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RESUME. -_ Dans cet article, nous étudions l’opérateur canonique de
solution du 9 dans les espaces L2(~n, e-p) a poids et discutons de ses
propriétés de compacité et d’etre de Hilbert-Schmidt. Dans le cas d’une
seule variable complexe, nous montrons que cet opérateur solution n’est
pas compact dans meme si on se restreint au sous-espace
correspondant de fonctions entieres. L’operateur solution est compact
quand on le restreint au sous-espace des fonctions entieres pour les poids

m > 2, mais n’est pas Hilbert-Schmidt. Dans la seconde partie,
nous montrons que, dans un contexte légerement different, nous obtenons
la propriete d’etre de type Hilbert-Schmidt pour une classe tres large
d’espaces a poids de fonctions entieres de plusieurs variables complexes.

ABSTRACT. - In this paper we discuss compactness and the Hilbert-
Schmidt property of the canonical solution operator to a in weighted
L2 (~n spaces. In the case of one complex variable we show that the
solution operator is not compact on even when restricted
to the corresponding subspace of entire functions; the solution operator
is compact when restricted to the subspace of entire functions for the
weights m > 2, but fails to be Hilbert-Schmidt. In the second part
we show that we get the Hilbert-Schmidt property in a slightly different
setting for a large class of weighted spaces of entire functions in several
variables.
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1. Introduction

Let Q be a bounded domain in (Cn . In [7] it is shown that the cano-
nical solution operator S to 9 restricted to (0, 1)-forms with holomorphic
coefficients can be expressed by an integral operator using the Bergman
kernel: 

_

where g = gj dzj ~ A2(0.1)(03A9) is a (0, 1)-form with holomorphic coeffi-
cients, (g(w), z-w~ = and K(z, w) is the Bergman ker-
nel of Q. The canonical solution operator to 9 has the properties : : c~,5’(g) = g
and 8(g) 1 A2 (S2).

The canonical solution operator to o~ restricted to (0, 1 )-forms with holo-
morphic coefficients can also be interpreted as the Hankel operator

where P : : -~ denotes the Bergman projection. See ~1~, ~2~,
[9], [14] and [16] for details.

For the unit disk D in C the canonical solution operator restricted to

A2(D) is a Hilbert-Schmidt operator, whereas for the unit ball B in Cn,
n ~ 2 the canonical solution operator fails to be Hilbert-Schmidt (see [7]).

In many cases non-compactness of the canonical solution operator al-

ready happens when the solution operator is restricted to the corresponding
subspace of holomorphic functions (or (0, I)-forms with holomorphic coef-
ficients, in the case of several variables.) (see [4] , [13] , [11]). In this paper
we will show that this phenomenon also occurs in the Fock space in one
variable.

It is pointed out in [4] that in the proof that compactness of the solu-
tion operator for 9 on (0, 1)-forms implies that the boundary of SZ does not
contain any analytic variety of dimension greater than or equal to 1, it is

only used that there is a compact solution operator to o~ on the (0, 1)-forms
with holomorphic coefficients. In this case compactness of the solution oper-
ator restricted to (0, I)-forms with holomorphic coefficients implies already
compactness of the solution operator on general (0, 1)-forms.

A similar situation appears in [13] where the Toeplitz C* -algebra 
is considered and the relation between the structure of and the 8-

Neumann problem is discussed (see [13] , Corollary 4.6). The question of
compactness of the 9-Neumann operator is of interest for various reasons

(see the survey article [5] ).



In this paper we show that the canonical solution operator for o~ as

operator fr om L2(C, into itself is not compact. This follows from the
result that the canonical solution operator for 8 restricted to the weighted
space of entire functions A2 ( ~, (Fock space) into already
fails to be compact. Further it is shown that the restriction to A2 ((C, 
m > 2, is compact but not Hilbert-Schmidt. When using the methods of [7]
in this case the main difficulty is it that there are functions g E A2(C, 
such that zg ~ L2(C, e-|z|m). Hence the formula for the canonical solution

operator using the Bergamn kernel can’t be used directly, but it will turn
out that the expression zg(z) - P(zg) (z) makes sense in L2 (~, 

In the sequel we also consider the case of several complex variables in a
slightly different situation and show that the canonical solution operator to
~ is a Hilbert-Schmidt operator for a wide class of weighted spaces of entire
functions using various methods from abstract functional analysis (see [12]). .

