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The equivariant fundamental group,
uniformization of real algebraic curves,
and global complex analytic coordinates

on Teichmüller spaces(*)

JOHANNES HUISMAN

E-mail: huisman@univ-rennesl.fr
Home page: http://www.maths.univ-rennes1.fr/~huisman/

R.ESUME. - Soit X une courbe algébrique réelle de genre superieur ou
égal a. 2. On construit ici un système global de coordonnees analytiques
complexes sur 1’espace de Teichmuller T(X) des courbes algébriques com-
plexes de meme genre que X. Celui-ci induit un système global de co-
ordonnees analytiques réelles sur l’espace de Teichmuller reel de X. La
construction consiste a uniformiser la courbe algébrique réelle X par le
double demi-plan C B R. Ceci donne lieu a une PGL2 (R)-représentation p
du groupe fondamental equivariant de X. On determine une presentation
explicite du groupe fondamental equivariant. On s’en sert pour construire
un système global de coordonnees analytiques complexes sur l’espace des
deformations complexes de p. Cela nous mene au système de coordonnees
recherche sur T ( X ) .

ABSTRACT. - Let X be a real algebraic curve of genus at least 2. We
construct a global system of complex analytic coordinates on the Teich-
muller space T(X) of complex algebraic curves of the same genus as X. .
It induces a global system of real analytic coordinates on the real Teich-
muller space of X. The method of construction consists of uniformizing the
real algebraic curve X by the double half-plane CBR. This gives rise to a
PGL2 (R)-representation p of the equivariant fundamental group of X . We
determine an explicit presentation of the equivariant fundamental group,
that is used to construct a global system of complex analytic coordinates
on the complex deformation space of p. This will give rise to the desired
coordinate system on T(X) . .
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1. Introduction

Let X be a complex algebraic curve of genus at least 2. We denote

by T (X ) the Teichmüller space of complex algebraic curves homeomor-
phic to X. Fricke constructed a global system of real analytic coordinates
on T (X ) as follows. Choose a uniformization of X by the upper half-plane
U. One obtains a representation

of the fundamental group of X into the group PSL2(R) of holomorphic au.to-
morphisms ofU. The space DefR ( p) of real quasiconformal deformations of p
parametrizes real bianalytically the Teichmuller space T(X). After having
chosen a presentation of the fundamental group 7r1 (X), one easily constructs
a real analytic open embedding of DefR (p) into real Euclidean space. Hence,
one gets a global system of real analytic coordinates on T(X) . .

Fricke’s coordinate system may be perceived as unsatisfactory in the
sense that it is only real analytic. Several authors have constructed global
systems of complex analytic coordinates on T(X) (e.g. [2, 4, 10]). When
one wants to construct such a coordinate system, one is tempted to adapt
Fricke’s construction by considering the space Defc(p) of complex quasicon-
formal deformations of p. This space, however, is far too big to parametrize
T (X ) complex bianalytically; by considering complex deformations of p, one
can deform p independently on the upper half-plane and on the lower half-
plane. It follows that Defc(p) parametrizes the product T (X ) x T(X) of
T (X ) and the Teichmuller space T (X ) of the complex conjugate algebraic
curve X. This is Bers’ simultaneous uniformization [1].

All above-mentioned constructions of complex analytic coordinate sys-
tems on T(X) consider T(X) embedded in T(X) x T(X) in some way and,
in doing so, single out a subspace of complex quasiconformal deformations
of p that do parametrize T (X ) complex bianalytically. Then, by ad hoc
arguments, it is shown that this subspace can be embedded complex biana-
lytically as an open subset of en. Hence, one gets global systems of complex
analytic coordinates on T (X ) [2, 4, 10].

It is clear that the difficulties one encounters when constructing com-
plex analytic coordinates on T (X ) come from the uniformization of X by
the upper half-plane U. In order to avoid these difficulties one should uni-
formize X by the double half-plane D = CBR. Such a uniformization only
exists when X is a real algebraic curve, i.e. X = X for some embedding
of X into complex projective n-space. This is the idea of the present paper
and will lead to a, in my opinion, neat construction of a global system of



complex analytic coordinates on the Teichmuller space T (X ) for any real
algebraic curve X of genus at least 2. We explain briefly our construction.

Assume that X is a real algebraic curve. Let £ be the Galois group
of C/R. Then E acts continuously on X. Choose an equivariant uniformiza-
tion of X by the double half-plane D. One obtains a representation

of the equivariant fundamental group E) of X into the group PGL2(R)
of equivariant holomorphic automorphisms ofD. The equivariant fundamen-
tal group is a group whose subgroups classify :E-equivariant coverings of X;
it is naturally isomorphic to the fundamental group of the orbifold quotient
of X by the action of £ [7] . For our purposes, it will be more convenient,
however, to stick to the notion of equivariant fundamental group.

It follows immediately from the general theory of quasiconformal defor-
mations of Kleinian groups that the space Defc (T) of complex quasiconfor-
mal deformations of T parametrizes T (X ) complex bianalytically. A suitable
presentation of the group 7Ti(X, E) allows to embed Def~ (T) complex biana-
lytically as an open subset of en. Hence, one gets a global system of complex
analytic coordinates on T(X).

