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Soit une martingale dans L4 qui satisfait la pro-
priete de representation chaotique, avec d (Zt, Zt ) = dt. On montre que
les fonctionnelles positives F de satisfont l’inégalité de Sobolev

logarithmique modifiee

ou D est 1’operateur gradient qui abaisse le degre des integrales stochas-
tiques multiples par rapport a et C {0,1} est un
processus donne par 1’equation de structure satisfaite par ’

ABSTRACT. - Let be a martingale in L4 having the chaos

representation property and angle bracket d (Zt, Zt) = dt. We show that
the positive functionals F of satisfy the modified logarithmic
Sobolev inequality

where D is the gradient operator defined by lowering the degree of multiple
stochastic integrals with respect to and C f 0,1~ is a
process given by the structure equation satisfied by .
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1. Introduction

The multiple stochastic integrals with respect to martingales having de-
terministic angle bracket dt (i.e. normal martingales) share the same or-
thogonality and norms properties. As a consequence, a number of common
properties hold for all such martingales, and in particular for Brownian mo-
tion, the compensated Poisson process and Azéma’s martingales. Examples
of such properties are the coincidence of the divergence operator with the
stochastic integral on adapted processes (3), the Clark formula (4), and
variance and spectral gap inequalities (5). Although the second moments of
such martingales are the same, higher order moments may differ. In fact the
structure of each martingale implies a particular multiplication formula for
multiple stochastic integrals, see § IV.3 of [10] and [12], which corresponds
to a particular probabilistic interpretation of Fock space. In practice, few
properties of chaos expansions remain common to all such martingales, for
example the gradient operator D defined by lowering the degree of mul-
tiple stochastic integrals satisfies the chain rule of derivation only in the
Brownian case.

The entropy of a random variable F under a given probability measure
7r, defined as

is independent of the dimension of the probability space. The variance and
entropy operators share the same product property, cf. Prop. 2.2 of [8]. This
makes the entropy a good candidate in order to states inequalities that are
independent of the probabilistic interpretation chosen for the Fock space.

Corollary 5.3 of [8] (see also [3]) states that

where Y is a Poisson distributed random variable on N with mean 8 > 0, and
it is pointed out in [8] that the constant 0 is the best possible. This inequality
has been extended in [1], [2], [13], [14], to functionals of the Poisson process.
Although the proof of (1) relies on the particularities of the Poisson law,
its extension will appear to be valid not only on Poisson space but also for
a large family of normal martingales, and distributions: the law of e.g. the
Azema martingale is connected to the arcsine law, cf. [6] and Ch. 15 of [15].

In Sect. 2 we will show that the proof of modified logarithmic Sobolev
inequalities on Poisson space of [1], [2], [3], [4] extends to the general setting



of normal martingales, see Cor. 1. We also consider the extension, in the
context of normal martingales, of the inequalities given in [14], cf. Prop. 1.
The case of normal martingales satisfying deterministic structure equations
is given particular attention in Sect. 3.

2. Modified logarithmic Sobolev inequality
for normal martingales

Let be a martingale such that

(i) has deterministic angle bracket d(Zt, Zt) = dt.

We denote by the filtration generated by The multiple
stochastic integral In(fn) is defined as

with

We assume that

(ii) (Zt)tE1R+ has the chaos representation property,
i.e. every F E has a decomposition as F = 
A martingale satisfying (i) is called a normal martingale in [5]. Let D : :
Dom(D) -> L2(0 x lf8+, x dt) denote the closable, unbounded gradient
operator defined as

with F = ~°° ~ In(fn). The adjoint b of D is defined by the duality

and it coincides with the stochastic integral with respect to for
every predictable square-integrable process (u(t) , cf. Prop. 4.4 of ~9~ :



The Clark formula is a consequence of the chaos representation property for
see e.g. ~9), and states that any F E Dom(D) c has

a representation

It admits a simple proof via the chaos expansion of F:

The Clark formula shows the spectral gap inequality

The spectral decomposition of 6D is completely known in terms of multi-
ple stochastic integrals since = nIn(fn), , f n E How-

ever, apart from the Brownian and Poisson cases, such integrals may not
be expressed as polynomials, see [12]. If is in L4 then the chaos
representation property implies that it satisfies the structure equation

where a predictable square-integrable process. Let it = 
and jt = 1 - it = R+ . The continuous part of is given
by dZf = itdZt and the eventual jump of time t E R+ is given
as AZt = ~t on 0~, t E IIg+, see ~6~, p. 70.

