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On the regularity of solutions
to a nonvariational elliptic equation (*)
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R,ESUME. - Nous réalisons une étude détaillée du degre de régularité de
toutes les solutions d’une equation elliptique aux derivees partielles non-
variationelle. Cette equation a souvent ete une source de contre-exemples
importants en théorie des equations aux derivees partielles.

ABSTRACT. - We make a detailed study of the degree of regularity of
all solutions of a nonvariational elliptic partial differential equation. Such
equation has often turned out to be a source of counter examples which
are critical to the theory of PDE’s.

1. Introduction

In this paper we study solutions to the elliptic partial differential equa-
tion of nondivergence form

with the coefficient matrix
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Here I denotes the identity matrix of order n , x 0 x is the matrix whose
entries are Xi and K > 1. We recall that the coefficient matrix A at (1.2)
is often used to provide interesting examples in the theory of PDE’s, both
variational and nonvariational ones [6], [10], 1 l~ , see also [3]. The entries
aij are not continuous at the origin 0; they are weakly differentiable with
derivatives in Ln near 0, compare with [5], [9]. In [1] equations
with weakly differentiable coefficients whose derivatives are in are

considered. However, for K large, Equation (1.1) does not fall under the
scope of the results of [1]. We note also that for large K (and n 2: 3)
Equation (1.1) is not of Cordes type; for equations of Cordes type we refer
to [13].

We consider strong solutions, namely twice weakly differ entiable func-
tions u satisfying the Equation (1.1) a.e., and examine their behavior near
the origin 0 of in the spirit of the results of [8], aiming to show that all
solutions of Equation (1.1) have a definite degree of regularity at 0, which is
precisely among those exhibited by certain particular solutions. The work
[8] concerns a variational equation. As it is well known, the theory of non-
divergence equations with discontinuous coefficients in dimension n > 3 is
less complete than the one in the divergence case. The argument used in
[8] does not extend to our context, hence our approach here is completely
different.

We consider the Dirichlet problem for equation (1.1) in a ball centered
at 0 and investigate how solutions depend on the boundary data. It is not
restrictive to consider the unit ball B = {x E JRn : Ixl  1~. So we consider
the problem

where cp is a given function on 9~ = {x . 1 ~ . We shall show
that for each 03C6 E problem (1.3) has a unique solution of class

n CO(B). Of course, uniqueness is a consequence of the celebrated
maximum principle of Aleksandrov-Bakelman-Pucci, see e.g. [7]. Concern-
ing the existence of a solution, as may be expected, there are a number of
ways to get it. Here we use the familiar method of superposition of solu-
tions [4], which is both elementary and yields a representation formula for
the solution.

The preliminary step in doing so is to find a decomposition for the boun-
dary data, and for this we recall [12] that a complete orthogonal system in



L2(~B) can be formed by (the restriction to o~B of) harmonic homogeneous
polynomials. Thus we find the expansion

where Hi is a harmonic homogeneous polynomial of degree l = 0, 1,.... Note
that these polynomials in the decomposition (1.4) are uniquely determined.
Then, for each l we consider the Dirichlet problem

It can be shown (see Lemma 2.1 below) that problem (1.5) has a solution
vi of the form

where .~l is a nonpositive number depending only on n, K and l, not on Hi .
The final step will be then to prove that for p E the function

belongs to n C° {B) and solves (1 .3) .

Using formula (1.7), as mentioned we extend the results of [8] proved in
the variational case, to the nonvariational equation (1.1). Essentially, these
results read as follows. Defining the moment of u by setting

where H is an arbitrary harmonic homogeneous polynomial of degree l G N,
if tt;(l) ~ 0, then the solution u of Lu = 0 has at the origin 0 at most the
same regularity as the function v = Note that w ( 1 ) depends on the
boundary value p of u: we!) = JaB pH ds.

2. The Dirichlet problem

In this section we solve the Dirichlet problem (1.3) for cp E 

using the method of superposition of solution, hence we begin by finding a
solution to the problem



for H a harmonic homogeneous polynomial. Let l be the degree of H.
Clearly, for all the function |x|03BBH satisfies the boundary condition.
On the other hand, an elementary calculation shows that for .r ~ 0

Then we find a solution to problem (2.1) of the following type:

with Ao = Ai = 0, and for l 2: 2

Thus for l = 0 and l = 1, v = H E For all l, we have v E
~0~). To study the regularity of v at 0 for l > 2, we examine the

quantity

Note that the function l ~ l + ~l is increasing and diverging at as

L -~ -f-oo. The following is trivially seen

LEMMA 2.1. For all l > 2 we have l + 03BBl > 1 and

Hence v E b’l > 2. Moreover, the regularity of v increases with
l > 2.

We shall use the following property of harmonic homogeneous polyno-
mials, see e.g. [12] , Appendix C on pg. 274-276; if H has degree l  1, we
have:

Now we prove some estimates for functions of the form

H being a harmonic polynomial homogeneous of degree l > 2, and l + 03BB-1 >



LEMMA 2.2. - We have the following

and for all p E ~ 0,1 ~ [

Proof. - Integrating in spherical coordinates we find

which immediately gives (2.6).

To prove (2.7) we compute

and hence

Moreover

and taking into account homogeneity of H

We then conclude, recalling that 1 - l  ~  0

To prove (2.8) we use (2.7) and get

Inequality (2.8) now follows easily using (2.5) for k = 2.



Recalling the expansion at (1.4) it is natural to consider the series at

(1.7), that is

For each l = 0, 1,..., here vi is the solution to problem (2.1) and is defined
by formulas (2.2)-(2.3). By means of the estimates of Lemma 2.2, we can
easily see the following

LEMMA 2.3. - The series at (,~.10~ converges in L2 (B) and in .