The coordinate system on T (X ) that we construct has the following
property. If X is a real algebraic curve, the Galois group £ acts naturally
on T(X). The set of fixed points T(X)03A3 is the real Teichmüller space of
X [3, 13] ; it depends not only on the genus of X but also on the topological
equivalence class of the action of E on X. . Now, the coordinates on T (X )
that we construct are E-equivariant. Therefore, they induce a global system
of real analytic coordinates on the real Teichmuller space of the real

algebraic curve X.

We should note that in the case that the real algebraic curve X is an
M-curve, i.e. the number of connected components of the set of real points
of X is maximal for given genus, the complex analytic coordinates on T (X )
that we construct coincide with the coordinates constructed by Earle [4].
In fact, the idea of uniformizing the real algebraic curve X by the double
half-plane D is implicitly present in that paper.

The paper is organized as follows. In Sections 2 and 3, we outline the
theory of the equivariant fundamental group as automorphism group of a
universal equivariant covering. Since this fundamental group is essentially
the same as the orbifold fundamental group of the quotient, we omit the
proofs. A reader interested in details may consult [8]. Section 4 is devoted to
uniformization of real algebraic curves, in fact more generally, of Riemann



surfaces equipped with certain actions of ~. In Section 5, we construct a
global system of complex analytic coordinates on the Teichmuller space
T(X) for any real algebraic curve X of genus at least 2 that does not have
real points. This case is easier to deal with since the action of E on X is fixed
point-free, and, therefore, the equivariant fundamental group is isomorphic
to the ordinary fundamental group of X/~. In Section 6, we give a descrip-
tion of the equivariant fundamental group in terms of equivariant loops,
again omitting details. We determine, in Section 7, an explicit presentation
of the equivariant fundamental group of a real algebraic curve having real
points. Such a presentation can also be found in [7]. Our treatment differs
in that respect that we fully exploit the global group action of E on the real
algebraic curve. In Sections 8 and 9 we construct a global complex analytic
coordinate system on the Teichmuller space T(X) for any real algebraic
curve X of genus at least 2 that has real points.

CONVENTION. - In the rest of the paper, Riemann surfaces-in partic-
ular, real and complex algebraic curves are not necessarily connected or
compact.

2. The universal equivariant covering

Let E be a group. A ~-space is a topological space X endowed with an
action of E such that the law E x X - X is continuous, when E is given
the discrete topology.

Let X and Y be E-spaces. A map f : X -~ Y is called equivariant if

for all x ~ X and 03C3 e E.

Let X be a E-space. A subset U of X is stable if E U for all x E U

and all 03C3 E E. The E-space X is said to be equivariantly connected if Ø and
X are the only open and closed stable subsets of X. .

Recall that for a locally connected topological space the notion of con-
nected component makes sense. In fact, such a topological space is the dis-
joint union of its connected components. If X is a locally connected E-space,
then X is equivariantly connected if and only if the induced action of £ on
the set of connected components of X is transitive.

Let f: Y - X be an equivariant map of £-spaces. The map f is an
equivariant covering of X if f is a covering in the usual sense, i.e., f is

surjective and for all x E X there is an open neighborhood U of x in X such
that f - I U is the disjoint union of open subsets Y of Y, for i E I, such that
the restriction f i of f to ~Z is a homeomor phism onto U.



Let X be a £-space. Consider the group E itself as a discrete E-space.
An equivariant base point of X is an equivariant map b: ~ --~ X. If b is an
equivariant base point, we denote by b03C3 the image b(a) of 03C3 E 03A3. Let Y
also be a £-space, and let c: ~ --~ Y be an equivariant base point of Y. An
equivariant map !:Y -~ X is base point-preserving if = b~ for all
a E E. Such a map is denoted by f : (Y, c) --~ (X, b).

Let p: (X, b) --~ (X, b) be an equivariant covering map. The map p is
a universal equivariant covering of (X, b) if for all equivariant coverings
q: (Y, c) --~ (X, b), there is a unique equivariant continuous map f: : (X 1) --~
(Y, c) such that the diagram

commutes. By abuse of language, we will also say that p: X -~ X is a
universal covering of X.

PROPOSITION 2. l. - Let X be a locally and equivariantly connected 03A3-
space, and let b be an equivariant base point of X Suppose that p: (X, b) ~
(X, b) is an equivariant covering of X. Let Xa be the connected component
of X containing ba , and let X~ be the connected component of X containing

Let p~ be the restriction of p to X~, considered as a map into X~ . Then,
p is a universal equivariant covering of X if and only if the following two
conditions hold.

1. The map p~ -~ is a universal covering of X~ for

2. The group ~ acts freely and transitively on the set of connected com-
ponents of 0l . D

COROLLARY 2.2. - Let X be a locally and equivariantly connected 03A3-
space, and let b be an equivariant base point of X. Let XQ be the connected
component of X containing b~ . Suppose that has a universal cover-

ing for all ~ E ~. Then, (X, b) has a universal equivariant covering. 0

COROLLARY 2.3. - Let X be a locally and equivariantly connected 03A3-

space, and let b be an equivariant base point of X Suppose that (X, b) has a
universal equivariant covering p: (X , b) --~ (X, b) . Let b be the induced base
point of the quotient and let b be the induced base point of the quotient
X /~. Suppose that ~ acts discontinuously and freely on X . Then, the action



of E on 0l is discontinuous and free, and the induced map on the quotient
spaces 

-

is a universal covering of the topological space X/~. D

3. The equivariant fundamental group

Let q: Y --> X and r: Z --; X be equivariant coverings of a £-space X. .
An equivariant continuous map f: Y --~ Z is a morphism of equivariant
coverings of X if the diagram

commutes. It is then clear what is understood by an automorphism of an
equivariant covering. The group of automorphisms of an equivariant cover-
ing q: Y -> X is denoted by Aut(Y/X ).

