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RÉSUMÉ. - Dans ce travail on donne une borne pour l’ordre de deter-
mination topologique de certains germes de fonctions holomorphes. Soit
f : ((Cn+1, 0) -~ (C, 0) un germe de fonction holomorphe tel que son lieu
des zeros ( V, 0) soit une hypersurface à singularité isolée dont le cone

tangent définit une hypersurface projective de ayant seulement des

singularités isolées. En s’inspirant du travail de B. Teissier la courbe po-
laire, les invariants polaires et les quotients polaires de (V, 0) sont étudiés.
De plus, les resultants obtenus sont appliques pour caractériser une partie
de la strate a p-constant de la deformation miniverselle de ( V, 0) .

ABSTRACT. - In the present work an upper bound for the topological
determinacy order of some germs of holomorphic functions is given. Let
f : (~n+l, 0) -~ ((C, 0) be a germ of holomorphic function such that its
zero locus (V, 0) is an isolated singularity whose projectivized tangent
cone at the origin has only isolated singularities. Following B. Teissier’s
work, the polar curve, polar invariants and polar quotients of (V, 0) are
studied. Moreover our results are applied for studying the equisingular
stratum of the germ (V, 0).
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0. Introduction

In this paper we deal with germs f : ((C’~+1, 0) -~ (~, 0) of holomorphic
functions and with their topological classification. Recall that two germs
f and g are topologically equivalent, or C°-equivalent, if and only if there
exists a local homeomorphism (~ : : ~n+1 --~ with = 0 such that

f o 03C6 = g. The germ f is r-C0-determined if any germ g with f - g E is

C°-equivalent to f, (m is the maximal ideal of ~~z~). If some r exists then
f is finitely determined and the minimum of such r is called the topological
determinacy order of f which is denoted by several authors by Suf(f ) .

It is known, see [4] and its references, that the Lojasiewicz exponent
L ( f ) of f is related with the topological determinacy order of f as follows:
Suf(f) = ~L( f )~ + 1 where ~x~ denotes the integer part of x.

In order to find the integer Suf(f), B. Teissier related it with some in-
variants of the zero locus (V, 0) of f whenever (V, 0) has an isolated hyper-
surface singularity, [21]. B. Teissier introduced the notion of polar curve F H
associated to f and a generic hyperplane H C 0). The irreducible
components (branches) of F H are very closely related to topological pro-
perties of the germ ( V, 0) . Let 1 q be a branch of F H. This branch 1 q has
associated two positive integers: the polar invariants (eq, mq). If we set the
polar quotients {eq mq} then B. Teissier proved that L( f ) is the supremum of
polar quotients m 9 , [21] Corollaire 2.

From this starting point, the polar curve of a plane curve singularity has
been studied. Let (C, 0) C (~2, 0) be the germ of an isolated plane curve
singularity. If (C, 0) is irreducible then Merle, [19], described the sequence
of polar quotients in terms of the Puiseux exponents of (C, 0). After that
several authors have given similar descriptions for the polar curve and its
related invariants: F. Delgado [5], Le D.T., F. Michel and C.Weber [12], E.
Casas [2] [3], E. Garcia-Barroso [6].

As far as the author knows, in higher dimensions there are not such
results. Let f = fd + f d+~ -~- ... (higher degree terms) be the Taylor expansion
of f around 0. Thus the zero locus of the homogeneous polynomial f d is the
tangent cone of (V, 0) at the origin. Let D denote the projectivized tangent
cone of (V, 0) at the origin, i.e. the projective hypersurface D c defined

by the zero locus of fd.

B. Teissier, see for instance Proposition 11 in [23], showed that (V, 0) C
is topologically equivalent to the singularity (~ fd - 0~, 0) C
if and only if, for every i E ~1, ... n + 1~, the Milnor number

(V, 0) of the general plane section of dimension i of (V, 0) is (d -1)2. This



conditions imply that the singularity (V, 0) can be resolved by blowing-up
once the origin.

In this paper we generalize the result of B. Teissier for some hyper-
surfaces. Indeed we make a partial description of the polar curve for any
hypersurface singularity ( V, 0) which verifies the following condition:

(*) The germ (V, 0) is an isolated hypersurface singularity and the tan-
gent cone of (V, 0) at the origin defines a projective hypersurface D c I~n
with at most isolated singularities.