2. Spaces of entire functions in one variable

We consider weighted spaces on entire functions

where m > 0. Let

Then

is the reproducing kernel for A2 ((~, 
In the sequel the expression

will become important. Using the integral representation of the F-function
one easily sees that the above expression is equal to



For m = 2 this expression equals to 1 for each k = 1, 2, .... We will be
interested in the limit behavior oo. By Stirlings formula the limit
behavior is equivalent to the limit behavior of the expression

oo. Hence we have shown the following

LEMMA 1. - The expression

tends to 0o for 0  m  2, is equal to 1 for m = 2 and tends to zero for
m > 2 as k tends to 00 .

Let 0  p  1, define fp(z) := j(pz) and fP(z) = z f p(z), for f E
A2 ( (C, Then it is easily seen that f P E L2 ( (~, but there are

functions g E such that zg ~ L2(C,

Let Pm --~ denote the orthogonal projec-
tion. Then Pm can be written in the form

PROPOSITION 1. - Let m > 2. Then there is a constant Cm > 0 de-

pending only on m such that

for each 0  p  I and for each f G A2(C, e-|z|m).

Proof. - First we observe that for the Taylor expansion of f (z ) = 03A3~k=0
akzk we have



Now we obtain

Now the result follows from the fact that

and that the sequence (c2k+1 c2k - c2k c2k-1)k is bounded. 0

Remark 1. - Already in the last proposition the sequence

- -~ plays an important role and it will turn out that this

sequence is the sequence of eigenvalues of the operator (see below).

PROPOSITION 2. - Let m > 2 and consider an entire function f E
with Taylor series expansion f (z) _ Let

and define := F. Then : A2(~, -~ L2((~, is a

continuous linear operator, representing the canonical solution operator to
8 restricted to A2 ((~, i. e. = f and Sm(f) 1 A2 ((~, 



Proof. - Bj, Fatou’s theorem

and hence the function

belongs to and satisfies

The above computation also shows that Pm ( f p) ~ ~ m - I ( F’ I I m
and by a standard argument for Lp-spaces (see for instance [3])

A similar computation as in the proof of Proposition 1 in [7] shows that
the function F defined above satisfies 8F = f. Let := F. Then, by
the last remarks, :_A2 ((~, ~ L2 ((~, is a continuous linear

solution operator for 8. For arbitrary h E we have

where (. , .)m denotes the inner product in L2 ((C, Hence is the

canonical solution operator for 8 restricted to A2 (C~, . 0

Remark ,~. - The expression for the function F in the last theorem cor-
responds formally to the expression zf-Pm(zf); in general z f ~ L2 (~, ,

for f E A2(~, but f H F defines a bounded linear operator from
A2(~, to L2((C, 

THEOREM 1. - The canonical solution operator to o~ restricted to the

space A2 (~, is compact if and only if



Proof. - For a complex polynomial p the canonical solution operator
can be written in the form

therefore we can express the conjugate in the form

if q is a finite linear combination of the terms z~ zl. This follows by consid-
ering the inner product (Sm(p),q)m = .

Now we claim that

and

v

where = = 0, 1, ... ~ is the standard orthonormal basis of

From [7] we know that

Hence

This integral is computed in two steps: first the multiplication by z



And now the multiplication by w

which implies that

the case n = 0 follows from an analogous computation.

The last statement says that is a diagonal operator with respect
to the orthonormal basis = zn of A2 (~, Therefore it is

easily seen that is compact if and only if

Now the conclusion follows, since is compact if and only if Sm is
compact ( see for instance 15~ ) . 0

THEOREM 2. - The canonical solution operator for ~ restricted to the
space A2 ((C, is compact, if m > 2. The canonical solution operator
for c~ as operator from L2((~, into itself is not compact.