An equivariant covering q: Y -~ X is said to be Galois if the map q is a
quotient of Y for the action of the group Aut(YjX) on Y.

Let X be a £-space, and let b be an equivariant base point ofX. Suppose
that (X, b) has a universal equivariant covering p: {X 1) --~ (X, b). By the
universal property of such a covering, the group Aut(X/X) is uniquely
determined by X, up to unique isomorphism.

DEFINITION 3.1. 2014 The group Aut(Xj X) of automorphisms of the equiv-
ariant covering X over X is called the equivariant fundamental group of
X, , and is denoted by ~rl{X, ~; b), , or simply by ~-(X, E).

Of course, if E is the trivial group, then the equivariant fundamental

group b) of the £-space X is nothing but the ordinary fundamental
group of the topological space X with base point bi .

PROPOSITION 3.2.2014 Let X be a locally and equivariantly connected 03A3-
space, and let b be an equivariant base point of X. . Suppose that (X, b) has
a universal equivariant covering. Let X 1 be the connected component of X
containing bl. . Let ~1 be the subgroup of ~ consisting of all ~ such that
o-’ Xi = Xi. Then, there is an exact sequence



This sequence is split, if b03C3 = bl for all 03C3 E 03A31. In particular, the equivariant
fundamental group of X is isomorphic to the semidirect product

and 03A31, if b03C3 = b1 for all 03C3 ~ 03A31. ll

Using Propositions 2.1 and 3.2, one easily shows the following statement. .

PROPOSITION 3.3. - Let X be a locally and equivariantly connected 03A3-
space, and let b be an equivariant base point of X . Suppose that p: (X, b) ~
(X, b) is a universal equivariant covering of X. . Then, the covering p is
Galois, i. e., the map p is the quotient of X by the action of ~rl (X, ~; b). .
a

The following proposition follows directly from Corollary 2.3.

PROPOSITION 3.4. - Let X be a locally and equivariantly connected 03A3-
space, and let b be an equivariant base point of X . Suppose that X has
a universal covering. Suppose, moreover, that ~ acts discontinuously and
freely on X. Let b be the induced base point of the quotient X/~. Then, one
has an isomorphism

~1 (x, ~; b) ^~ ~-1 (x/~; b) . o

~ 

4. Uniformization of real algebraic curves

Let £ be the Galois group of Cover R, i . e. , ~ _ ~ 1, ~ ~ , where a is
complex conjugation. Let X be a Riemann surface. A real structure on X
is an action of E on X such that 7 acts antiholomorphically. We will also
say that the Riemann surface is defined over l~.

Recall that a Riemann surface X is of finite type if X is isomorphic to
the complement of a finite set in a compact Riemann surface. A Riemann
surface of finite type is essentially a complex algebraic curve. Similarly, a
Riemann surface X of finite type endowed with a real structure is essentially
a real algebraic curve. Therefore, in what follows, by a complex algebraic
curve (resp. a real algebraic curve) is meant a Riemann surface of finite type
(resp. a Riemann surface of finite type defined over R).

Let X be a Riemann surface defined over R. Its subset X ~ of fixed points
for the action of £ is called its set of real points.

We will call a connected Riemann surface hyperbolic if it is universally
covered, in the holomorphic sense, by the upper half-plane U. An equivari-
antly connected Riemann surface defined over R will be said to be hyperbolic
if each of its connected components is a hyperbolic Riemann surface.



We denote the lower half-plane by L, and we let D be the double half-
plane U U L. The uniformization of Riemann surfaces over R is then merely
a consequence of the classical uniformization of Riemann surfaces [5], The-
orem IV.4.1.

THEOREM (Uniformization of Riemann surfaces over R). - Let X be a
hyperbolic equivariantly connected Riemann surface defined over R. Then,
there is a universal equivariant holomorphic covering p: ~ --~ X of X by the
double half-plane ~D. D

In case X is a hyperbolic equivariantly connected real algebraic curve,
a uniformization as a Riemann surface defined over R will be called a uni-

formization of X as a -real algebraic curve.

If p: ~D --~ X is a uniformization of a Riemann surface X over R, then
the group G of automorphisms of p acts holomorphically on D, i.e., G is a
subgroup of the group of equivariant automorphisms of D. Using
the fact that the automorphism group of U can be identified with PSL2(R),
one easily shows the following statement.

PROPOSITION 4.1. - The group Auts(D) is equal to the group PGL2 (R) .
o

Let p: D - X be a uniformization of a Riemann surface X defined
over R, and let G be the group of automorphisms of the covering p. Then,
according to Proposition 4.1, G is a subgroup of the group PGL2(R). Since
G acts discontinuously on D, the group G is Kleinian. (We refer to [11] for
definitions and facts concerning Kleinian groups.)

We will say that a Kleinian subgroup G of PGL2 (R) is of the first kind
if its region of discontinuity is equal to D. Otherwise, G is said to be of
the second kind. In that case, the domain of discontinuity of G contains
D as a proper subset, and the limit set of G is a nowhere dense subset of

Note that the definition the kind of a Kleinian subgroup of PGL2(R)
extends the classical definition of its kind in case G is contained in PSL2(R),
i.e., in case G is Fuchsian.

