilinear parabolic problems (1.2) admit local Kato-Sobolev so-
lutions defined on a common time interval, on which their singular con-
vergence to a solution of (1.2) can be studied. We also find that if this
limit problem admits a global Kato-Sobolev solution, the life span of the
solutions of (1.1) grows to +0oo as c --; 0.

1. Introduction.

1.1. Many physical problems can be modelled by second order quasilin-
ear dissipative equations of the form
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where H C Rn is a bounded domain, T > 0, and é > 0. For example,
in Maxwell’s equations for the electromagnetic potentials 6- represents the

displacement currents; for the heat equation with delay, ~ is a measure of the
thermal relaxation. In applications and numerical simulations, it is usual to

neglect the term ~utt in (1.1), and to consider instead the reduced parabolic
problem

This simplification is often motivated by the observation that either the
value of ~ is very small, or that the long time-behavior of solutions to (1.1)
and (1.2) (when these exist globally) is similar, or both. This brings forth the
natural question of the comparison of solutions to these problems, both on

compact time intervals, and on all of [0, +oo). In the latter case, one typical
result is the so-called diffusion phenomenon of hyperbolic waves, whereby
solutions to (1.1) converge (for fixed 6-) to those of (1.2), as t --~ +00.

For example, a result of this type was established in [11] for equations in
divergence form in the whole space R’~, with no source terms. Of course,
this requires the preliminary knowledge that solutions of both problems
exist globally, which is usually obtained by showing that local solutions can
be extended to all later times. When comparison of solutions is sought on

compact intervals, the main question is instead to determine whether, and
in what sense, solutions of (1.1) converge, as ~ ~ 0, to a solution of (1.2).
Because of the loss of the initial condition on ut, which gives rise to an
initial layer at t = 0, this convergence is in general singular; therefore, it
becomes essential, in applications, to obtain reasonable estimates on the rate
of convergence, which are interpreted as an information on the error caused

by considering v as an approximation In [7], we have given some results
on the singular perturbation problem in the case of the Cauchy problem for

(1.1) and (1.2), that is, when 0 = Rn. When boundary conditions are

present, the same type of results are much more difficult to obtain because,
in addition to the initial layer, we also have to deal with the boundary layer
due to the different type of compatibility conditions for the data on aS2
at t = 0, which must necessarily be satisfied by local or global solutions
of either problem. Thus, one expects convergence on compact intervals non

including t = 0, i.e. on intervals [T, T], T E (0, T). Physically, this means that
after a (presumably short) transient, the observable evolution of a system
governed by (1.1) can be well approximated by model (1.2).

1.2. In either case, i.e. global or local point of view, the first necessary
step is to establish at least a uniformly local existence result for problem



(1.1). This means that if the data of (1.1) are independent of 6-,
there should exist an interval [0, To] C [0, T~ on which all solutions of ( 1.1 )
are defined, independently of ~ (or, at least, for all ~ sufficiently small).
In many situations, local solvability of (1.1) for each fixed ~ is known, but
one is in general only able to determine existence on intervals [0, Te], with
Te ~ 0 as 6 ~ 0 (the situation is similar to the 3-dimensional Navier-
Stokes equations, where the size of the interval on which smooth solutions
are known to exist vanishes with the viscosity). If this were the case here,
the singular perturbation problem would of course no longer make sense;
it turns out, however, that uniformly local existence for (1.1) is assured
by the presence in the equation of the dissipation term ut . This result is
much easier to establish for the Cauchy problem (see [7]): this is because,
since the space variables are not affected by the parameter 6:, it is sufficient
to establish a priori estimates for the space derivatives of u and ut and,
when H = Rn, we can achieve this by simply differentiating the equation
with respect to the space variables. Clearly, this procedure does not carry
over to initial-boundary value problems, because the space derivatives need
not satify the boundary conditions. Thus, we are forced to consider time
derivatives only, and the corresponding estimates are not uniform in ~ (space
regularity is obtained, at least for fixed 6-, by ellipticity). For the same
reason, we mention that, contrary to the initial value problem, we cannot
recover a global existence tesult for small data, uniform in the sense that the
smallness required of the data is independent of ê. This question
remains open; nevertheless, we do obtain a sufficient condition for the almost
global existence of solutions of (1.1), independently of the size of the data

, uo, u1 } (see claim ( 1.3) below on the behavior of the life-span of solutions
of (1.1) as ~ ~ 0). In contrast, when H = Rn the uniform global existence
result for small data can be obtained as in [7], following the method of
Matsumura, [6]; here, we emphasize that we consider data uo, u1} of
arbitrary size (but independent of ~).