For instance every isolated plane curve singularity or any isolated surface
singularity whose projectivized tangent cone D is a reduced curve in P~
verify condition ( * ) .

One of the results of this work is to give a decomposition of the polar
curve for hypersurfaces ( V, 0) satisfying condition ( * ) . Using this decompo-
sition of the polar curve we will give a bound for Suf(f).

A first bound for Suf(f) is the Milnor number of the singularity ( V, 0) .
The Milnor number is computable from f but it is not a sharp
bound. Our goal is to obtain a better bound of Suf(f) than without

computing the branches of the polar curve F H . .

Suppose that (V, 0) verifies condition (*), then the strict transform V
of V after blowing-up once the origin has at most isolated singularities.
For every singular point P of V there is a well-defined point of Sing(D)
(denoted by P). . It means that the set of singular points of V determines
a subset of Sing(D). . Let Z(fd+k) C be the divisor defined by .

The main contribution of the present paper is related to the evaluation
of the contribution of the singular points of the strict transform V in the
behavior of the polar quotients. Let A be the set of points P of V such
that P E Sing(V) and the associated point P E Sing(D) also verifies P E
Sing(D) n Z(fd+k).

The strict transform V of V is nonsingular if and only if one of the

following situations happens. Either D C I~n is a non-singular hypersurface
or k = 1 and Sing(D) n _ ~ ( this was proved by I. Luengo in [15]
in the case n = 2 but his proof does not depend on the dimension). In both
cases the set A is empty. It can deduced from the works of Le D. T. and B.
Teissier, [13], that Suf(f) is bounded by d when D is non-singular. Assume
then that D has isolated singularities, i.e. Sing(D) ~ 0.



1. Luengo and the author in [16] studied the remaining cases where the
set A is empty. Thus if Sing(D) n Z(fd+k) = f~ then we computed explicitly
all the polar quotients and in particular we got that Suf(f) is d + k - 1 in
this case.

In Theorem 1 we extend the above results and will prove that under
condition (*) then Suf(f) is bounded by

where P) and P) are the Nlilnor numbers of V at P, respect. of
D at the associated point P.

In Example 3 we apply our results to deal with the case where the
projectivized tangent cone D has at most non-degenerate critical points.
We also compute explicitly the set of polar quotients and thus we get the
value of Suf(f).

In Theorem 2 a Noether type formula for the Milnor number is

given. This formula expresses in terms of the multiplicity of V at
0, the sum of the local Milnor numbers of D at its singular points and the
sum of the local Milnor numbers of V at its singular points.

Last section of the paper is devoted to the study of deformations of
a hypersurface singularity (V, 0) which satisfies condition (*). We show in
Theorem 3 that any deformation (Vt, 0) of (V, 0) with constant multiplicity
and Milnor number is an equisingular deformation. Finally necessary and
sufficient conditions for a deformation of (V, 0) to be equisingular are given
in Theorem 4. This result extends the same result proved by I. Luengo [15]
in the case of superisolated surface singularities.

Notations. Let h C C~ ~zo, ... , , zn~ be a homogeneous polynomial, we
will denote by C I~n the divisor in defined by h, and by Sing(Z(h))
its singular locus. If P E Sing(Z(h) ) is an isolated singularity of Z(h) then

, P) will denote its Milnor number.

For the germ of a curve (-y, 0) C we denote the multiplicity
of 03B3 at the origin by multo(1). Let (,S’, 0) C be the germ of a

hypersurface such that ~y is not contained in S, the intersection multiplicity
of both germs at 0 will be denoted by 

1. Decomposition of the polar curve

Let (V, 0) C 0) be the germ of a hypersurface. Throughout the
paper ( V, 0) satisfies the condition:



(*) (V, 0) has an isolated singular point at 0 and the projectivized tangent
cone of V at 0 has at most isolated singularities.

It means that if f is a holomorphic function such that (V, 0) is its zero
locus and if f = fd + + ... ~ is the Taylor expansion of f around the
origin then D := Z( fd) C is a projective hypersurface with at most
isolated singularities.