PROPOSITION 4.2. - Let X be a hyperbolic equivariantly connected Rie-
mann surface defined over R. Let p: ~ --~ X be a universal equivariant holo-
morphic covering ofX. Let G be the group of automorphisms of the covering
p. Then,

1. the group G is isomorphic to the equivariant fundamental group
of X;



2. the group G is a Kleinian subgroup of acting discontinu-
ously on D;

3. the quotient Riemann surface IlD/G is equivariantly isomorphic to X. .

Moreover, the following equivalences hold.

~. The group G is of the second kind if and only if the Riemann surface
X has a nonempty ideal boundary.

5. The group G is Fuchsian if and only if X is not connected.
6. The group G contains parabolic elements if and only if X has punc-

tures.

7. The group G contains elliptic elements if and only if X has real
points.

Proof. - Statement 1 is clear. Statement 2 follows from Proposition 4.1.
Statement 3 follows from Proposition 3.3.

In order to show the equivalences 4, 5, 6 and 7, let Gi C G be the
subgroup of a E G such that C U, i.e., G1 = Then, Gi is at
most of index 2 in G, and Gi is the group of automorphisms of the restriction
pi of p to U. This restriction is nothing but the ordinary uniformization of
the Riemann surface Xi = P1(U). Clearly, Xi is a connected component
of X.

It is well known that Xl has a nonempty ideal boundary if and only
if Gi is of the second kind. Using the action of E and the fact that X is
equivariantly connected, X has a nonempty ideal boundary if and only if
J~i has one. Since Gi is of finite index in G, the group G is of the second
kind if and only if Gi is so. This proves equivalence 4.

The Riemann surface X is not connected if and only if Gi = G. Since
Gi = G n PSL2(R), the subgroup Gi of G is the largest Fuchsian subgroup
of G. Equivalence 5 follows.

Since the group Gi is of finite index in G, the group G contains parabolic
elements if and only if Gi contains such elements. It is well known that Gi
contains parabolic elements if and only if Xi has punctures. But Xl has
punctures if and only if X has punctures. This proves equivalence 6.

Since elliptic elements of PSL2(R) have fixed points in U, Gi does not
contain such elements. An elliptic element a of G is therefore necessarily of
order 2. After conjugating G in we may assume that a(z) = -z
for all z E I~1 (cC). Then, ~(~) - -~ = a( 1), i.e., the image of
I is a real point in X.



Conversely, suppose that X has a real point. Since X is, moreover, equiv-
ariantly connected, X is connected, i.e., Xi = X. Then according to Propo-
sition 3.2, the exact sequence

is split. But this sequence is isomorphic to the exact sequence

which is, therefore, split too. Hence, G contains elliptic elements. This shows
equivalence 7. D

5. Complex coordinates on Teichmuller space;
the case of a real algebraic curve without real points

Fix an integer g  2. Let, throughout this section, X be a compact con-
nected real algebraic curve of genus g having no real points. Let 7r: ---~ X

be a uniformization of X as a real algebraic curve, G the group of automor-
phisms of ~r, and £ the Galois group of C over R.

LEMMA 5.1. - Assume that X03A3 = (b. Then, there are elements 03B31,... ,

of G satisfying ~y~ ~ ~ ~ ~y9+1 = 1 such that the induced morphism

is an isomorphism.

Proof. - According to Proposition 4.2, G is isomorphic to the equiv-
ariant fundamental group E). Since E acts freely on X, the equivari-
ant fundamental group E) is isomorphic to the ordinary fundamental
group ~r1 (X/~) of the quotient X/~, by Proposition 3.4.

Since the group £ acts freely on X, the quotient is a nonorientable

topological surface, and its Euler characteristic is equal to

It follows that the topological surface X/~ is homeomorphic to the con-
nected sum of g+1 real projective planes. Since G is isomorphic to 
the statement follows. D

We choose once and for all elements ~yl , ... , -y9+ 1 of G satisfying the
statement of the preceding lemma.



By Proposition 4.2, the elements ~yl and 1’2 of G are loxodromic Mobius
transformations. We claim that ~yl and ~y2 do not have any fixed points in
common. Indeed, if they would have a fixed point in common, then they
would have both of their fixed points in common by ~1 ~~, Proposition I.D.4.
This would imply that there are nonzero integers m, n E Z such that =

which contradicts Lemma 5.1, given the fact that g  2. Therefore, f1
and ~y2 do not have a fixed point in common. Hence, after conjugating the
subgroup G of PGL2(R) by an element of PGLZ (1’Ig), we may assume that
~yl has 0 as attracting and oo as repelling fixed point, and that ~2 has 1 as
attracting fixed point.

Recall that a quasiconforrnal deformation of G is a homomorphism

satisfying the following property. There is a quasiconformal orientation-
preserving homeomorphism h of having 0, 1 and oo as fixed points,
and such that = h o a o h-1 for all a E G [12], Section 1.3.3.