1.3. Our first goal is thus to establish the mentioned uniformly local
existence result for ( 1.1 ) : in Theorem 2.2 we show that, if ~ is sufficiently
small, the corresponding problems (1.1) are all solvable in a Kato-Sobolev
class To), with To independent of ~. These classes are defined in (2.2)
below; if m is sufficiently large, these solutions are, by embedding, also
Holder continuous. This allows us to study next the question of the conver-
gence, on the common interval [0, To] , of the solutions u = ue to a function
v which should be recognizable as the solution of (1.2). There are three
main questions related to this problem: first, to recognize which equation v
solves, i.e. for which data ~g, vo } ( 1.2) holds. This is perhaps the physically
more realistic point of view, when the hyperbolic data are those
actually given, and problem (1.2) is taken as a simplification of the "real"



one (1.1). Conversely, if the given data are the parabolic ones {g, vo }, the
question is to construct suitable hyperbolic data if, uo, which permit a
reasonable control of the convergence of u~ to v. In either case, the solutions
u~ and v should be comparable, in the sense that they should belong to a
common space, in which it makes sense to estimate the difference in

terms of 6’. Our second goal is to give some results at least on the second
and third of these questions, in preparation for the first: in §4 we recall from
[12] how to construct, from compatible parabolic data {g, vo } of ( 1.2), a set
of compatible hyperbolic data { f, uo, u1}, and then show and estimate the
singular convergence of the corresponding solutions uE to a limit v, which
is the solution of (1.2) corresponding to {g, vo }. In contrast, the first ques-
tion is much more difficult; indeed, the same technique produces a limit v
which, while formally a solution of (1.2) with data { f, uo}, cannot inherit
the smoothness of the uE at the "corner" an x {t = 0}, because the data
if, uo} do not satisfy the necessary parabolic compatibility conditions (this
is precisely the initial-boundary layer). However, we recover the same type
of smoothness and estimates on compact intervals not containing t = 0.
Note that the inherent difficulties are not specifically related to the non-
linear structure of the equations; indeed, they already appear in the linear
case (e.g., the telegraph vs. the heat equation). We will investigate these
questions in a future paper.

1.4. The final motivation for this work, and specifically for the uniformly
local existence result, is that in [12] we were also able to treat the "oppo-
site" situation in which, starting from given hyperbolic data we

construct suitable parabolic data {g, uo}, so that the difference u - v can
be estimated in the (same) Kato-Sobolev class. This result, however, hinges
precisely on the availability of a uniformly local existence result like the one
established here. Furthermore, as a consequence of the essential equivalence
of the solvability of problems (1.1) and (1.2) in the same Kato-Sobolev class,
it follows that if the reduced problem (1.2) can be solved on arbitrary time
intervals [0, T~ for any choice of compatible data {g, vo }, of arbitrary size,
then problem (1.1) is also solvable on the same interval [0, T~ for any choice
of compatible data again of arbitrary size, at least if 6; is suf-

ficiently small (as determined by T and { f uo, ul }). The emphasis here is
on the arbitrarity of the data, because for small data both problems can be
globally solvable by the methods of Matsumura, [6] (albeit with the above
mentioned caveat for (1.1)). As a consequence, in those cases when (1.2) is
globally solvable (see e.g. [9]), we deduce an almost global result for ( 1.1 ) :
that is, if T~ denotes the life span of solutions of ( 1.1 ) ,



We refer to [10] for a more detailed discussion of some questions associ-
ated to the initial-boundary layers, and to [8] for further illustration of our
motivations and applications of this type of results.