Let f : C/ 2014~ C be the germ of a holomorphic function such that its
zero locus (V, 0) has an isolated singularity. Let H be a hyperplane in 
passing through the origin. B. Teissier, [20] [21], introduced the notion of
polar curve T H associated to f and to H, the polar curve is the closure of
the set

where Vp is the level hypersurface f (z) - f (p) = 0 and TpVp is its tangent
space at p.

In fact, B. Teissier [20] [21] and J.P. Henry-M. Merle [8] proved that
there exists a non-empty Zariski open subset Wi in the Grassmannian of
hyperplanes of passing through 0 such that if H E Wi then F H is the
germ of an isolated complete intersection singularity, transverse to Hand
such that multo(hH) = (rH, H)o = (V, 0), where 0) is the Milnor
number of the intersection of ( V, 0) with a generic hyperplane. Moreover,
the number of irreducible components (or branches) of F H is the same for

r

all H G Wi. Let rH = ZUl 1q be the decomposition of F H in branches.
B. Teissier also proved that the sequence of multiplicities mq = multo(qq)
and the sequence of intersection multiplicities V )o do not depend on
H E Wl Therefore, for each q E {1,..., , r~, he defined two positive integers
(eq, mq) : : mq = multo(1q) and eq = (1q, V)o - mq, and showed that

Remark 1. - Let ( V, 0) be the germ of a hypersurface satisfying condi-
tion ( * ) . Since D has a finite number of singular points there exists another
non-empty Zariski open subset W2 of hyperplanes such that H E W2 if and
only if the projective variety H n D is nonsingular. The condition ( * ) , i.e. the
finiteness of Sing(D), is the key point here because otherwise Sing(D) has
dimension bigger than zero and any hyperplane always intersects Sing(D).
Let W :== Wi n W2. A hyperplane H e W will be called a good hyperplane
for (V, 0).



Let H E W be a good hyperplane. We may choose coordinates so that
the equation of H is ~ zo = 0~ . Let us denote by Thus rH is defined
by fzl = 0, ... , fzn - 0 and Sing(D) n is empty. Let C0393H be the
projectivized tangent cone of F H at the origin.

Condition (*), i.e. the set Sing(D) is a finite set, is the key hypothesis
of Proposition 1 in [16]. It was shown there that condition (*) implies that
CF H is the finite number of points ... , , Pt, Pl+1, ... , , Ps } given by the
projective set (fd)zn). We assume that Pi E Sing(D) if i =

1, ... , l and Pi ~ Sing(D) otherwise. Therefore, tangent line directions of
branches of rH can be seen as points on Let P E CrH be such a
point. We define Fp as the union of branches of F H whose tangent line
direction at the origin is defined by P. Then

Note that ,~ ( , ... (fd)zn) and Z(zo) do not intersect because hH is
transverse to H. Thus the tangent line directions of F H are not contained
in H. The following lemma can also be found in [16].

LEMMA 1. - For every P G C0393H, the multiplicity of 0393P at the origin is
equal to the intersection multiplicity of the projective hypersurfaces defined
by the equations ( fd)zl = 0, ... (fd)zn = 0 at P. Therefore, if P E Sing(D)
then multo(hp) _ P).

Remark 2. - If D has an A1-singularity at P, i.e. a non-degenerate
singular point, then Fp has only one smooth branch.

2. A bound for the polar quotients

Let 7r : (x, E) -~ 0) be the blow-up of the origin; (V, D) the
strict transform of (V, 0) and E the exceptional divisor of 7r. From now on
we are identifying points P on D with those P on V n E.

LEMMA 2. 2014 If (V, 0) satisfies condition (*) then the hypersurface V C
X has at most isolated singularities.

Proof. Note that the singular locus of V is contained in Sing(D) which
is a finite set. In order to prove it we look at a local equation of V at every
point of V n E. 0

Lemma 2 implies that every singular point P of V is related in a unique
way with a point of Sing(D) (denoted by P). Let A be the set of points
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P of V such that P G Sing(V) and the associated point P E Sing(D) also
verifies P E Sing(D) n Z(fd+k). Let P be such an isolated singularity of V
and P) its the Milnor number.

THEOREM 1. - Let (V, 0) be the germ of a hypersurface satisfying the
condition (*) and f - 0 an equation for (V, 0). Let f - fd + fd+k + ...
be the Taylor expansion of f around the origin. Then the supremum of the
polar quotients sup~ m 9 ~ is less than or equal to

From the proof of the above theorem we will show that for every  ~ A
the integer , P) - (k - P) is non negative.

