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R,ESUME. - Nous donnons de nouvelles classes d’unicite pour les so-
lutions faibles des equations de Navier-Stokes en dimension trois. Ces
résultats étendent ceux de Prodi, Serrin, Sohr et von Wahl a des espaces
de type (H~,(S2))3) pour des valeurs de q dans )1,2).

ABSTRACT. - We give some new class of uniqueness for the weak solu-
tions of the three dimensional Navier-Stokes equations. This extends the
results of Prodi, Serrin, Sohr and von Wahl concerning this problem to
some spaces of the type Lq([O, T], with q in )1,2).

1. Introduction and main results

We consider the uniqueness problem for the weak solutions of the Navier-
Stokes equations

(*) Reçu le 23 février 2001, accepté le 4 décembre 2002
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Here, a denotes a divergence free vectors field in ( L2 ( SZ ) ) 3 and SZ is either 
or an open set in R3 with smooth compact boundary For simplicity,

we will assume that the external force F vanishes but our results can be ex-

tended to the case of nonzero external force F with F E (H-1 ( ~ ) ) 3 )
(see for instance [T] for this question) and where (H4) below would be re-
placed by

Since the works of Prodi [P], Serrin [S], Sohr and von Wahl [SW] it is well
known that there exists a tight relation between the uniqueness problem and
the regularity problem for the weak solutions of (NS). Indeed, the existence
of one weak solution satisfying some suitable regularity properties would
imply the uniqueness of weak solutions of (NS). More precisely, if there

exists one weak solution in T’~, with 2/q + 3/p - 1, 2 
q  +00, then this solution is the unique weak solution of (NS). This result
was first proved in [P] and extended in [S] to the dimension d =~ 4 when
2/q + 4/p = 1, 2 x q  +00. The generalization to arbitrary dimensions
was given in [SW] (2/q + d/p = 1, 2 ~ q  +oo) where the authors also
considered the exceptional case of weak solutions in T~ .

We refer also to the recent papers [FLR] and for different proofs of
the well-posedness of (NS) in T ~ , (L~ (II~3 ) ) 3 ) with initial data a E
(L~(R~))~ and to [GP] for a weak-strong uniqueness result for initial data
in {L2(~3))3 n ($r~q+3/’’(~3))3 with 3/r -I- 2/q > 1 ($T~q+3~T (~3) being a
Besov space).

In this paper our aim is to obtain similar uniqueness results for some
other classes of weak solutions. We consider some classes of weak solutions

which are more regular in space but less integrable in time than in [P],
[S], [SW] and we prove that they are also some classes of uniqueness. In
particular, we obtain that if there exists a weak solution u of (NS) such that
u and ~~c belong to T~, (Lp(S2))3) with 2/q + 3/p = 2, 1  q  o0

then u is the unique weak solution of (NS).

In the rest of this section we recall first some notations and definitions.

Next, in Theorem 1, we recall the results of Prodi, Serrin, Sohr and von
Wahl concerning the uniqueness problem and then, in Theorem 2, we give
our main result.

Following some usual notation, for s integer HP (SZ) will denote the usual
Sobolev space and for non integer values of s, s = ( 1- 8) (l~ -~-1), 
is the complex interpolation space ~Hp (S~), (see [A] for further
details). For p = 2, we let = and Ho (S2) is the completion of



C°° (SZ) the set of smooth compactly supported functions in SZ with respect
to the usual norm of H1 (S2) . Also, will denote the set of vector fields
u = in (L2(0))3 such that = div u = 0 in For u and
v in (L2(SZ))3, (u, v) is the usual inner product of u and v and X* is the
dual space of X.

According to Leray’s definition [L], we will say that u is a weak solution
of the Navier-Stokes equations if u satisfies the following properties

(H 1) u is weakly continuous from R+ to E2 .

(H2) u E E2 (SZ) ) n (I~o (~) ) 3 ) ~ .

(H3) For all 03C6 in (C~c(R+ x 03A9))3 with = 0,

for all 03C8 in (C°° x SZ))3,

and u = 0 on R+ x .

For all a in E2, there always exists such a weak solution, see [L] when
SZ = R~ and, among the huge literature on this subject, we refer to [T]
and [Li] for the existence of weak solutions in more general situations and
also for more references concerning (NS). The uniqueness of weak solutions
remains an open problem in the three-dimensional case but, as explained
previously, the existence of one weak solution with suitable regularity would
imply the uniqueness :

THEOREM 1 (Prodi, Serrin, Sohr, von Walh) . Let u and v be two
weak solutions of (NS) for the same initial data a E E2. . If

then u = v on ~0, T~. . Furthermore, C(~0, Z’~, (L3(SZ))3) is also a uniqueness
class.