2. Notations and Results.

2.1. Let S2 C R’~ be a bounded domain with smooth boundary aS2. For
integer m > 1 we denote the norm in the Sobolev space and
set = ~~ . ~~ denotes the norm in H° {SZ) = and,
finally, -’- Given T > 0, we set QT x (0, T); if u =

t) is defined in QT, we denote space derivatives by aZu = ~u/~xi, and
set Vtt = ... , D2u = {~i~ju ( 1  i, j  n}. Time differentiation is
denoted by ~kt u = and we write ut and utt instead of atu and at u.
We assume that the coefficients aij in (1.1), (1.2), are smooth and symmetric
(i.e. a2~ = and satisfy the uniformly strong ellipticity condition

Following Kato, [2], for integer m we introduce the spaces

and consider solutions of (1.1) in these spaces for sufficiently large m; more
precisely, we fix integer s > [~] + 2, [y] denoting the integer part of y, and
assume that

and that {/, satisfy the hyperbolic compatibility conditions of order
s at ~03A9 for t = 0, defined as follows: setting

as formally computed from (1.1) by means of an explicit formula of the type

(for example,



etc.), we require that the s +1 conditions uk E ~f~~ ~(Q) for 0 x k ~ ~ are
satisfied. These conditions make sense, since our assumptions on the data

guarantee that uk E for 0  k  s + 1, and are necessary for
the solvability of (1.1) in Xs+1 (0, T), for if u E Xs+1 (0, T) solves (1.1), then
(2.6) does hold in Hs+1-k(03A9), so the traces of uk on ~03A9 are defined at least
for 0 ~ k x s, and must therefore vanish.

2.2. Local in time solvability of (1.1) is established e.g. in Kato, [2]
(Theorem 14.3):

THEOREM 2.1.2014 Assume { f uo, u1} satisfy (2.5) and the HCC of or-
der s. There exist then T E (0, T~, , and a unique ~c E Xs+1 (O, T) , solution of
(1.1).

We note that u is also a classical solution on by virtue of

PROPOSITION 2 .1. Assume that 2  m  2 -~-1, so that a = m - 2 E
(0,1 ) . . Then

with continuous injection.

We omit the routine proof of this result, and refer to Friedman, ~1~, for
the definition and the main properties of the Holder spaces 
In particular, Proposition 2.1 implies that u E CZ+a’1+a/2(~T), with a =
~ - 1 - y~/2.

A direct application of Theorem 2.1 to problem (1.1) would yield that
T = r(ê) --~ 0 as ~ -~ 0, since the functions uk defined in (2.7) are such that

our first goal is precisely to show that these local solutions of ( 1.1 ) are in
fact all defined on a common interval independent of ~. To this end, in §3
we prove

THEOREM 2.2. - Let T = be the local existence time given by
Theorem 2.1: then, To =- inf~~o > 0. Moreover, there are eo, M > 0

such that, for all e  eo and t E [0, To] ,

The same result also holds if f is allowed to depend on e, provided that, as

e-~0,



2.3. The uniform estimate (2.9) shows that if e x eo, the set of the
solutions of (1.1) is in a bounded set of the space

] (2.12)
Consequently, there are a function v E W(0, To) and a subsequence, still
noted {u~}, such that as e --> 0

The natural question is now whether, and in which sense, v is a solution of
the reduced problem (1.2) on [0, To], with, presumably, data {f, uo } . The
difficulty in this resides in the fact that these data in general satisfy only the
parabolic compatibility conditions (PCC in short) of order 1. We recall that
the PCC of order m (a positive integer) are defined as in the hyperbolic case:
namely, we require that the functions vk == (8t v) (-, 0), understood in the
same sense as in (2.6), be in for 0  k  ~m/2~ We will come
back to this problem in §4.5; in preparation for this, we address instead a
somewhat more favorable situation: namely, we assume that we are given
smooth parabolic data ~g, vo } satisfying the PCC of order s, and construct
a set of smooth hyperbolic data {/, uo, such that:

1. uo, u1} satisfy the HCC of order s;
2. Theorem 2.2 is applicable to the corresponding problem (1.1);
3. The weak limit v defined in (2.13) is a local Sobolev solution of (1.2),

and the norm of v in the space Hs+2(0, To) defined in (2.15) below
can be estimated in terms of the norm of g in (0, T) and of vo
in (that is, the spaces where belong);

4. v is more regular for t > 0, in the sense that for p E (0, To), similar
estimates hold for the norm of v in (p, To);

5. in ( p, To), and the convergence rate can be explicitly
estimated in terms of 6-.

These results are described by the Theorems of §4; the Sobolev solutions
of (1.2) are in the spaces



where m is a positive integer, ~’"’2 1~, and is the space
introduced by Lions and Magenes in [5] (Chapter 4).