Proof. - Consider the open set W of good hyperplanes for (V, 0) . Let
r

H E W, and U 1q be the polar curve. After a linear change of

coordinates we suppose that H is defined by zo = 0. Thus, F H has a de-
composition as in the above section: rH = urp, P E (fd)zn)
and rp = ~yq , where ~yq is a branch whose tangent line direction is
defined by P, (we are using explicitly condition (*) in order to have such a
decomposition) .

Let P E .~ ... (fd)zn). . Since TH is transverse to H, there is
no tangent line direction of rH contained in H. Thus P has homogeneous
coordinates (1 : al ... : an). Let 03C8 A := B :_ be the linear

change of coordinates given by the equations zo - zo and z2 - zi - ai zo .
Let cp be its inverse morphism and g : := f o cp = 0. Partial derivatives of f
and g are related in the following way:

Thus, we find that:

(i) The Taylor expansion gd + gd+k + ... of g around the origin verifies
gs = f s o (~. Therefore, D is defined by gd = 0 and gd+k is different
from zero.

(ii) H is defined by Zo = 0 and Q := ’ljJ(P) has coordinates (1,0,..., 0).

(iii) The polar curve rH is defined by the zero locus of i = 1,..., n,
and it is transverse to H.



(iv) Let IB be the ideal {gzl, ... , gzn)~~zo, ... The ideal of initial
forms of I B is generated by i E ~ 1, ... , n) .

Take 03B3Pq to be a branch of Fp. Let mq = and eq = 

mq, Since (1 : 0 : ... : 0) is the tangent line direction of 03B3Pq in B, -yq has
a parametrization h : (~, 0) -~ h(t) = 
where ordt (hB (t)) > mq for all i E {1, ... , n) . Of course 03C6h is a parametriza-
tion of the germ -yq in A.

One checks using the Chain Rule that eq = (~yq , S)o , where (S, 0) is the
germ of hypersurface defined by {fzo = 0~ in A and by {fzo o ~p = 0~ in B.
Now we have two possibilities:

1. Suppose that different from zero, then we have the following
two possibilities:

(A) If P ~ Sing(D) then ~yq is transverse to (S, 0) at 0 because P is
not on Hence, the intersection multiplicity of both germs at the
origin is the product of their multiplicities: eq = ( -yq S )o - 
multo (S) = mq (d - 1). . Therefore, for every branch ~yq of h~ such that
P ~ Sing(D), we get the equality

Remark 3. - In particular if the projectivized tangent cone D c I~n is
nonsingular then the all the polar quotients of the isolated singularity (V, 0)
are equal to d -1, where d is the multiplicity of V at 0. Then the set ( § )
is nothing but {d - 1} and Suf(f) = d.

(B) Let P e Sing(D). If Z(fd+k) then we have proved in [16]
Theorem 2 that in this case the polar quotient .!:.!L = d + k - 1. Then let
us assume that P E Sing(D) n Z(fd+k). Let 03C0 : B ~ B be the blow-

up centered at the origin. Since Q has coordinates (1, 0, ... , 0), the strict
transform of ~yq lies into the chart where 7r is given by ... , xn) _

{xo, xlxo, ... , xnxo). By ~1~ p. 32, a parametrization of 11) is given by xo =
tm and xi z = 1..., n. Nloreover g o ~r is equal to d ~ g(xo, ... 
where

is a local equation of V at Q and m E ... , holds m(0) = 0. By
(iv) and Proposition 13.13 in [9], the strict transform rH of F H by 7r is the



zero locus of gzl , ... , g n with

It is easy to check, for every i G { 1, ... , n}, that == gzi . Then H is
the zero locus of ... , Moreover, since y9 is a branch of TH, for
every i G {1,.... n) , we find that o hq (t) - 0. This implies the following
equalities:

Therefore the sum of the polar invariants eq and mq satisfies:

Let us compute From its definition (g) xo is equal to xo -1 ~ s, s E
~~xo, ... with s(o) = 0. Let Aq = ordt(s o h) > 0, then

Thus we find the following equality for the quotient of the polar invariants:

By the other hand, Lemma2 shows that V has an isolated singularity at P
or Q. A local equation of V at Q is 9 = 0, therefore the Milnor number of
V at P is given by

Moreover, since TH is defined by (g)~1, ... we obtain that the above
Milnor number is



Lemma 1 and our previous computations show the relations:

Note that P) - (I~ - P) is a positive integer because every Aq
is positive too. Thus we get the following bound from (6) :

Remark ,~. - Note that if P is a nonsingular point of V then P) = 0
and from (8) we get k = 1 and ~4~ = 0 for every q. It implies after (6)
that m q = d. This coincides with the following fact already noted by I.