In the following two cases, we have the chaotic representation property
for (Zt)tER+ satisfying (6):

a) deterministic. Then from Prop. 4 of [6], can be

represented as

with (1 - t E R+, where is a standard Brownian

motion, and a Poisson process independent of with in-

tensity vt = fo 03BBsds, t E cf. Prop. 4 of [6].



b) Azema martingales where ~t = [-2,0[, see Prop. 6 of [6].
We now show that the modified logarithmic Sobolev inequality stated in

[1] for the Poisson process extends to all normal martingales in L4 with the
chaos representation property, that is in particular to the Azema martingale.
We proceed by first stating the analog of the logarithmic Sobolev of [13],
[14]. Let

PROPOSITION l. - Let F E Dom(D) be bounded and FT-measurable,
with F > r~ for some ~7 > 0. We have

Proof - We follow [2] and ~14J. Let Mt = 0 ~ t x T. We
have the predictable representation

with Ht = ~ , 0  t  T . The Ito formula for , see

Prop. 2 of [6] states that for f E C2(JR),

If 03C6t = 0 the terms (f(Mt- + - f(Mt- ))/03C6t and ( f (Mt- + -

f (Mt-) - have to be replaced by their limits as 03C6t ~ 0,
that is Htf’(Mt-) and ZHt f"(Mt-) respectively. Since is uni-

formly bounded from below by a strictly positive constant, we may apply
this formula to f (~) _ ~ log ~ to obtain:



where we applied Jensen’s inequality:

to the convex function ~ as in [13], and the Cauchy-Schwarz inequality

to itDtF. o

The modified logarithmic Sobolev inequality is obtained as a Corollary
of Prop. 1.

COROLLARY 1. - Let F E Dom(D) be bounded and FT-measurable,
with F > r~ for some r~ > 0. We have

Proof. - We apply Prop. 1 with the inequality u > 0,
u + v > 0, cf. [2] and Cor. 2.1 of [14] :

Another proof of (9) consists in using the bound b log b - a log a - (b -
a)(l + log a)  (b - a, b > 0 directly as in [2], Th. 4.1.



COROLLARY 2. - Let F E Dom(D) be bounded and FT-measurable,
with F > ~7 for some r~ > 0. We have

Proof. - We apply Prop. 1 and the bound ~Y(u, v) x v(log( u+v) -log u),
u > 0, u + v > 0, as in Cor. 2.2 of [14]. D

For the Azema martingale with parameter ,~ E [-2, 0[ we have it = 0
a.e., hence

and from Cor. 2:

3. Deterministic structure equations

In this section, is a deterministic function, i.e. (Zt) tER+ is writ-
ten as in (7). In this case it Dt is still a derivation operator, and we have
the product rule

cf. Prop. 1.3 of [11]. In fact Dt can be written as

where Llt is the finite difference operator defined on random functionals by
addition at time t of a jump of height 03C6t to If 0, this implies

which converges to eF DtF as ~t --~ 0. The following proposition extends
Cor. 2.2 of [14] and Th. 2.1 of [13], which are valid for 1, t E R+. It
can also be viewed as a tensorisation of logarithmic Sobolev inequalities for
independent Brownian and Poisson processes.



COROLLARY 3. - Let F E Dom(D) be bounded and FT-measurable,
with F > ~ for some ~7 > 0. We have

Proof. We apply Cor. 2 and the relation 03C6tDteF = - 1 )
which shows that for positive F,

The following corollary is the analog of the sharp inequality Cor. 5.8 of

(8). For ~t = 1, t E lI8+, it coincides with Th. 3.4 of ~13~ and Cor. 2.3 of ~14~.

COROLLARY 4. - Let F E Dom(D) be bounded and FT-measurable,
with F > r~ for some ~7 > 0. We have

Proof. - We use the relations F + 03C6tDtF = log( eF + and

- eF :

and apply Prop. 1. D

In Cor. 4 (as in Cor. 2), the limit of the term in ~t~

as 03C6t tends to zero is 2 times the term in it : it 1 F |DtF|2dt. If 03C6t = 0,
i.e. it = 1, t E then is a Brownian motion and from Cor. 1

we obtain the classical modified Sobolev inequality



If ~ = 1~ ~ R+ then it = 0,~ ~ R+, a standard compensated
Poisson process and from Cor. 1 we obtain the modified Sobolev inequality
of [I], [2]=

Remark. - a) It is known that Dt is a derivation only in the Brownian
case, cf. [9], [12], hence only in this case can the modified Sobolev inequal-
ity (14) be transformed into the standard Sobolev inequality 
2E03C0[~DF~2L2([0,T])] of 

b) It follows from Prop. 6 of [12] that for the Azema martingale, 03C6tDt
is not a finite difference operator, hence (12) and (13) do not hold in this
case.
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