Note that all connected components of the region of discontinuity of
G are simply connected. Therefore, the Teichmüller space T (G) of G is in
bijection, in a natural way, with the set of all quasiconformal deformations
of G [9], §7, Corollary 2. This means that we may identify T(G) with the
latter set, i.e.,

T(G) = ~c: G --~ PGL2(C) c is a quasiconformal deformation of G~,

and one has a natural biholomorphic map

Hence, in order to define a global system of complex analytic coordinates
on T(X), it suffices to define one on T(G). We do this by embedding T(G)
into the space 8g of normalized marked Schottky groups of rank g.

Recall that a Schottky group of rank g is a free loxodromic Kleinian
subgroup ofPGL2(C) on g generators ~11~, Section X.H. A marked Schottky
group of ra.nk g is a pair (H, (cxl, ... , a9)); where H is a Schottky group
of rank g and c~i..... are free generators of H. The group H being
redundant in the notation (H, {a~ ; ... , cx9)), we simply write (al, ... , a9)
for this marked Schottky group. A marked Schottky group (c~l, ... of

rank g is called normalized if cx1 has 0 as attracting and oo as repelling
fixed point, and a2 has 1 as attracting fixed point. The set of all normalized
marked Schottky groups of rank g is denoted by This set acquires the



structure of a connected complex analytic manifold of dimension 3g - 3 by
considering it as an open subset of PGL2 (C)9 [9].

Observe that the g-tuple (yl, ... , of elements of G is a normalized
marked Schottky group of rank g. It follows that (~(71),..., , c(~y9)) is a nor-
malized marked Schottky group of rank g for any quasiconformal deforma-
tion  of G. Define

by letting ~(c) be (c(~yl), ... , .

THEOREM .5.2. The map 03A8 is an open holomorphic embedding of
T (G) into Sg.

Proof. - One can show that ~ is holomorphic by standard techniques
of Teichmuller theory [12]. Hence, it sufhces to show that B}1 is injective,
since T(G) and Sg are of the same dimension.

Let sq be the map from PGL2(C) into itself that associates to an element
a of PGL2(C) its square a2. Let L C PGL2(C) be the open subset of
loxodromic Mobius transformations. Then, sq(L) C L. We denote again by
sq the restriction of sq to L. For any ~i E L there are exactly 2 solutions
a E PGL2(C) to the equation a2 = (3. Moreover, such a solution a is

automatically loxodromic, i.e., a E L. The map sq: L --~ L is therefore a
2-to-l covering of L.

Let m be the the map from into PGL2(C) that associates
to (c~i,.... ag ) the element ~ ~ ~ a 12 . Since all nontrivial elements of a
Schottky group are loxodromic, m(Sg) C L. We denote again by m the
restriction of m to the subset S’9 of normalized marked Schottky groups of
rank g.

Now we define V as the fiber product of L and S9 over L, i.e., V is
defined as to make the square

Cartesia.n. It follows that V is a complex analytic manifold, and that p is a
2-to-l covering map. In fact, one has



and the map p: V -~ S9 is the restriction to V of the projection from
PGL2(C)9+1 onto the product of its first g factors.

Let ~: T (G) ~ V be the map defined by

Then, 03A8. Since a homomorphism  from G into PGL2(C) is uniquely
determined by the images of a system of generators, the map  is injective.

We show that the 2-to-l covering map p: V ~ 8g is in fact a trivial
covering map. We show this by showing that V has at least 2 connected
components. It will then follow that the restriction of p to any of the con-
nected components of V is injective. Since T(G) is connected, it will follow
that 03A8 = p o  is injective.

Let p: PGL2(C) be the natural homomorphism. Let ~u2 be the
subgroup ~~1~ of SL2(C). The map p is in fact a quotient of SL2(C) by the
subgroup ~c2 . We will denote elements of SL2(C) by Roman capitals, like
Ai, and their images in PGL2(C) by the corresponding small Greek letters,
like ai .

The power of p9’+1 of p is a homomorphism from SL2((~)g+1 into
Of course, p9+1 is a quotient of SL2(C)9+1 by the subgroup

~c2+1. We will denote p9’+1 again by p since no confusion is likely to occur.
The inverse image V = of V is the union of V 1 and VI, where,

for e = ~ 1,

It is clear that V-i and VI1 are disjoint, open and closed subsets of V.
Note that both subset and VI are nonempty since the square map from
SL2(C) into itself is surjective. Moreover, Y 1 and Vl are both stable for the
action of ~u2+1. Therefore, their p-images V_ 1 and Vi are nonempty, open
and closed, disjoint subsets of V. Moreover, V = U Vi. It follows that
V is not connected. D

We define a ma.p

as follows. Given (a1, ... , a9) E S’g, let ai and bi respectively be the attract-
ing and repelling fixed points of a2, and let ci, |ci|  1, be the multiplier of
cx2. Since cx1 has oo as fixed point, the points a2 and bz are different from



oo, for i = 2, ... , g. This can be shown by an argument similar to the one
employed to show that y~ and ~2 have no fixed point in common. We define

It follows from the normalization of normalized marked Schottky groups
that E is an open holomorphic embedding of Sg into tC39-3.

COROLLARY 5 .3. - Let X be a connected compact real algebraic curve
of genus g having no real points, where g > 2. Then, the map

is a £-equivariant global system of complex analytic coordinates on the
Teichmüller space T(X) of complex algebraic curves of genus g.

6. Equivariant loops

Let £ be a group and let X be a £-space Denote by I the unit interval
[0,1]. Consider E with the discrete topology. Then, E x I is a £-space when
we define the action of £ on £ x I by cr’ ~ (T, x) = x) for all o- E ~ and
for all (r~) e E x I.