Luengo in [15] : the isolated hypersurface singularity ( V, 0) which is not a
cone can be resolved blowing-up once the origin if and only if k = 1 and
Sing(D) n ~.

2. If 0 then Sing(D) = (fd)zn) - ~P = (1 : : 0 : :

... : 0) ~ and we get the same result as in (b). Here we are using condition
( * ) because we are using our decomposition of the polar curve. 0

COROLLARY 1. - Let H be a good hyperplane for an isolated hypersur-
face singularity (V, 0) C (C~n+1, 0) verifying condition (*). Then the singu-
larity (V n H,O) can be deformed toward its tangent cone (D n H,O) in a
*-constant deformation and for every i C {1, ... , n}, the Milnor number of
the general i-plane section is (V n H, 0) _ (D n H, 0) _ (d - 1)2.

Proof. - Since H is a good hyperplane for (V, 0) then D n H is a non-
singular hypersurface in If ~ zo - o~ is an equation for H then the
singularity ( V n H, 0 ) C 0) is defined by f ( o, z1, z2, ... , , zn ) - 0 and
its projectivized tangent cone D n H (defined by zl, z2, ... zn) = 0) is
nonsingular. It implies, after Remark 3, that (V n H, 0) c 0) is topolog-
ically equivalent to the singularity defined by its tangent cone. It turns out,
after B. Teissier’s results (see Introduction) that, for every i E ~1, ... , n~,
we find that (V n H,O) _ (D n H, 0) _ (d - 1)i. . D

Example 1. . - Let f = fd-~ fd+k : : ((C3, 0) -~ (C, 0) be a germ of holomor-
phic function such that its zero locus ( V, 0) satisfies the condition ( * ) . It is
clear that in this case the set Sing(D) n Sing(Z(fd+k)) is empty. Moreover,
for every P e Sing(V) such that P E Sing(D) n Z(fd+k) one can compute
(see the local equation of V at P after bloivs up the origin) the Milnor
number



where s p is the intersection multiplicity of the projective plane curves D
and P. Therefore, in this case our bound is equivalent to the
following one

Example ~. Let f = and

(V, 0) its zero locus which satisfies the condition (~). If we apply Example 1
to the singularity defined by g = (x3y2 + z5)(z2 + yx) + zxg + zyg + x6y3 we
get that for g the supremum of the polar quotients is bounded by 12. Then
f and g are topologically equivalents.

Example 3. - Suppose that D has only A1-singularities, i.e. all singular
points of D are non-degenerate. Let H be a good hyperplane for (V, 0) and
we may assume that it has equation zo = 0. Note that otherwise

Sing(D) = {P = (1 : 0 : ... : 0) ~ and D defines a smooth hypersurface in
which is in contradiction with the fact that P is an A1-singularity. Let
U fp, P E (fd)zn) be our decomposition of the polar

curve. We have proved into the proof of Theorem 1 that:

1. If P ~ Sing(D) then for each branch 1q of 0393P the quotient m q = d -1,
see (2).

2. If P E Sing(D) then Remark 2 shows that hp consists only on one
branch with multiplicity one. Furthermore the equalities (6) and (8)
give ~ 9 = d + P).

