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Stationary states of a gas in a radiation field
from a kinetic point of view (*)

ANNE NOURI (1)

e-mail: nouri@cmi.univ-mrs.fr

RESUME. - Un theoreme d’existence est demontre pour une solution
stationnaire d’un systeme d’équations cinetiques decrivant l’interaction
d’un faisceau de photons avec un gaz dans un barreau.

ABSTRACT. - An existence theorem is derived for a system of kinetic
equations describing the interaction of a radiation field with a gas in a slab
in a time-independent frame. Solutions with a given energy and profiles of
given indata are found, for Dirac measures as given indata of the photon
distribution function.

Introduction

The study of a gas in a radiation field is a subject of interest in as-
trophysical and laboratory plasmas. So far, the radiative transfer equation
for the photons distribution function has been coupled with fluid equations
for the gas ([2, 5, 9]). However, many astrophysical and laboratory plas-
mas show deviations from local thermodynamic equilibrium. This requires
a kinetic setting. Kinetic models have been derived in [3, 7, 11]. On the
mathematical level, a system of kinetic equations has been studied in [12]
for two-level atoms and monochromatic photons. There, a H-theorem is for-
mally obtained, as well as the states of equilibrium. A theorem of existence
of a solution to this kinetic model has been derived in [10] in the evolutionary
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case. In this paper, the stationary case is addressed. A theorem of existence
of a solution is derived in the slab, for given indata on the boundary. The
photons are emitted in beams perpendicular to the walls.

1. The model and the main result

Let a gas of material particles of mass m endowed with only two internal
energy levels El and E2, with El  E2. Denote by ~4i and A2 particles
A at the fundamental level 1 and the excited level 2 respectively, and by
f(x, v) and g(x, v) their distribution functions. A time-independent frame
is considered, with the geometric setting a slab, i.e. the space variable x is
one-dimensional and belongs to ~0,1~ . The velocity variable v belongs to .

A radiation field of photons p at a fixed frequency v = °~ interacts with the
gas, h being the Planck constant and AE = E2 - Ei. Assume that the gas
particles interact elastically among themselves. The interactions between
the gas molecules and the photons are, classically, of three types,

Let H) be the distribution function of the photons, c speed of light
and 03B8 the angle between the x-axis and the photon velocity cf2. Denote
by I (x, SZ) - chv(x, S2) the specific intensity. Let 03B212, a21 and 03B221 be
the Einstein coefficients. Then, following [2, 9], the stationary equation for
I(x, SZ) is given by

Since 1312 = /?2i? the subscripts of the Einstein coefficients can be dropped.
Denote by ~ the first component of the velocity vector v. The Boltzmann
equations for the two particle species j4i and A2 can be classically written
as

where S is a given collision kernel,



and

Denote by

The physical conditions considered here are

where kB is the Boltzmann constant and T the temperature of the gas.
The first inequality implies that the relativistic effects can be neglected.
The velocities of the gas atoms being quite smaller than speed of light, the
collisions kernels S and S’ in the collision operators are assumed to vanish
for v2 -~ v* > V, for some given V > 0. Moreover, hard forces interactions
are considered. The collision kernel S is defined by

with x(s) - 0 if s > V, 0 ~ /3  2, (b, b’) E (L+(o, 2~-))2, > c > 0,
b’( )  c > 0 a.e. Here, 03C9 E S2 is represented by the polar angle  (with
polar axis along v - v* ) and the azimuthal angle ~. The second inequality
in (1.4) guarantees that the photon momentum is much smaller than the
thermal momentum of the gas, so that any exchange of momentum between
photons and molecules can be neglected. The boundary conditions for the
gas particles are given indata, i.e.