An equivariant path in X is an equivariant map 03B3: 03A3 x I ~ X. Let 03B3 be
an equivariant path in X. Define ~ --~ X by = 0 ) Then, ~yo is
an equivariant base point of X. We call -yo the begin point Similarly,
one defines the end point 03B31 of 03B3 by 03B31(03C3)=03B3(03C3,1) for all 03C3 E 03A3.

Let band c be equivariant base points of X. An equivariant path, in
X is a path from b to c if b = ’Yo and c = ~yl.

Let, and b be two equivariant paths in X. Then, , and b are said to
be homotopic relative end points if there is an equivariant map

~ acting trivially on the first and the third factor of I x X x I, such that

1. = and F(1, o-, s) = b(~, s) for all (~, s) E ~ x I, and
2. F(t, ~, 0) = F(t’, ~, 0) and = F(t’, ~,1) for all t, t’ E I and

In particular, if 03B3 and b are homotopic relative end points, 03B3 and b have the
same begin point as well as the same end point.



Let band c be equivariant base points of X. Observe that homotopic
relative end points is an equivalence relation on the set of all equivariant
paths in X from b to c.

One can define the composition b-y of two equivariant paths in X in case
- yl(~) = bo(~) and ~1: ~ -~ X and bo: ~ -> X are injective. Indeed, there
is a unique bijection 03B1:03A3 ~ E such that = 03B40(03B1(03C3)) for all 03C3 E 03A3.
Define $~y: E x I --> X by

The map b~ is equivariant since a is equivariant. Therefore, is an equiv-
ariant path of X with begin point ~yo and end point 61 .

Let y, -y’, 6, 6’ be equivariant paths such that -y and -y’ (resp. 6 and 6’)
are homotopic relative end points and such that the compositions and
b’~y’ are defined. Then, b~y and b’~y’ are homotopic relative end points.

Let b: ~ --> X be an equivariant base point of X. . An equivariant loop
in (X b) is an equivariant path -y in X such that ~yo = band ~yi ( E ) =
&#x26;(E). Two equivariant loops 1 and 6 in (X, b) are homotopic if ~y and 6 are
homotopic relative end points as equivariant paths. Let ~; b) be the
set of homotopy classes of all equivariant loops in (X, b). If b: ~ -~ X is
injective, composition of equivariant paths induces the structure of a group
on ~1 (X, ~; b).

PROPOSITION 6.1.2014 Let X be a ~-space. Assume that X is path con-
nected and semilocally simply connected (~6~, p. 27) as a topological space.
Let b be an injective equivariant base point of X Let 03C01 (X, 03A3; b) be the equiv-
ariant fundamental group of X . Then, there is a canonical isomorphism of
groups

where G° denotes the opposite group of a group G.

Proof. - Let II1 (X b) be the groupoid of homotopy classes relative end
points of ordinary paths in X having begin and end points in the set b( ~ ) .
Recall that a groupoid is a category in which all morphisms are automor-
phisms. Here, the objects are the elements of b(~), and the morphisms from
bu into br are the homotopy classes relative end points of ordinary paths in
X from bu to bT, for u, T E ~. If ~y: I --~ X is such a path and v is in ~, the
path 1v defined by = v - -y(t), for t E .1, has also begin and end points
in b(~). Hence, one gets an induced action of £ on the groupoid TI1(X; b). .



Thinking of TI1(X; b) as its set of morphisms, the quotient IIi(X; 
is canonically isomorphic to the set ~1 (X, E; b). Indeed, define

as follows. If y is a path from b~ to bT, there is a unique equivariant loop
~y’ in (X, b) such that its restriction to x I is equal to ~y. Define the

p-image of the homotopy class of q to be the homotopy class of y. It is
clear that p is a quotient map for the action of £ on II1 (X ; b) In fact, ~p
is a morphism of groupoids and the group ~3 (X, E; b) is the quotient of the
groupoid b) by the action of ~.

To show the proposition, one identifies ~-~ (X, ~; b) as the quotient of
the opposite groupoid II1(X; b)° by the action of ~. This can be done in
two steps. Firstly, one identifies with the groupoid Aut(X, b) of
morphisms between universal coverings of (X, bQ ), ~ E ~. Secondly, one
shows that ~rl (X, ~; b) is a quotient of Aut(X, b) by the action of ~. Details
are left to the reader. 0

7. The equivariant fundamental group of a real algebraic
curve having real points

Let £ be the Galois group and let o~ be its nontrivial element.

Let X be a compact connected real algebraic curve having real points, i.e.,
X~ ~ 0. We determine the equivariant fundamental group ~-1 (X, ~) of the
£-space X.

Since X is a compact connected Riemann surface, the topological space
X is a compact connected orientable surface. Moreover, complex conjuga-
tion acts orientation-reversingly on X. The following lemma concerning the
topological classification of such E-actions on compact connected orientable
surfaces is well-known and easy to prove.

