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Solvable-by-finite groups
as differential Galois groups(*)

CLAUDE MITSCHI (~), MICHAEL F. SINGER (~)

, singer@msri.org.

Annales de la Faculte des Sciences de Toulouse Vol. XI, n° 3, 2002
pp. 403-423

RESUME. - Nous resolvons le probleme inverse de la theorie de Galois
differentielle au-dessus d’un corps différentiel k = C(x), ou C designe
un corps algebriquement clos de caracteristique zero, pour tout groupe
algebrique linéaire G dont la composante connexe de l’identité est resoluble.
Nous demontrons que pour tout espace principal homogene V sur G,
irreductible sur k, on peut etendre la derivation d/dx de k a k(V) de
sorte que k(V) soit une extension de Picard-Vessiot de k admettant G
comme groupe de Galois. Notre demonstration est constructive a 1’etape
pres d’un probleme de plongement de theorie de Galois classique sur C (x).

ABSTRACT. - We solve the inverse problem of differential Galois theory
over the differential field k = C(x), where C is an algebraic closed field of
characteristic zero, for linear algebraic groups G over C with a solvable
connected component of the identity. We show that for any k-irreducible
principal homogeneous space V for G, the derivation d/dx of k can be
extended on k(V) in such a way that k(V) is a Picard-Vessiot extension
of k with Galois group G. Our proof is constructive up to an embedding
problem of classical Galois theory over C(x). .

1. Introduction

In this paper we prove a special case of the following inverse problem in
differential Galois theory.
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THEOREM 1. l. Let k = C(x), C an algebraically closed field1, G a
linear algebraic group defined over C and V a k-irreducible principal ho-
mogeneous space for G. Then there exists a derivation on k(V) extending
dx such that k(V) is a Picard- Vessiot extension of k with Galois group G,
where the action of the Galois group on k(V) corresponds to the action of
G on V. .

For certain classes of linear algebraic groups (including connected groups
and those with a semisimple identity component ) it was proved by one of the
authors [22] that there exists at least one homogeneous space V satisfying
the conclusions of Theorem 1.1. We note ( cf. ~21~ ) that when G is a connected
linear algebraic group then all k-irreducible principal homogeneous spaces
for G are isomorphic to G. Thus, in [14], the authors give a constructive
proof of the Theorem in this special case . For arbitrary linear groups and
C = C, the complex numbers, C. and M. Tretkoff [23] and J.-P. Ramis ([19],
[20]) showed the existence of such a space (we refer the reader to [14] for a
further history of the problem prior to 1996). The general case has recently
been established by J. Hartmann ~f ~ 2 .

The results in the present paper were achieved in 1998 and presented at
the Conference on Differential Galois Theory at C.I.R.M., Luminy, in Febru-
ary 1999, then appeared as a preprint available at http://www.math.ncsu.
edu/Nsinger) . Since these results are referenced in [6] we think it is appro-
priate to publish this. Most of the basic facts that we use are now well-
known and presented in slightly different form in [15], [16] and [17]. We
have nonetheless not significantly changed our original presentation except
for the order of some of the sections and the addition of examples.

In this paper we first show how to reduce the proof of Theorem 1.1 to
solving the inverse problem for simpler cases, in particular when the given
group G is a semidirect product of its identity component by a finite group.
We shall use these reduction steps to show that the theorem is true for any
linear algebraic group with G° solvable, that is, for solvable-by-finite linear
algebraic groups.

The rest of the paper is organized as follows. In Section 2 we give basic
results concerning principal homogeneous spaces. In Section 3 we consider
the inverse problem for finite groups and in Section 4 we reduce the problem
to semidirect products. In Section 5 we review basic facts from differential

~ All fields in this paper will be assumed to be of characteristic zero.
~ Although the results of [6] and [23] state the existence of one homogeneous space

satisfying the conclusions of Theorem 1.1 , the proofs can be easily modified to prove the
full theorem (when C = C in the cases of [23]). We thank D. Bertrand for pointing this
out to us.



Galois theory and in Section 6 we give a criterion for realizing a linear
algebraic group as a Galois group. In Section 7 we give useful reductions of
the problem and in Section 8 we present a proof of Theorem 1.1 for solvable-
by-finite groups, constructive up to the Riemann Existence Theorem in
classical Galois theory.

2. General facts about groups and homogeneous spaces

Let G be a linear algebraic group defined over a field 1~. A k-homogeneous
space for G is a k-affine variety together with a morphism G x V_ ~ V of
k-varieties inducing a transitive action of G(k) on V(k), where l~ denotes
the algebraic closure of k. If moreover this action is faithful, V is called a
principal k-homogeneous space for G, or G-torsor.

Note that the group G is itself a G-torsor, called the trivial torsor. One
can also define, in an obvious way, the notion of G-morphisms of homoge-
neous spaces for G.