2.4. Our last result concerns claim (1.3) on the life span of solutions of
(1.1). Thus, we assume that the source term f of (1.1) is defined on all of
[0, +oo), and satisfies the corresponding part of (2.5) for all T > 0. We define
the life span Tg of solutions of (1.1) as the supremum of those T > 0 such
that the local solution of (1.1) can be extended to a solution u E X9+1(~, T).
It may well happen that, for a fixed e, Tg  +00, i.e., that the corresponding
solution blows up in finite time; however, by proving (1.3) we show that the
smaller e is, the closer the long time behavior of the corresponding solution
of the hyperbolic problem (1.1) is to that of the parabolic problem (1.2) of
which (1.1) is a perturbation. In [12] we have shown that, if the uniformly
local existence result of Theorem 2.2 holds, then the hyperbolic problem
(1.1) is globally solvable if so is the parabolic problem (1.2) in the Sobolev
spaces Hm (QT), and e is sufficiently small; more precisely, setting

we have proved

THEOREM 2.3. - Let T > 0 and uo, ul~ be given, satisfying the
same assumptions of Theorem 2.1. Assume that problem (1.2) has, for all

and all choices of compatible data g E and vo E 
a solution v E . There exists eo > 0, depending on T

and such that if e  eo, the local solution u E Xs+1 (o, T) of (1.1 )
given by Theorem ~.1 can be extended to a global solution u E Xs+1 (0, T ) .

As a consequence, we can deduce an almost global result for solutions
of (1.1):

THEOREM 2.4. - Under the same assumptions of Theorem 2.3, (1.3)
holds; that is,

Again, this means that solutions of (1.1) can be extended to arbitrary
intervals j0, T~, for any (compatible) data independent of ~, pro-
vided e is sufficiently small (depending on T). Theorem 2.4 is immedi-

ately proven: Given arbitrary T > 0, by assumption we can determine
eo = eo(T, {f, u0, u1}) such that we can solve ( 1.1 ) on [0, T] for all e  eo.

Thus, Tg > T for all such e, which is exactly (2.17). 0

Of course, Theorem 2.4 is meaningful only when the parabolic problem
(1.2) is known to be globally solvable in the spaces for a result



on this direction, established under additional assumptions of boundedness
and decay of the coefficients aij, we refer to [9].

2.5. We conclude by reporting two technical results that we shall need in
the sequel. First, we recall the generalized Gagliardo-Nirenberg inequalities,
whose proof can be found e.g. in ~9~ : :

PROPOSITION 2.2. - Let I C R be an interval, U = SZ x I, and denote
by the norm in Lr(U), 1  p  Let u be a smooth function on
U, m a positive integer, and p, r E ~1, +oo~ . Given j = 0, ... , m, define
q E ~1, by q = p -f- r (1 - m ) . Then, if s = max~p, r~,

with C independent of u. Inequality (2.18) also holds for those functions u,
whose corresponding norms are finite, and for all s > q such that u E LS (U) ;
its last term can be omitted if I = R.

As a consequence, the following composition estimate can be proven as
in Racke, [14] (Lemma 4.7) :

PROPOSITION 2.3. Let U be as in Proposition 2.2, mEN, a E
and u E L°°(U) be such that ~mtu E Lp(U). . Then at’’za(u) E

Lp(U), and there is a continuous, positive increasing function h such that

3. Proof of Theorem 2.2

3.1. We show that if T~. is the life-span of the solution of (1.1), there is
to > 0 such that Tg > to for all ~ E (0,1] (which we assume without loss of
generality). In the estimates that follow, we denote by C a generic positive
constant, possibly different from estimate to estimate, or even within the
same estimate; we may allow C to depend on T, T > 0 being fixed, suffi-
ciently large and independent of 6:. Also, a notation like M = 0(1) means
that M > 0 and, if M depends on ~, there are constants Cl, C2 such that,
as~-~0, 0Cl M=M(~) C2.

Let u E Xs+1 (0, T) be a solution of (1.1): by continuity, there is tl E
(0, T~ ) such that

(note that Ao = O(1), but t1 could vanish as c - 0). In the sequel, we
denote by Di, i = 1,..., a sequence of constants that depend on Ao, but



not on 6-; thus, Di = 0(1). . By ellipticity, we obtain from (1.1) that, for

where the ellipticity constant L depends only on max0tt1 ~~u(.,t)~s-1;

thus, since Vu E C(~0, by (3.1) there is Do such that L  Do,
and from (3.2) we have

Denote by ) ] ) . ) ~ the norm in LZ(0, t; by the interpolation inequal-
ities of Lions and Magenes, [4], for + 1,