Proof. The first statement follows immediately from Theorem 1 and
Lemma 1 For the second statement we use Hörmander’s L2-estimate for the
solution of the 8 equation [8] : for each f E L2 (C~, there is a function

u E L2 (C~, such that au = f and



Hence the canonical solution operator for 8 as operator from L2 ( (C, 
into itself is continuous and its restriction to the closed subspace A2 (~, 
fails to be compact by Propositon 1 and Lemma 1. By the definition of com-
pactness this implies that the canonical solution operator is not compact as
operator from into itself. 0

Remark 3. - In the case of the Fock space A2((C, the composition

S*2S2 equals to the identity on A2(C, e-|z|2) , which follows from the proof of
Theorem 1. .

THEOREM 3. - Let m > 2. The canonical solution operator for ~ re-
stricted to fails to be Hilbert Schmidt.

Proof. By Proposition 2 we know that the canonical solution operator
is continuous and we can use the techniques from [7]

Hence

if and only if

By [12] , 16.8, Sm is a Hilbert Schmidt operator if and only if

In our case we have



which, by Stirling’s formula, implies that the corresponding canonical solu-
tion operator to a fails to be Hilbert Schmidt. 0

In the case of several variables the corresponding operator S* S is more
complicated, nevertheless we can handle a sligthly different situation with
different methods from functional analysis (see next section). .

3. Weighted spaces of entire functions in several variables

In this part we show that the canonical solution operator to c~ is a

Hilbert-Schmidt operator for a wide class of weighted spaces of entire func-
tions.

The weight functions we are considering are of the form z t-~ Tp(z),
where T > 0 and p : --~ R. We suppose that p is a plurisubharmonic
function satisfying

Then p** = p and

(see Lemma 1.1. in [6]). And it is easily seen that

whenever T - a  0.

We further assume that

where p(z) = sup{p(z + () : ~ 

It follows that the last property is equivalent to the following condition:
for each o- > 0 and for each T > 0 with T  r there is a constant C =

T) > 0 such that

for each z E 

Let A2 ~p) denote the Hilbert space of all entire functions h -

C such that 
,



THEOREM 4. - Suppose that p is a weight function with the proper-
ties listed above. Then for each a > 0 there exists a number T > 0 with
T  a such that the canonical solution operator S1 to ~ is a Hilbert-Schmidt
operator as a mapping

Proof. - Bj, Lemma 28.2 fiom [12] we have to show that

where (.,.) denotes the inner product of the Hilbert space 
Ll is the unit ball of is a Radon measure on the weakly
compact set u and f = 03A3nj=1 fj dzj and g = 03A3nj=1 gj dzj .

We first show that for 0    1  7-2  73  03C3 we have

for each f E 

To show this assertion we make use of the assumption that the coeffi-
cients of the (0, 1)-form f are entire functions:

The first inequality follows from the fact that

For the second inequality use Cauchy’s theorem for the coefficients fj of
f to show that for Bz = {( E ~~  l~ we have



where we used the properties of the weight function p.

The third inequality is a consequence of the Cauchy-Schwarz inequality:

By Hormander’s L2-estimates ([8], Theorem 4.4.2]) we have for T  73  a

and the properties of the weight function

Here we used the fact that the canonical solution operator S1 can be written
in the form ,5’1 ( f ) = v - P(v), where v is an arbitrary solution to = f
belonging to the corresponding Hilbert space and 

= : h E A2} - 

Now choose T2 such that T  T2  73  a, then we obtain from the

above inequalities



where D > 0 is a constant and := ~ -I- ... + .

Now define for z E C~ and T  71  T2

Then

which, by the Riesz representation theorem for the Hilbert space 
Tp), means that each can be viewed as an element of U.

For ~ e C(U) the expression

defines a Radon measure on the weakly compact set U.

This follows from the fact that

Now take for ~ the continuous functions _ where fj is

fixed. Then

and hence
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