Its sum u solves the equation Lu = 0.

For the proof, it is enough to note that by Bessel inequality we have

hence applying (2.6) and (2.8) to each term Vi proves the claim.

Remark 2.1. Actually, the series at (2.10) converges in for

We are now in a position to state the main result of this section

PROPOSITION 2.1. - For every c~ E C° (aB) the Dirichlet problem

has a unique solution of class W o~ (B) n CO(B). . Moreover the solution is
expressed by

What remains is to show the continuity of u = B. Clearly, by
Lemma 2.3 and the Sobolev embedding theorem, u is continuous in B. On
the other hand, the series at (1.4) need not converge uniformly even for cp E
C’° (aB) For this reason, to prove continuity up to the bundary we do not
rely directly on the expansion (1.4). Instead, we recall how (1.4) is usually
proved. We approximate (/? uniformly by polynomials m = 1, 2, .... Each

on BB coincides with a finite sum of harmonic homogeneous polynomials



see [12], pg. 70. Here L has degree l. Then it is easily seen that the
polynomials occurring in the expansion at (1.4) are given by Hl = limm i

in (We mean that = 0 if 1 > ~~.,-z.) This implies that u =
limm w~ in L2 ( B ) , where

Note that E CO(B). On the other hand wm solves the problem

As converges uniformly, by the maximum principle converges

uniformly on B. Clearly the limit is u, which therefore belongs to CO(B). .

Remark 2.2. Actually, the series at (2.10) is converging in a much
stronger way then merely in the sense of W o~ (B) For all there exist

lk E N such that l + Àz > k and hence Vz = Hl E if l > lk. Then
the series

converges in the sense of for any p E J o,1 ~. To see this, we note
that (2.7) can be generalized as follows

and then by (2.5), as in the proof of inequality (2.8) we find

where ak = inf ~ (l + : l > > 0. Applying (2.13) to each term
vi = Hl in the series (2.12) we obtain the desired result.

We close this Section mentioning that in [2] equations with radially ho-
mogeneous coefficients are studied. However, the results presented there in
this more general context are not suitable for the purpose of this paper, as
we rely heavily on the representation formula (2.11).



3. The degree of regularity of solutions

Here, we examine the regularity of solutions to Equation (1.1) with k > 1
in a neighborhood of the origin 0 E Of course, solutions are of class C°°

away from the origin, so we are concerned with their behavior at 0. The regu-
larity we want to study is best expressed in terms of the spaces of Holder
continuous functions. We recall the notation used in [8]. For a given open set
n C k = 1, 2,... and 0  c~  1, C o’~ (S2) denotes the space of func-
tions whose k-th order partial derivatives are locally Holder continuous with
exponent a. The completion of is denoted by C~+Q (SZ) . For a = 1,
it coincides with C’~+1 (SZ), while if 0  c~  1, v E means that

uniformly on compact subsets of 03A9 x n. Also, note the embedding

1.

Now we introduce the so-called momenta of a function u E 
where R > 0; for a given harmonic homogeneous polynomial H, we set

We can now state our first result, which provide an upper bound for the
degree of regularity of the solutions at 0.

THEOREM 3.1.2014 Let u E C2 (BR - ~0~) be a solution to Equation (1.1).
For a given harmonic polynomial H homogeneous of degree 1 > 2, if the
moment wH does not vanish, then u ~ the number ~l being
defined at (2.3). .

~roo f. By rescaling, we may assume R > 1. Also, we may assume u E
Then we show that u coincides with the solution we constructed in

Section 2 to the Dirichlet problem for L, with boundary value 03C6 = Let

us denote by U this solution. We observe that u, U E C2{B - ~0~) n GI(B)
both solve Lu = L U = 0 in B - {0} and u == U on 9B. If ~ ~ 
then the identity u = U follows by an extended maximum principle (in the
sense of [6]) proved by Pucci, see Theorem XI on pg. 157 and the subsequent
remark in [10]. In the case K > we recall that the continuous func-

tion Ixll-(n-l)/K2 solves the equation in B - ~0~. Applying the maximum
principle of Aleksandrov on B - ~0~, we see that

Moreover this function is C~ if and only if tt(0) = ~7(0), that is, u = U.



By the results of the previous Section, u has the representation

with Hk a harmonic polynomial homogenous of degree k. Hence by ortho-
gonality

We write l + Àl = m + cx, with m integer, 1 ( m  l - 1 and 0 x Q  1, and
denote by Q the NlacLaurin polynomial of order m of u. Recall that Q and
H are orthogonal to each other. Assuming u E = we would

have as :r 2014~ 0

and in turn

which is false as w(l) ~ 0.

By means of the momenta of u we can find also a "lower bound" for the
degree of regularity.

THEOREM 3.2. Every solution u E of Equation (1.1) be-
longs (BR) , If there exists an integer 1 > 2 such that

for every harmonic polynomial H homogenous of degree k with 1  k  l,
then

Here I + ÀI = m + a, as above.

Proof. For the first part, we note that in the series (3.1) the term
is that with the lowest degree of regularity. To complete the proof,

we see that, by the assumptions, the representation (3.1) reduces to

that is, the terms corresponding to k for all 1  k  l vanish. In the series

(3.2), the worst term is now (assuming that Hl ~ 0). The thesis
can be then proved by the argument used in the Remark 2.2.
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As a complement to the above theorems we have

PROPOSITION E a solution to Equation (1.1).
If w~ - 0, for all harmonic homogenous polynomials H, then u - ~.

The claim follows directly by our representation (2.11) of solutions of
class Z~ o~ .
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