9~ = j / ( s + 1 ) ; using this for j = 1, 2, so that 0  81  82  1, we deduce
from (3.3) that for 1J > 0 and suitable D1,

so that, for r~ x 1 /2,

3.2. To estimate the term with we differentiate the equation
of (1.1) s times with respect to t (this is formal; we should in fact resort
to approximations, as in [10]), and multiply in by 2at +1 u: setting
Aij = aij(Vu), Q(Vz) ’-- (Aij~iz, 8jz) and

we obtain



Integrating in [0, ti~ and recalling (2.1), we have

where h is as in (2.19). Thus, denoting by Me the quantity inside the brack-
ets in (3.7), recalling (3.1) (with, for simplicity, v = 1) we deduce that for

We estimate the term with Cs as in [9]: if p, q E [2, are such that

p + q - 2 , from (3.6) we obtain, via Proposition 2.3:

By Proposition 2.2, for A = a E [0,1] and § = ~: :

via (3.1 ) ; similarly, for ~ = E [0,1] and ~ = ~: :

Noting that A = 1, and therefore p + ~ = 2 , we can proceed from (3.9)
with



analogously to (3.4), we also have the interpolation inequality

so we conclude from (3.11 ) that, for 03C3 > 0,

Inserting this into (3.8) we obtain

noting that D7 = 0(1) while Mg = O(el-29) because of (2.8) (and even if
(2.11) holds), by Gronwall’s inequality we deduce from (3.13)

with Mi = O(1). In particular, (3.14) yields an estimate of the term with
in (3.5), whose last term we estimate as in (3.7): setting

we have first that

from this, by Gronwall’s inequality and then integrating, we obtain

3.3. We can now go back to (3.5), from which we obtain, by (3.14) and

(3.15),



choosing 03C3 so small that 203C3D1eD8T  1, and setting F(t) ,

we obtain from (3.16) 
’ ’

Since -y(0) = 2D1M1el-2s, there is t2 > 0 such that 8D1M1~1-2s for
0 x t x t2; we note that t2 = 0(1) (in particular, if (2.10) holds), so that if

t2, our claim is proven. If instead tl  t2, we deduce from (3.17) that,

We can therefore conclude: by continuity, there is t3 E ( o, t 1 ~ such that
~(u, t) > 2 ~(u, o) for 0 ~ t  t3 ; now,

so if ~(u, 0) = M2 = from (3.14) and (3.18) we have, for
t fi t3,

From this, we deduce that

this allows us to conclude the proof of Theorem 2.2, with (2.9) following
from (3.1 ) . DD

We remark that since t1  Te , there certainly is a number depending
on such that for 0  t  t 1,

the whole point of our argument is to show that Ae = as in ( 3 .18 ) .
Indeed, if instead AE = > 0, then from (3.14) we could only
conclude that, instead of (3.19),

but when ~ is small, this inequality is satisfied for all t > 0, so it doesn’t
allow us to deduce the desired lower bound for t1.



4. The Singular Perturbation

4.1. In this section we describe and estimate the singular convergence of
solutions u = uê of (1.1) corresponding to a special choice of data ~ f , uo ,

constructed from given parabolic data ~g, vo) of (1.2). Local solvability
of (1.2) in the spaces Hs(o,T) defined in (2.15) can be established as in
Kato, ~2j ; ; as shown in [9], global solvability in the same classes follows if
there is an a priori bound on the norm of the solution in the Holder spaces
C2+~’ 1+~~2 (~,?T) . Furthermore, regularity results hold for t > 0 (see ~13~ ) .
We summarize these results in

THEOREM 4.1.2014 Let s > [~] + 2 be an integer, and g E 
Vo E H*+1 (SZ) satisfy the PCC of order s. There ex~ist then T E (0, T~, , and
a unique v E Hs+2(0, T), solution of ( 1.2) . v satisfies the estimate

where C depends on . If in addition g E then

for p E (0, T/2), v E Xs2~ (2p, T), and satisfies the estimate

In this result, the additional regularity assumption on g is compara-
ble to that of f in (2.5), and the conclusion essentially states that for
t > 0, v is comparable to u~ in (2p, T) (the only reason we cannot
conclude that v E Xs+1 (2p, T) is that we are not able to show that E