The photons are emitted in beams perpendicular to the walls, i.e.



where Io and 11 are non negative constants. Because of this strong light
source, directed along the x-axis, there is much higher intensity in this
direction. It is the reason why it is assumed that the stimulated emission
for |cos03B8 |  E is negligible compared to the stimulated emission in the other
directions. And so, instead of (1.1-3), the distribution functions ( f g, I )
must satisfy, for some E > 0,

Given a constant E > 0, solutions ( f , g, ~) to (1.5-8) are studied, with

for some constant 1~ > 0. The main result of the paper is the following.

THEOREM 1.1. - Let E > 0 be given. Assume that fo, fl, go and gl
are non negative functions satisfying

Then there are a constant k > 0 and ( f, g, I) E (L+((0,1) x v~))2 x
L+ {0,1; lll {0, 2~r) ) solutions to (1.5-12) in the sense that for any test func-
tion ~p in C1(~0,1~ x IR3), with compact support in some ~~~ > ~ with b > 0,
the weak form of (1. 7-8) holds, with I {x, 8)d8 integrated from (1.5-6)-
(1.12). Moreover, f 03BE2(f + g)(x, v)dv is independent of x and bounded.



Here, 27r) denotes the set of non negative bounded measures de-
fined on ~0, 2~r~ .

Remarks. The theorem also holds for more general non negative
bounded measures as given indata for the photon distribution function.

Like in [1] for the Boltzmann equation in the slab, a stationary solution
having a given profile on the ingoing boundary is here determined.

For the sake of simplicity, the constants a, /3 and hv will be taken equal to
1 in the rest of the paper. Moreover, the interparticles collision terms Qi and
Q2 will be skipped. The proof of Theorem 1.1 would also hold with them,
with minor adaptations, since the ~4i and A2 particles are mechanically
identical.

2. Approximations with bounded integrands
and truncation for small ~’es

The first approximations bound the integrands in the collision operators.
Moreover, a supplementary truncation r, for some r > 0, allows
the control of the distribution functions inside the slab by their values at
the outgoing boundaries.

Let r E (0, 2E), a E (0,1), and j E IN* be given. Let xr E C°°, 0  x’’ 
1 satisfy

Let Sj be a positive C°° function approximating S when

and such that Sj (v, v*, c,~) = 0 if

Consider v~))2 x L1 (o,1; 27r)), endowed with
its strong topology. For j large enough, a closed and convex subset K of
(L+((o,1) x v~))2 x M(o, 2~r)) is defined by



Let 03C6 be a regular function defined on (0,1). Denote by 03C6i (x ) = i SP ( i ) 
For ( f, g, I ) E K and p E [0,1], let (/, g, I be the solution to

together with the boundary conditions

Here,

and f6 (resp. go, are regularizations of fo A j (resp. fl A j, go A j,
gi n j ) vanishing  2 . a n b denotes the minimum of a and b. There is
existence of a non negative solution to (2.1-7) in {L+ ( (o,1 ) Y~ ) ) 2 x



L+ (0, 1; M (0, 2~r) ) . Indeed, let and be defined by 1~° = L° = 0 and

together with the boundary conditions (2.5-6). The sequences and (L’~ )
are increasing. Indeed, 1  0 = 0, 1  0 = l°, and if and

L’~+1, then and ln+1  ln+2 since

and

and analogous expressions for {x, v). Moreover, and are bounded
in L°°, uniformly with respect to n. Indeed, for j large enough,



and

so that

Hence, by Levy’s theorem, and strongly converge in L1 to some
non negative L) solution of (2.1-7). Then 1 is obtained by integration of
(2.3-4)-(2.7).

There is uniqueness of the solution of ( 2 .1-7) since, if (k1, l 1 ) and (k2, 
were two solutions of (2.1-7), let l ) = ( l~ 1 - 1~2 , l 1 - P). Then

Multiply (2.9) by sgnk, (2.10) by sgnZ, add them and integrate, so that

Hence l~ = l = 0.