Our aim is to prove the following extension of Theorem 1.



THEOREM 2. - Let u and v be two weak solutions of (NS) for the same
initial data a, E E2. If

then u = v on [0, T~ .

Remark 1. - Let u be a weak solution of (NS) and assume that u belongs
to T], (H~(SZ))3) with 2/q - s + 3/p = 1, s > 0. When s  3/p (i.e
when q > 2), by the Sobolev embedding theorem u fulfills condition (1)
of Theorem 1 and so u is the unique weak solution of (NS). Hence, when
s  3/p, Theorem 2 is just a corollary of Theorem 1. However, when 3/p  s,

then u belongs to T~, (Hp (S2) )3) with q E (1, 2) and our uniqueness
result can not be recovered from those of [P], [S] and [SW] which all required
q > 2. Thus, roughly speaking, Theorem 2 extends the uniqueness results of

Prodi, Serrin, Sohr and von Wahl to some classes of weak solutions which
are more regular in space but less integrable in time.

Remark 2. - From Theorem 1, L2 ( ~0, T], is also a uniqueness
class (this is one of the two borderline cases in Theorem 1 ) . Our correspond-

ing result is slightly different since we obtain that L2 ( ~0, T~ , (Hp ~p (SZ) ) 3 ) is
a uniqueness class. This result can not follow from Theorem 1 because the

embedding Hp~p (S2) ~--~ does not hold. 
,

2. Proof of Theorem 2

The proof of Theorem 2 follows closely those given in [S], [SW] and [T]
(see also [G] and [FJR] for initial data in (I,p(SZ))3, 3). First we give a
differential inequality on the L2 norm of w(t) = v(t) - u(t) (see Proposition
1). Next, from this differential inequality and from some estimates on the
nonlinear term (see Proposition 2 and also Proposition 3), we

prove that w(t) - 0. For the convenience of the reader, we will give the

proofs of Proposition 1 and 2 in Section 3.

PROPOSITION 1. - Let u and v be as in Theorem ~ and let w = u 
- v. .

Then we have

where



Remark 3. - Inequality (4) is proved in numerous works under the assump-
tions of Theorem 1 (see [P], [S] and [T] among others).

PROPOSITION 2.2014 Let H be either JR3, or an open set in JR3 with
smooth compact boundary ~03A9. Let s > 0 and p such that

Then for

we have

We return now to the proof of Theorem 2. Let q, p and s be as in (2)-(3).
If s = 0 the result follows from Theorem 1. When s > 0, it follows from (2)
that (5) holds and from Proposition 1 and Proposition 2, for all t E [0, T~ ,

By the Young inequality we obtain

where q is given by

Hence

and from the Gronwall’s lemma we deduce that w = 0 on [0, T].



3. Proof of Propositions 1 and 2

3.1. . Proof of Proposition 2

We assume first that n = I1~3 . In order to prove (6) we introduce now the

homogeneous Sobolev space I~p (I~3 ) which is defined as the set of functions
f E Lz(I1~3), 1/z = 1/p - ~y/3, such that (-0) 2 f E This space is

endowed with the norm

and when p = 2, we just let _ .H2 (II~3 ) . Recall that

and that

Also recall the standard bilinear estimate

where f e and g e We refer to [RS] for the proof of
(9) and for the proofs of (7)-(8) to [Tr] where further details concerning the
spaces can be found.

When 1  s and 3/p ~ s, from the Cauchy-Schwarz inequality and (9) with
~ = s - 1 we obtain

Since 0  1 - s + 3~p  1, from (8) we get

We consider now the case 0  s  3/p and 0  s  1. Since both f and u

belong to n (~o (Ilg3 ) ) 3 , integrating by parts we see that

Next by the Cauchy-Schwarz inequality and (9) we have



Since 0  3/p - ,s  1, it follows from (8) that

In the other cases, we consider the linear form defined by u -~ b( f, f, , ~c) In
this case there exists sl, s2 and 8 such that H; is the complex interpolation
space where

By interpolation, (10) and (11) it follows that

which ends the proof in the case n = Jae3.