C ( ~2 p, Tj ; L2 (SZ ) ) ) . Consequently, we will assume that g E ( 0, T ) Since
this does not imply that the functions vk (formally defined as (at v)(~, 0)) are
in we regularize the data {g, vo~ and consider, by means of the
techniques described in [10], a sequence of smooth data {g~, satisfying
the PCC of order 2s + 2. At this point we can construct, again as in [10], a
corresponding sequence of hyperbolic data { f ~, uo, ui ~, satisfying the HCC
of order s + 1. To this end, we set ug = vt , ui = vf and

where the "corrector" function cpa is defined in

LEMMA 4.1. - There exists a Coo function cp~ = t) such that for
k = 0, ... , s - 1,



Setting Ka = ~~=o the .fu.nction = 

satisfies the following estimates: For all rra E N, there exists positive C such
that for all p E (0, T) there is pm E (0, p] such that for all 8 > 0 and e x p.",,,

If m x s - l, these estimates also hold for p = 0 and all e > 0.

This Lemma is proven in ~12~; note that Kb = O(1) as e --~ 0, because
each v,k satisfies (2.8), and that for m = 0, (4.6) implies that

In the same way, it is also possible to show that if m ~ s, estimate (4.6) can
be pushed down to p=0 if we replace K6 by === uj-~-2 ~I ~_ -1 2~
that is, the estimate 

’ 

holds for all p E [0, T) (and all é > 0).

4.2. We now solve the hyperbolic problems (1.1) corresponding to the
data ~ f ~, ug, because of estimates (4.5) for m = ~ - 1, k = 0, and (4.8)
for m = s, we see that conditions (2.10) and (2.11 ) of Theorem 2.2 are
satisfied, so these problems have solutions u = u~~ all defined on a common
interval [0, T~~, with 76 independent of é, and u~~ E Xs+1 (0, T~). We can
then establish the singular convergence of the solutions u~~ on this common
interval as c --~ 0:

THEOREM 4.2. - There exists a function v = va such that as ~ - 0

v~ solves (1.2) with data ~g, vo), and satisfies estimate (4.1 ) on [0, .

We prove this Theorem in §4.3. Note that, while (4.9) implies, by com-
pactness, that

for 0 x q  1 /2 (see (4.15) below), we cannot establish analogous results
on the uniform convergence of the time derivatives of uE~ in ~0, Ta~; this is



precisely because of the initial-boundary layer at 9Q x {~ = 0} (note that
even if we can choose ~ = vf, the effect of this layer is still recorded by
the different behavior, as 6: 2014~ 0 and t 2014~ 0, of the estimates on given
in Lemma 4.1). However, as expected, this effect disappears as soon as we
keep away from t = 0:

THEOREM 4.3. - Let p e (0,~/2), and G = G(p,$) == .

The following estimates hold: 

with C independent of p and e.

We give a sketch of the proof of this Theorem in §4.4. As a consequence,
recalling (4.5) and (4.8), for e x es we have the initial layer estimates

This estimate still depends "badly" on 6, because of K6; still, this bad
dependence can be offset by taking small ~. Moreover, we remark that once
we have the solution v6 on [0, we can try to extend it beyond 76 by means
of the a priori estimates (4.1 ) . In relation to this, note that if g E (0, T)
and vo G by Proposition 2_.1 and standard embedding we have
that g E and vo G C2~« (SZ); consequently, the classical Holder
estimates can be used to bound the norm of v in C~~~~(Q~), , and
therefore the constant C of (4.1 ) .

4.3. We now prove Theorem 4.2. From now on, we drop for convenience
the reference to 6, unless where essential; that is, we write v, g, T, ...,

instead of v6, g6, T~, etc. From estimate (3.1) (we did mention that
Theorem 2.2 applies to (1.1) with data we deduce that the
set is uniformly bounded with respect to c in W (o, T) Consequently,
there are a subset, still denoted ~~c~ ~, and a function v E W(0, T) , such that
(4.9) holds. By compactness (see e.g. Lions, [3], Theorem 5.1 of Chapter 1),
also

By trace theorems (see e.g. Lions-Magenes, [4], Theorem 3.1 of Chapter 1),
we have for I = (1 - ??)/2 the estimate



from which (4.10) follows, via (4.14). Recalling that HS-1(0) is an alge-
bra, estimates (4.10) and (4.14) imply that aij(~u~)~i~ju~ ~ aij(~v)~i~jv

weakly in L2(0, T; H9-1(S2)). Thus, if we multiply (1.1) by an arbitrary func-
tion 03C8 E integrate the term with eutt by parts and let
6; --> 0, recalling estimate (4.7) on cpE we deduce that for all such ’Ø