It follows from

that

Define the map T on K x ~0, l~ by T (( f , g, I ), p) _ (~c(I~, l, 7), ~c), where

v

The map T is continuous for the strong topology of (L 1 ( (o,1 ) 
Y~))2 x L1(o,1; ~.T(o, 2~r)) x ~0, l~. Indeed, let (fn, gn, In) E I~ converge to
( f , g, I ) in (L+ ( (o,1 ) ~  Y~ ) ) 2 x L+ (o,1; M (o, 2~t) ) and (pn) converge
to pin ~0, 1~ . Let - where

Up to a subsequence, converges to some since takes its val-
ues in [0,1]. Then (2.8) holds for and n with similar arguments. Since

(0,1), the sequences (~L) and (~-) are uni-
formly bounded with respect to n. Moreover, and (~) are solutions
to the system



The coefficients of ~n ~v and av in the left-hand side of this system are
bounded in L°°, whereas by [8], the right-hand sides of this system are
bounded in L2 ( (o,1 ) V ~ ) . Hence ( av ) and ( av ) are bounded
in L2 { {o,1 ) V}). And so, the sequences and (~), , bounded
in H1, are compact in Ll. Up to a subsequence they converge to some 
and i in The passage to the limit in (2.1-2) when n tends to infinity is
straightforward, so that (k, i) is the solution to (2.1-2) associated to ( f, g, 7).
By uniqueness of this solution, the whole sequences (kn) and (in) converge
to  and l in Then (in) converges in L1(0, 1; M (0, 203C0)) to I solution to
(2.3-4). Indeed, for any continuous function, defined on [0,27r] and such
that max03B8~[0,203C0] |03B3(03B8)| 1,



Hence,
i

sup ~ (I’~ - I)(x, 8)c,~(8)d8~dx --~ 0 when n --~ 0 ~’Y(e)~~1 

by the strong convergence in Ll (o,1) of ( (x, v)dv ) , (x, v )dv)1+ ~ 1+ y

and (03C6i * f gn 1+gn(x, v)dv). Consequently, ( n) converges to

when n tends to infinity. Finally, up to a subsequence, is a Cauchy
sequence in L1(o,1; M(o, 2~r)). And so, converges to
T ( ( f , g, I ) , p) when n tends to infinity.

The map T is compact in (L1)2 x L1(0,1; M(o, 2~r)) x ~0,1~. Indeed, for
any sequence ( f n, gn, In) and bounded in (Ll)2 x L1(o,1; M(o, 2~r))
and [0,1] respectively, the sequences (kn) and (in) are compact in Ll by
similar arguments to the previous proof of the continuity of T. Moreover,
~cn belongs to [0,1]. And so, is compact in (L1 )2 x
L1 (o,1; M(o, 2~r)) x ~0,1~.

Hence, by the theorem of Schauder, there is a fixed point ((/, g, I ), p) in
K x [0,1] for the map T, which is solution to the system



where ,~3 = A. By the exponential forms of f, g and I,

I (x, 9)  c1I (1, 9), cos 8 > ~ , , I (x, 8)  c1I (o, 8), cos 8  - r ,2 2

with cl only depending on r. Hence,

by integrating the sum of (2.12) and (2.13) on (0,1) x V~, and adding
(2.13) integrated on (0,1) Y~ to (2.14) and (2.15), respectively
integrated on (0,1)  {|cos03B8 | > ~} and (0,1) x {|cos03B8| ~ (r 2 , ~)}. Hence
{3 > c4, with c4 only depending on r.

The passage to the limit when i --~ +00 can be performed with analogous
arguments to the proof of the compactness of T, since it now holds that
(J f 1+f j dv) and ( f are strongly compact in L1 (o,1). The passage to
the limit when a tends to zero can be performed with analogous arguments
to the proof of the continuity of T, after noticing that up to a subsequence

Id03B8 strongly converges in L 1 when a tends to zero. Indeed, an explicit
computation from (2.14-16) expresses it in terms of y --~

J ( y, v)dv and y ~  g 1+g j ( y, v)dv, which are compact in L 1 by the

averaging lemma. Hence there is a solution to



for some ,~~ E [c4, A]. Moreover, satisfies

3. Approximations with a truncation for small ~’es.

In this section, the passage to the limit when j tends to infinity is per-
formed in the last system of equations of Section 2. Since ,~~ belongs to
[c4, ~~ for all j, where c4 and A are independent of j, a subsequence of 
converges to some 13 E [c4, ~~ . .