We deal now with the case where n is or a domain with smooth compact
boundary. Assume first that 0  s  3/p and 0  s  1. Since both f and
u belong to E2(n) n (Ho (SZ))3, integrating by parts we see that

and by the Cauchy-Schwarz inequality this yields

We consider now an extension operator ~ build by reflexions (see [A] p. 65
for instance). It is well known that ~" satisfies 
and which implies that, for 0  ~  1 and

/ ~ ~(~), 
.. - . d ..

By the above calculations we have



Note that we have used div(u) = div( f ) = 0 only at the very beginning of
the proof and before introducing K. This is why there is no problems to
work with K( f ) and K(u) instead of u and v even if div(K(u)) ~ 0 and

0.

yVe consider now the case 1  s and 3/p  s. Then by Cauchy-Schwarz
inequality,

In the other cases the proof follows by interpolation.

3.2. Proof of Proposition 1

The main step in the proof of Proposition 1 is to obtain the identity

Once that (12) is proved, using the energy inequality expressed through
(H4) there is no difficulty to obtain Proposition 1 : this follows from a

straightforward computation of (w(t), w(t)) _ (v(t) - u(t), v(t) - u(t)) and
this is left to the reader. To prove ( 12) under the regularity assumptions of
Theorem 2 it will be convenient to use the following notations :

and for f in Y we define ~f~Y by

where s, p and q fulfill (2) and (3).

Next we will need the two following results.



PROPOSITION 3. - For all f E X and u E Y we have

where ~3 = ,~(s, p) belongs to ]0, l~ . .

Proof of Proposition 3. - Let us consider f E X, , g E X and hEY.
When 0  s  3/p and 0  s  l, we notice first that B( f, g, h) -
- B(h, g, f). Then from the Cauchy-Schwarz inequality and (9) with q -
3/p - s we have

Since 0  3/p - s x 1, using (8) we obtain

and by the Cauchy Schwarz inequality,

Now we apply the Holder inequality which leads to

When 1  s and 3/p  s, by the Cauchy-Schwarz inequality and (9) with
~y = 3 /p -~ l - s vve get

Since 0  1 - s + 3/p  1, using (8) we obtain

Hence, by Holder inequality



In the other cases we consider now the linear form h -~ B ( f g, h) In this
situation, there exists ql , q2 , s 1, s2 and 03B8 such that is the complex
interpolation space ; Lq2 (Hp2 )~8 with

Then by interpolation, (16) and (17) we obtain that there exists 8 E [0, 1]
such that

Thus, for g = f and h = u, we obtain ( 14) and for g = h = u we obtain

where j3 = 8 + (1 - e) ( 1 - s + 3/p) > 0 since s  3/p + 1 and 0  o  1

which ends the proof when S~ = 

Again, if S2 is or a domain with smooth compact boundary, we just have
to introduce an extension operator K to obtain the proof.

LEMMA 1. - Let p’ and q’ defined by 1/p-f-1/p’ = 1 and 1/q-~ 1/q’ = 1.

1~ If v E X is a weak solution of then

2) If u E Y is a weak solution of (NS) then

Proof of Lemma 1. - We prove only the second part, the proof of
the first one is similar. From (H2) we see that is well defined in the

distributional sense. Furthermore, from (H3), for all smooth function ~p with
compact support on [0, such that = 0, we have



Now, from Proposition 3 we get

and since u E Y, from (15) of Proposition 3 we obtain

which ends the proof.

Now, in view of Lemma 1, for all v E X a weak solution of (NS)
there exists a subsequence of smooth functions v~ with compact support
in [0, ~-oo ~ x S2 such that

(PI)

In the same way, for all u E Y a weak solution of (NS), there exists a
subsequence of smooth functions UE with compact support in [0, 
such that

(P2)

Consider v~ as in (PI) and u~ as in (P2). Then, from (H3) and from Theorem
4 p. 79 in [S] we have



Now we want to add (a) and (b) and pass to the limit when 6’ -~ 0. Clearly,
we have

This follows directly from (H1), (H2) together with (Pl-2), (Pl-3), (P2-2)
and (P2-3). Also, using (Pl-4), (P2-4) and since v E X and u E Y, we see
that

Next, from (Pl-2), (Pl-3) and (15) of Proposition 3, we have

and from (P2-2) and (14) of Proposition 3,



Now we add (a) and (b) and for e -~ 0 we see that

Now, again from Proposition 3, B (u, v, u) is well defined and vanishes which
proves that

Hence we obtain
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