LEMMA 7.1.2014 Let X and Y be compact connected orientable surfaces
endowed with ~-actions such that ~ acts orientation-reversingly. Then, the
03A3-spaces X and Y are equivariantly homeomorphic if and only if the quo-
tient spaces and Y/~ are homeomorphic. CJ

Using Lemma 7.1, we determine a convenient topological model for the
underlying £-space of the real algebraic curve X. Let T be the tube 
,51. We will consider two £-actions on T. The first one is defined by



Fig. 1 The two handles H and ff. Depicted are the equivariant paths al and a2
from E x [-1, +1] into Hand jl, respectively. The path al is defined by

al (T, t) = T ~ (t,1) for (T, t) x (-1, -E-1~ and a2 is defined by
a2(T, t) = T ~ (t, + for (T, t) E ~ X (-1 + 1~.

for (t, p) E T. The topological space T considered with this £-action will be
denoted by H (for handle). The second action of £ on T is defined by

for (t, p) E T. The topological space T considered with this £-action will be
denoted by H (for twisted handle). (See Figure 1. )

Observe that HE = ~0~ x sl and H~ = 0. Observe also that the quotient
is homeomorphic to T, whereas is homeomorphic to a Möbius

band.

We will also need the double handle T = on which E acts by
permuting the connected components. Observe that T~ - ~ and T/E is
homeomorphic to T.

Let g be a natural integer. Choose g disjoint open discs D1, ... Dg in
the upper half-plane U and let D_2 == cr’ Di, for i = 1, ... , g. Let Cg be the
complement of the union U Di of these 2g discs in I~1 (C). We consider the
topological space Cg with its induced E-action.



Let r, r and s be any natural integers such that r + r + 2s = g. We are
going to glue in, in an equivariant way, r handles Hl, ... , Hr, f twisted han-
dles ... , ,  and s double handles ... , making Cg into a compact
connected orientable surface of genus g on which E acts. The quotient

will be homeomorphic to the connected sum of r real projective
planes and a compact connected orientable surface of genus s having r + 1
connected boundary components.

For i = 1,..., r choose a homeomorphism f2 from 8Di onto a boundary
component of H,. Define ft from into Hi by ft(p) = . fi(a . p)
for all p E Then, f ~ is a homeomorphism from onto the other
connected boundary component of Hi and the map

which is the disjoint sum of f i and f ~ is an equivariant homeomorphism.
Similarly, one constructs equivariant homeomorphisms

for i = 1,..., r, and equivariant homeomorphisms

for i = 1, ... , s. For the latter homeomorphisms, we may assume that
a(DT+r+2i-1 U Dr+r+2i) is mapped into a connected component of Ti, for
i = 1,...,s. Let

be the disjoint sum of the maps hl , ... hr+r+s. Then, h is an equivariant
homeomorphism.

We define to be the surface obtained by gluing Cg and (U Hi ) U
(U Hi) U along their boundaries via h. . Then, is a compact
connected orientable surface of genus g with an induced E action. In fact,
the embeddings of the surfaces Hl, ... Hr, Hl, , T1,..., Ts into ,S’r,r,s
are equivariant. It follows that the quotient is obtained from gluing
Cg/E and (U(Hi/E)) U (U(Hi/E)) U (U(’Iri/E)) along certain boundary
components via the induced homeomorphism h. From this, it follows that

is homeomorphic to the connected sum of f real projective planes
and a compact connected orientable surface of genus shaving r+1 connected
boundary components.



Recall that the real algebraic curve X is called dividing if X BX ~ is not
connected. Let g be the genus of X Let r + 1 be the number of connected

components of X ~ If X is dividing, then r - gmod 2 and the quotient space
X/~ is homeomorphic to a compact connected orientable surface of genus
2 (g - r) having r ~-1 connected boundary components. If X is not dividing,
then the quotient space X/~ is homeomorphic to the connected sum of g - r
real projective planes and a compact connected orientable surface of genus
0 having r -E-1 connected boundary components. The following lemma then
follows from Lemma ?.1. .

LEMMA 7.2. - Let X be a compact connected real algebraic curve hav-
ing real points. Let g be the genus of X .

1. . If X is not dividing, there are unique natural integers r et f such that
X is equivariantly homeomorphic to Sr,T,a .

2. If X is dividing, there are unique natural integers r et s such that X
is equivariantly homeomorphic to Sr,o,s. D

Now we determine the equivariant fundamental group ~rl (S’, ~) of the
£-space S = S’T,T,S for all natural integers r, f and s.

PROPOSITION 7.3. - Let g be a natural integer. Let r, f and s be natural
integers such that r + f + 2s = g. Then, the equivariant fundamental group
~1 {S’, ~) of S = is the group generated by

subject to the relations

where ~x,, y] denotes the commutator of x and y.

Proof. - Let b be an injective equivariant base point of S such that
is contained in Cg Choose, as shown in Figure 2, for each handle Hi ,

a pair (a2, ,Qi) of ordinary paths in S, for each twisted handle i, a pair of
ordinary paths (ar+i, ,Qr+i) in S, and for each double handle Ti a pair of
ordinary paths ( a,.+r+2 in S. Choose, moreover, a pair of ordinary
paths (ao, of S contained in Cg as indicated in Figure 2. We assume
that the paths ai , {3i, i = 0, ... r + f + s are chosen in such a way that any
two of them only intersect in the base point bl.



Fig. 2 The surface S = SI,I,1- Each arrow represents a path in S. The unlabeled
arrows are the complex conjugate paths ai and of the corresponding paths ai and

respectively.