LEMMA 3.1. - The sequences and are weakly compact in L1 ( (o,1) x
f Ivl  Y~) ~

Adding (2.17) and (2.18) and integrating the sum implies that

Moreover, integrating (2.18) on (0,1) x V~, (2.19) on (0,1) x
{|cos03B8| > E}, (2.20) on (0,1 )  {|cos03B8| ~ ( 2 , ~)}, and adding the resulting

equations, implies that

Multiply (2.17) by (2.18) by (2.19) by (2.20)1+ ~ 1+I
by lnIj, add them and integrate. Hence,



by (3.2) and the inequality

Here,

and

Since

and the sequences and take their values in (o, j4), it holds that



By the exponential form of f ~ + g3 and the truncation xr ~,

so that

Hence, the sequences (fj) and are weakly compact in L1, and con-
verge, up to subsequences, to some f and g.

LEMMA 3.2.2014 T~e sequence is weakly compact in L1((0,1) x
 E~). Moreover, uniformly bounded with re-

spect to j’. .

It follows from the expression of Ij with respect to fj and gj from (2.20),
(2.23) and the inequality

that

By (1.14) and the exponential form of fj, for some subset W of {v E
JR3; Y~ of positive measure,

Hence, for any K > 2,

The equiintegrability of (h ) on (0,1) ~ E ( 2 , E) ~ then follows
from the equiintegrability of on (o,1)  V~, as well as the bound
from above of I) derived in (3.3). Consequently, is weakly



compact in L 1 ( ( o,1 ) x {|cos03B8|  ~}). Moreover, by integration of (2.19),
(2.23),

by (2.24). 

Passage to the limit when j ~ ~ in (2.17-24). .

It follows from the weak L1 compactness of and (gj) and from

that

are weakly compact in L1. Then, it classically follows from the boundedness

are weakly compact in Ll . Since {h ) is weakly compact in L1 ( {o,1) x
E { 2, E)~), and I’~ (x, 8)d8) is bounded, the sequences

and are weakly compact in L 1. And so, the
averaging lemma applies, which allows to pass to the limit when j tends to
infinity. And so, there is a family gr, Ir, kr) of solutions to



Here, F(x) = f f(x, v)dv and G(x) = f g(x, v)dv.

4. Removal of the truncation for small ~’es

This section is devoted to the passage to the limit when r tends to zero
in the previous system (3.5-12). First,

where c is a constant independent of r. Hence

so that suprr0 kr = ko  +00. Let us prove that

where



Multiply (4.1) by (4.2) by (4.3) by ln Ir 1+Ir, and (4.4) by 
integrate and use that

Hence,

where



From

and the bounded domains of integration, it holds that

Hence,

And so,

Moreover,

so that

Then,



Hence,

Then,

Then, for v such that ( ~ (  o and v* such that ~~*  0 and 1 ~ ~* ~  10,
there is a set of ~ E s2 of measure (say ) ~ oo , depending on x, v, v*, such
that > c and ~~* ~ > c. Hence, for L > 2,

Hence,

Together with (4.6) it implies that

Analogously,

Since



and

it follows that

Assume that = 0. Choose L = Then, by (4.7-8),

Since

it holds that

By (4.10),

Moreover, it follows from (4.5) that for a. a. x E (0,1), there is a subset
W(x) of ~v E JR3; V, ~~ ~ > 1 ~ with measure at least half the measure
of ~v E JR3; V, ~~~ > 1~, such that

Then, by the exponential form of f’’,

And so, for a. a. x E (0,1) and |cos03B8| ~ (r 2, e),



Together with (4.11 ) and the Lebesgue theorem, it implies that

This contradicts (4.9), when taking L = Hence > 0.