Thus, we obtain that the set of polar quotients is the following set:

Moreover in this case it is possible to describe the jacobian Newton
r

polygon L eg of the image of rH by the map 03C6 : Cn+1 ~ C2 de-
q=1 
q

fined by §(£) = (fzo(z), , zo ) , see [21] [22]. Note that this polygon is a

(c)-equisingularity invariant, see [21]. Let Pi , ... , Ps be the singular points
of D. Suppose that they are ordered as follows: Pj if and only if

. Since each singularity of D is an A1-singularity then
the sum of Milnor numbers of D at all singular points is equal to s. Lemma



2 and (a) into the proof of Theorem 1 show that the bellow defined integers
M and N satisfying the following equalities:

Then the jacobian Newton polygon of (V, 0) has the following form:

Next theorem gives a Noether type formula for the Milnor number

~C(V, 0). This formula is a relation among the Milnor number of (Y, 0), its
multiplicity at 0, the sum of the Milnor numbers of D at its singular points;
it is denoted by J1(D) and the sum of the Nlilnor numbers of V at its sin-
gular points, which will be denoted by J1(V). Notice that in our hypothesis
both and are finite numbers. In fact, the same formula has been
generalized by the author in [17] to any isolated hypersurface singularity
(V, o) C o).

THEOREM 2. - if {V, 0) satisfies condition (*) then

Proof-Let f = fd + fd+1 + ... E C~~zo, ... , zn~ be the germ of a
holomorphic function such that its zero locus defines (V, 0) . . Let be



the open set of good hyperplanes for (V, 0) and H E W. Suppose that
~ zo - 0 ~ defines H. Therefore FH = Ufp, P E , is our

decomposition of the polar curve where Tp = Corollary 1 and Lemma
1 show that:

Hence, we find that

Let P E Sing(D), by Lemma 1,(4) and (7), we obtain that

Substituting in (9) we get the proof of the theorem. 0

Remark 5. - The above formula is a generalization of the well-known
Noether’s formula for germs of plane curve singularities: - d(d -
1 ) + .

3. Multiplicity and p-constant deformations

Throughout this paragraph ( V, 0) C 0) will denote the germ of a
hypersurface satisfying condition ( * ) . Assume that ( V, 0) has multiplicity d
at 0. In this section we deal with p-constant deformations of ( V, 0) .

First we recall some concepts on deformations, we follow Chapter 6 in
the book [14] of E. Looijenga or Chapter III in [20].



A deformation of an isolated hypersurface singularity (V, 0) is a map-

germ f : (X, x) ~ (S, s) between nonsingular germs such that (V, 0) is iso-
morphic to (s), x). The space (S, s) is called the base space of the defor-
mation. There exist an obvious way to define morphisms of deformations.
Then a deformation is called versal if any other deformation factorized

through it. The factorization morphism is not unique. Nevertheless there
exist deformations such that the derivative map between the base spaces is

unique. Such deformations are called miniversal deformations. Any isolated
hypersurface singularity admits a miniversal deformation and any of two of
such deformations are isomorphic. It is also known that the base space of
the miniversal deformation of an isolated hypersurface singularity is (CT, 0)
where T is the Tjurina number of (V, 0) .

Let m : (.Jl~t, 0) -~ (CT, 0) be the miniversal deformation of (V, 0) C
Let Ma be a sufficiently small representative of We set:

- ~a E : Ma has a singular point with the same ~c
and multiplicity as ( V, 0) ~,

- : has a singular point with the same 
and as (V, 0)~,

S’~* - {a E : Ma has a singular point with the same ~c* as (V, 0) ~ .

We will prove that S,,d = - and we give another description of
this stratum. Let D = {t E (C : It  ~~. .

THEOREM 3.2014 Let p : B -~ be a p-constant deformation of (V, 0).
Let : ~ B be the section of p such that . Vt, has an

isolated singularity whose Milnor number does not depend on t, (V, 0) -

(0), ~-1 {o)). The following conditions are equivalent:

(i) The deformation is -constant.

(ii) The multiplicity of Vt at ~-1 (t) is constant.

(iii) The deformation is ~c* -constant.

Proof. Let us start with (i) implies (it ) . Let H be a general hyperplane
for (V, 0). For t small enough H is also a general hyperplane for ~-1 (t) ) .
Since the projectivized tangent cone Do C of (V, 0) at 0 defines a hyper-
surface with only isolated singularities then, after Corollary 1, ( V n H, 0) can
deformed in a p*-constant deformation toward (Do n H, 0) From hypothesis
(i) we get a p-constant deformation of (Vt n H, (t) ) toward (Do n H, 0) .