Let a~ and !3f be the complex conjugate path of ai and respectively,
for i = 0, ... , r + f + s. Then, since the complement of the union of the paths
is a disjoint union of open 2-cells, the paths /3f, i = 0, ... , r+f+s,
generate the fundamental groupoid ill (X, b). They only satisfy the relations

Since ~1 (X, ~; b) is isomorphic to the quotient of the groupoid II1 (X b) by
the action of E, the group Ai(X, E; b) is the group generated by the elements

subject to the relations



The statement follows from the fact that is isomorphic to the
opposite group of al(X, ~; b) (Proposition 6.1). D

THEOREM 7.4. - Let X be a compact connected real algebraic curve.
Let g be the genus of X .

1. If X does not have real points then the equivariant fundamental group
~rl (X, ~) is the group generated by ~30, ... , ~39 subject to the relation

Suppose now that X has real points and let r -E-1 be the number of connected
components of its set of real points.

2. If X is not dividing then the equivariant fundamental group ~-I (X, ~)
0f X is the group generated by ao; ~30, ... ar, ,(3r, ,Q~.+1, .. - , ~39 subject
to the relations

3. If X is dividing, let k be the natural integer 2 (g + r) . Then the equiv-
ariant fundamental group ~rl (X, ~) of X is the group generated by
ao ~o ~ - - - ak, ~ ~~ subject to the relations

Proof - Statement 1 is Lemma 5.1. The statements 2 and 3 follow from
Lemma 7.2 and Proposition 7.3. D

8. Complex coordinates on Teichmuller space;
the case of a nondividing real algebraic curve having real points

Fix an integer g > 2. Throughout this section, X is a nondividing com-
pact connected real algebraic genus g curve having real points. Let r be the
natural integer such that the number of connected components of the set of
real points of X is equal to r + 1.



Let ~r: D --~ X be a uniformization of X as a real algebraic curve. Let G be
the group of automorphisms of x. Then, G is isomorphic to the equivariant
fundamental group 03C01 (X, E) of X By Theorem 7.4, G is the group generated
by ao, ~30, ... , ~3r, ~r+1, . - . ,,Qg subject to the relations

Observe that the elements

generate a free subgroup H of G of rank g. Therefore, these elements are
loxodromic and we may then assume that the first element in the list (1) has
0 as attracting and oo as repelling fixed point, and that the second element
in the list (1) has 1 as attracting fixed point.

As in Section 5, we define a map

of the Teichmuller space of G into the space of normalized marked Schottky
groups of rank g. Let ¿ be an element of T(G), i.e., c:G -> PGL2(C) is a
quasi-conformal deformation of G. Then, define

PROPOSITION 8.1. - The map ~ is an open holomorphic embedding of
T(G) into S’9 .

Proof. - It sufhces to prove that ~ is injective. We do this by show-
ing that a quasi-conformal deformation c.: G -~ PGL2(C) of G is uniquely
determined by its restriction to the subgroup H of G generated by the
elements of the list (1). Indeed, since ao ... ~ ar ... ~ ~39 = 1,

Moreover, since ~32 = 1 and ~2 commutes with ai, ~( f~2 ) is the unique element
of PGL2(C) of order 2 that commutes with for i = 0, ... r. D

Remark 8. 2. - Note the resemblance with the proof of Theorem ,~ in 

Let ~: T (G) -~ T(X) be the natural biholomorphic map, and let ~: 
C39-3 be any equivariant open holomorphic embedding.



COROLLARY 8.3. - Let X be a nondividing compact connected real al-
gebraic genus g curve having real points, where g > 2. Then, the map

is a global system of complex analytic coordinates on the Teichmüller space
T(X) of complex algebraic curves of genus g. Moreover, the coordinate sys-
tem is equivariant with respect to the induced action of ~ on T(X) and the
usual action of ~ on (~39-3.

9. Complex coordinates on Teichmüller space;
the case of a dividing real algebraic curve

Fix an integer g  2. Throughout this section, X is a dividing compact
connected real algebraic genus g curve. In particular, X has real points.
Let, as before, r be the natural integer such that the number of connected
components of the set of real points of X is equal to r + 1. Let k be the
natural integer! (9 + r).

Let x: D --~ X be a uniformization of X as a real algebraic curve. Let G be
the group of automorphisms of 7r. Then, G is isomorphic to the equivariant
fundamental group ofX. By Theorem 7.4, G is the group generated
by ao , ,~30, ... , ak , ,Qk subject to the relations

Observe that the elements

generate again a free subgroup H of G of rank g. Hence, we may assume
that the first element in the list (2) has 0 as attracting and oo as repelling
fixed point, and that the second element in the list (2) has 1 as attracting
fixed point.

Now, we define a map

of the Teichmuller space of G into the space of normalized marked Schottky
groups of rank g by

for c E T (G). Then, one can similarly prove the following statement.
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PROPOSITION 9.1. -. The map ~ is an open holomorphic embedding of
T(G) into ,5’9 . D

Let ~: T (G) --~ T (X ) be the natural biholomorphic map, and let ~: 
~3g-3 be any equivariant open holomorphic embedding.

COROLLARY 9.2. - Let X be a dividing compact connected real alge-
braic genus g curve having real points, where g > 2. Then, the map

is a global system of complex analytic coordinates on the Teichmüller space
T(X) of complex algebraic curves of genus g. Moreover, the coordinate sys-
tem is equivariant with respect to the induced action of ~ on T(X) and the
usual action of ~ on ~39-3.
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