We may now choose ri > 0 and l~l > 0 so that

LEMMA 4.1. - For ~ > 0, the families and are weakly
compact in L1((0,1) x ~v E iv~  V, ~~~ > ~~)~

First,

Then,

Denote by xj := f3 := and gj := , where (rj) is a se-

quence tending to 0. By Lemma 4.1, there are subsequences, still denoted

by ( f j ) , and ( l~~ ) , with f ~ - f , g~ - g in weak
x 03B4}) for all 03B4 > 0 and - k. Let 03C6

be a test function vanishing ~, for some ð > 0. In order to prove
that ( f h (x, 8) f ~ {x, v)cp{x, v) d0dzdv) , ( f h (x, 8)g~ (x, v) d0dzdv) ,
( f Q~ v )dxdv) and { f Q~ (gj, v )dxdv) have the respec-
tive limits f I(x, 8) f (x, v)d8dxdv, , f 1 (x, 8)g(x, v)d9dxdv, ,
f v)dxdv and Q±(g,g)03C6(x, v)dxdv when j tends to infinity,
we first prove the two following lemmas, with similar arguments to some

proven in [1].



LEMMA 4.2

It follows from the bound from above + v)dv that

If the lemma does not hold, then there are ~ > 0 and a subsequence of
(say) ( f ~ ), still denoted by ( f ~ ), such that for each j there is a subset S~ of
(0,1) with ~,S’~ ~  2~~ and

Hence,

Here, at least half the integral comes from the set of (x, v) with f ~ (x, v) >
c10j2. Let V* . := {u. E JR3; |  V,1  |03BE*| 2}. By the exponential form
of f~,

Then, from the geometry of the velocities involved, and from

given v such that V , r~  ~ ~ ~  ~ and clOj2, it holds for
v* in a subset of V* of measure |V*| 2 and for w E ,S’2 in a subset of measure
|S2| 100

, that

It follows that, for some constants c14 and c15 independent of such v,
v* E V* , w and for j large,



And so, using the entropy dissipation estimate,

for j large enough. The lemma follows by contradiction.

LEMMA 4.3. - Given p > 0, there is jo such that for j > jo and out-
side a j-dependent set in x of measure less than p, ( f ~~~ 2 f ~ (x, v)dv) and
( f ~~ ~ Z g~ (x, v)dv) tend to 0 when i tends to infinity, uniformly with respect
to x and j .

Let us prove Lemma 4.3 for ( f ~~ ~ i Given 0  r~ « 1 and x,

j, either

In the latter case,

For each (x, v) such that  1 2 and > ~, take v* in
V* := {v* E JR3; ~v* (  ~~* ~  2~, so that by (4.8),

Given v, it holds for v* in a subset of V* of measure 
~ and for w E ,S’2

in a subset of measure ~ oo , that

It follows that, for some constants C18 and C19 independent of such v,
v* E and for j large,



Since there is a constant C20 > 0 such that, uniformly with respect to j,
the integral

is bounded by C20 outside a j-dependent set 6j in x, of measure p, it follows
that for x E 

for i large enough.

LEMMA 4.4. - Let ~ be a test function vanishing on  ~, for some
~ > 0. . Then ( f h (x, (x, v)c,o(x, v)d8dxdv) and ( f h (x, (x, v)c.p(x, v)
d03B8dxdv) respectively converge to I(x, 8) f (x, v)d03B8dxdv and f I(x, 0)
g(x, v)c.p(x, v)d03B8dxdv when j tends to infinity, where I is the solution to

Let us prove the first part of the lemma. By the expressions of f 7~ (x, B)d8
and derived in (4.1),

splits into the sum of

which tend to zero when j tends to infinity, by (3.12), and



and

Then,

since

The first term in the right-hand side tends to zero when j tends to
infinity, since (fj - converges weakly to zero in L1 and f;(G - F)(z)dz
is a bounded function. The second term in the right-hand side tends to zero

when j tends to infinity. Indeed, let ~ > 0 be given. Since and by
Lemma 4.2, there is po > 0 such that for every j > po , for any subset S of
(0,1) with S’ ~  Po,