This proves that v solves (1.2) with data ~g, vo ~, where the equation is in-
terpreted in for almost every t E (o, T); note that (4.10) implies
that v(~, 0) = vo. Since vt E g = gs is smooth, and the
PCC of order s are satisfied, we can differentiate the equation of (1.2), and
find that vtt E L2 (o, T; Hs-2 (SZ) ) . Hence, vt E C( ~0, T~ and there-
fore, by ellipticity, v E C( (0, T~ By Proposition 2.1, this implies
that v E C2~"a’ 1+a/2 (~T ) : consequently, v satisfies (4.1 ) . This concludes the
proof of Theorem 4.2. o

4.4. The proof of Theorem 4.3 is really a consequence of the regularity
estimates established in [13]. Although these are carried out for the parabolic
equations, we immediately see that exactly the same technique applies to
the hyperbolic equation as well; in fact, these estimates are "hyperbolic" in
nature, in the sense that they establish regularity in the "hyperbolic" spaces

T ) of solutions of a parabolic problem. We recall the main steps of
the proof, adapted to the present situation. The function z (= z6) ’-- uê - v
is at least in (0, T), and solves the IBV problem

where

We fix p E (0, T /2) and for -1  k we set Pk = + s-~ , so that
p_ 1 = p  Ps = 2 p, and claim:



LEMMA 4.2. - For each k = 0, ... , s there exists positive Ck , indepen-
dent of ~, such that for all t E TJ,

Proof. - This is proved exactly as Lemma 3.1 of [13], proceeding by
induction on k, with the help of cut-off functions such that 0 for

t ~ and ~~(t) - 1 for t > pk The only differences are the proof of the
case k = 0, which we consider now, and the extra term H at the right side
of (4.18). As (4.18) shows, this term can be estimated in terms of Vz, as
for instance in (4.21) below, so its presence does not introduce any essential
difficulty. When k = 0, we proceed as in §3.2: multiplying the equation in
(4.17) in L2(S2) by 2zt, after integration we obtain

Recalling (4.18), we estimate

with C depending on the norms of and in C(~O,T~;Hs-1(S2)). In-
serting (4.21) into (4.20), (4.19) for k = 0 follows by Gronwall’s inequality.
o

The proof of Lemma 4.2 hinges on an auxiliary estimate of the commu-
tators defined by

this estimate is given by

LEMMA 4.3. - Let m be such that 1  m  s, and assume (4.19) holds
for 0  k  m - 1. Then for all r~ > 0 there is C~ > 0 independent of ~,
such that if w = with the cut-off function mentioned above, then



We refer to [13] (Lemma 3.2) for the rather lengthy and technical proof
of this Lemma. Now, since w = 1/;sz = z for t  03C1s = 2 p, we see that
(4.12), and (4.11) for k = s, follow from (4.19) with k = s. Finally, (4.11)
for the other values of k is obtained by ellipticity from (4.17), using (4.23)
to estimate Ck(Uê, z) for t > . o0

4.5. We conclude with a remark on the singular convergence in the case
of the non modified data uo, With exactly the same techniques, we
see that the solutions converge to a weak limit v, solution of ( 1.2) with
data ~ f , uo ~ . These data certainly satisfy the first parabolic compatibility
condition, since

and both ui and the term in brackets in (4.24) (which was called ~u2 in
(2. 7) ) have vanishing trace on 9Q; however, the data ~ f , uo ~ will in general
not satisfy the higher order PCC. With some refinements of the arguments of
§4.3, we can show that v E CZ+a’ 1+a/2 (~T6 ), so that v is a classical solution
to (1.2) on ~0, Ts~; we can then bootstrap regularity for t > 0 exactly as in
Theorem 4.3, to obtain that v E X ~2~ (2p, T~). Further regularity at t = 0 is
prevented, as we said, by the fact that {/, uo ~ do not satisfy the higher order
PCC. In fact, there appear additional distributional corrections in the time
derivatives of v, which account for the initial-boundary layer at 8Q x {t = 0~;
these corrections are evidently not detected by the weak convergence process
described in (2.13) and (2.14). Note that this phenomenon already appears
in the simpler case of a linear equation, even with constant coefficients, and
is not restricted to the particular degree of regularity (high order Sobolev
spaces) that we have considered here. We shall describe the initial-boundary
layer, in a general setting, in another paper.
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