The isolated singularity (Do n H, 0) is a cone which is homogeneous. For
such homogeneous singularities it is known that p-constant deformations
implies "multiplicity constant" deformations, see [7] [18]. It implies that for
every t the multiplicity of Vt n H at is constant. To finish
the proof it is enough to note that since H is a generic hyperplane the
multiplicity of at is equal to the multiplicity of V at 

Next we prove (ii) implies (iii).

Suppose that the multiplicity is constant. After an analytic change of
coordinates we may assume that cr(~) = (0, ... , 0, t), i.e. is defined by
zo = 0,..., Zn = 0. Let F(z, t) == 0 be the equation of Band p(z, t) = t.
Since the multiplicity is constant, we can write F as follows:

where each Fi E is a homogeneous polynomial of degree i. The equa-
tion Fd(z, t) = 0 defines a family D = of projective hypersurfaces
of degree d in pn. In order to show (iii), it is enough to prove that any
Dt c I~n has at most isolated singularities. After that we apply Remark 1.
Let C be the analytic set of I~n x D defined by the zero locus of a , ... , a . .
The second projection restricted to C gives a finite morphism between C
and D because the preimage over the origin is a discrete set, see e.g. [10]
p. 164. Then, for all t E D, the set Dt n P is a finite set, that means that
Sing ( Dt ) is a finite set.

Finally (iii) implies (i) follows by definition. 0

Let p : : x3 -~ ~ be a multiplicity constant deformation of (V, 0) where
( V, 0) verifies condition (*). Suppose that F(z, t) = 0 is an equation for
B and p(z, t) - t. Thus, F(z, t) - Fd(z, t) + Fd+l (z, t) + ... , Fd(z, t) = 0
defines a family D = of hypersurfaces in I~n such that Do has at
most isolated singularities. Notice that in the above proof we have shown
that every projective hypersurface Dt has at most isolated singularities.

Since the multiplicity is constant, let 7r : ,t3 -~ B be the monoidal trans-
formation of B with center Let P be a singular point of D and
assume that it has homogeneous coordinates (1 : 0 : ... : 0). Let P be the
corresponding point of B. In a neighbourhood of P the map 7r is given by
7r(xo, xl, ... , xn, t) _ (xo, xoxl, ... , x0xn, t) and a local equation of B at P
is

Then p o (B, P) -~ (D, 0) is a deformation of the germ of hypersurface
with isolated singularity ( V , P) see ( 2 ) . The hyper surface (~ o ~r ) -1 (t) is the



strict transform Y of Vt after blowing-up the origin. The next theorem gives
necessary and sufhcient conditions for p to be a p*-constant deformation.

THEOREM 4. - Let p : ,t3 --~ be a multiplicity constant deformation
of (V, 0) such that every Vt := p-1 (t) has isolated singularities. The defor-
mation p is a p*-deformation if and only if the following conditions holds:

(a) For each singular point Pi E Sing(D), , there exists a (unique) section
TZ : T -~ D such that Ti(t) E Sing(Dt) and tc(D, PZ) _ TZ(t)).

(b) For each singular point PZ E Sing(D), , there exists a (unique) section
~i : T ~ B such that E Sing(t) and i) _ 

Proof. Suppose that p : ,~ --~ is a p*-deformation. Thus there exists
a section ~ : ~ -~ ~ such that ~ (Vt, a~(t) ) ~ is a p*-constant family. By the
semicontinuity of the Milnor number, for every Pi E Sing(D), there exist
singular points x21 (t), ... , (t) of Dt such that

In the same way, for each 7~ e Sing(Do), there exist singular points
yi1 (t),..., yisi (t) of t such that

Since the deformation is /1* -constant, the formula for the Milnor number in
Theorem 2 gives the equality:

Thus the inequalities ( 10) and (11) are equalities. Finally applying the irre-
ducibility of the singular locus, see [11], we get the sections of the Theorem.

Next we prove the "if part". Assume that the conditions (a) and (b)
holds. Since Dt has at most isolated singularities and by the semicontinu-
ity of the (local) Milnor number, there exists a bijection between the sets



Sing(D) and Sing(Dt). This implies that _ and _ 

Next we apply the formula for the Milnor number in Theorem 2 and we
get that the family is a p-constant family. Since by hypothesis it is a
multiplicity constant family then Theorem 3 gives the result. 0
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