By Lemma 4.3 applied to po, for j large enough, there are Xj C (0,1)
with ~X~  po and io E IN* such that



Then, for a.a. x E (0,1), by the weak L1 convergence of to f on
(0, 1) x V, ~~ > ~ }, there is jo(x) such that

and so, for a. a. x E (0,1)

Hence, for almost all x E (0,1),

And so, the second term in the right-hand side tends to zero, by applying
the theorem of the dominated convergence. All other terms, i.e. X2~~ , ..., X6,j
can be treated analogously.

LEMMA 4.5. - Let cp be a test function vanishing on ~~~  ~, for some
~ > 0. Then, v)dxdv) and v)dxdv) re-
spectively tend to and when j
tends to infinity.

Split ~p into its positive and negative parts respectively, so that ~p can be
considered as non negative in the rest of the proof. Let us first prove that

Let 03B3 > 0 be given. By the weak L1 compactness of (Q- and
the integrability of Q- ( f there is a number ~ > 0 and jo E IN, such
that for any subset A of (0,1) V} with A ~  r~,

By Lemma 4.3, there is ji > jo such that for j > jl and outside a
j-dependent set in x of measure less than ( f ~~~~ f ~ (x, v)dv) tends
to zero when ~u tends to zero, uniformly with respect to x and j. Moreover,



is bounded from above by a constant c22 outside of a set in x of mea-
sure less than 4~ , by the averaging lemma and Egoroff’s theorem. Then,
~’ Sf(x, v*)dv*dw, which is smaller than c22 f f(x, v* )dv*, is bounded from
above by a constant c23 outside of a set 5’~ in x of measure less than 
Denote by

By the weak L~ compactness of ~p) and the boundedness of
f Sf(x, v,~ ) dv,~ dw on S~ V ~ , the first term in the right-hand side
tends to zero when j tends to infinity. Choose then ~c small enough so that

which is smaller than

be smaller than E for j bigger than some j2 > jl. For such a ~c,

{ f ~* ~ ~~ ( f ~ - f)(x,v*)dv*) strongly converges to zero in Since

bounded by V~, the third term in
the right-hand side tends to zero when j tends to infinity. This ends the proof
of the convergence of to 

when j tends to infinity. Let us finally prove that



Let p > 0 and  > 0, * > 0 be given. As a consequence of the proof of
Lemma 4.3, for some jo there is a sequence of subsets (Xj,p) of (0,1) such
that |Xj,03C1|  p and v)dv) (resp. (|03BE*| *fj(x,v*)S~j03C6(x, v’)
dv*dw)) converges to 0 with ~c (resp. ~c* ), uniformly with respect to x E ~’~

which by Lemma 4.2 tends to 0 when K --~ +00, then p -~ 0, uniformly with
respect to j > ~. By the averaging lemma and Egoroff’s theorem, there is
for any * > 0 a subset Y * C (0,1) of measure smaller than p, such that
f ~ * v’)dv*dw converges to f(x, v’)dv*dw
when j --~ +00, uniformly with respect to x e ~, , and is bounded. Split
fX~ Q+ v)dxdv into 

’~

By Lemma 4.3, the first term in the right-hand side tends to zero when
~c* --~ 0, uniformly with respect to j and p. For fixed, the second term in
the right-hand side tends to f(x, v)(~’ I~* I>w* f(x, ’ v*)S’cp(x, 
when j --~ and p --~ 0. The third term in the right-hand side is bounded
by c f3 (x, v)dvdx, which tends to 0 when /? -~ 0, uniformly with respect
to j by Lemma 4.2. Hence,

by letting first ~c* --~ 0, then j --> oo and /) -~ 0. This ends the proof of
Lemma 4.5.
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