It is a well-known fact that the set of G-torsors (up to G-isomorphism)
maps bijectively to the first Galois cohomology set G) (cf., ~21~ Chap-
ter 111.1).

We will use the following result, known to be true for any perfect field
k of dimension ~ 1 ( cf. ~21~, Ch. II.3.1 ).

PROPOSITION 2.1.2014 Let k be a function field of one variable over an
algebraically closed field C of characteristic zero and G a linear algebraic
group defined over k with identity component G° .

1. If G is k-connected, then any G-torsor over k is trivial.

2. For any k-homogeneous space W for G, there exist a G-torsor V over
k and a G-morphism : V --~ W. .

3. If W is a G/G°-torsor over k then there exists a unique G-torsor
V and a G-morphism : V ~ W, where the action of G on W
is induced by the projection : G -~ G/G°. Furthermore, I~r is the

geometric quotient of V under the action of G° and V is k-irreducible
whenever W is.

Proof. Statement 1 follows from the discussion after Théorème l’ of
Chapter III.2.3 of [21]. Statement 2. is Théorème 3 of Chapter III.2.4 of [21].
The first part of Statement 3. follows from Corollaire 3 of Chapter 111.2.4
of [21], which states that the canonical map p : G) --~ GIGO) is
a bijection. The other part follows from the fact that ( W (k) ~_~ G/G° ( .



3. Torsors for a finite group

Before we characterize k-irreducible torsors for a finite group, we need
the following result, a key lemma in our construction of a solution to the
inverse problem.

LEMMA 3.1. Let k be a field, ~p : H -~ a representation of
the finite group Hand K a finite Galois extension of k with Galois group
H. Then there exists w E GLn (K) such that hw = wp(h) for all h E H,
where hw denotes the Galois action of h E Gal(K/k) on the entries of w.
Furthermore, if k = C (x), , then there exist g1, ... , gn E K, linearly inde-
pendent over C, such that (hgl, ... ,h 9n) = (gl, ... , gn)cp(h) for all h E H.

Proof. The inclusion p(H) c GLn (k) defines a cocycle in

H1 (Gal(K/k), GLn (K)), and this latter set is trivial (cf. ~12~, p. 549). There-
fore, there exists a matrix w E GLn(K) such that hw = wcp(h).

To prove the second statement, let w E GLn(K) be such that hw =
w~p(h) for all h E H. We claim that there exist polynomials p1, ... E k
such that the entries of (pl, ... = {gl, ... , g~.,.t) are linearly indepen-
dent over C. To see this, let Yl, ... Y m be differential indeterminates. If
(Yl, ... , Y?.,2)w(cl, ... = 0 for (cl, ... cm) E C"2 then w(cl, ... 
= 0, so (cl , ... cm) = 0. Therefore, the differential polynomial Wr( (Yl , ... , ,
Ym)Z) in the YZ’s, where Wr denotes the wronskian determinant, is non

identically zero. This implies ([18], p. 35) that there exist polynomials
p1, ... E k such that Wr((pl, ... ~ 0. For this choice of pi,
one then sees that {gl, ... , g~.,.i) are C-linearly independent and satisfy the
conclusion of the lemma. 0

An immediate consequence of this result is the following

COROLLARY 3.2. - With the same notation and k = C(x), any C-finite
dimensional H-module is isomorphic to an H-submodule V of the H-mo-
dule K.

PROPOSITION 3.3. - Let k be a field and H a finite group.

1. A field K is a Galois ex~tension of k with group H if and only if
K = k(W) for some k-irreducible H-torsor W. .

2. Assume that k = C{x) where C is an algebraically closed field and let
~ : H --~ H’ be a surjective homomorphism. If W’ is a k-irreducible
H’-torsor then there exist a k-irreducible H-torsor Wand a map

: W --~ W’ such that = for all k-points w E W
and allhEH.



Proof. l. For each h E H let ph : W ~ W be the morphism of
k-varieties corresponding to the map Ph(W) = wh on geometrical points
w E W. Let ph k(W) -~ k(W) be the induced map on the function field.
In this way H acts faithfully as a group of automorphisms of k(W) over 1~.
Since the fixed field of H is k, we conclude that H is the Galois group of K
over k.

Conversely, let K be a Galois extension of k with group H, let IHI = n
and let H act on itself via the regular representation. This allows us to
represent H as a subgroup of permutation matrices of GLn(k). Lemma 3.1
states that there exists w E GLn (K) such that hw = wh for all h E H.
The set W = is an algebraic set that is clearly invariant under
the action of the Galois group. Therefore W is an H-torsor, defined over k.
Since the action of the Galois group is transitive, W is irreducible and each
point is a specialization of any other point. Therefore k(W) = k(w) c K.
Since the only element of H leaving k(w) fixed is the identity, we have that
k(w) = K.

2. If K’ = k(W’) then H’ is the Galois group of K’ over l~. Theorem 7.13
of [24] implies that there exists a Galois extension K of k with Galois group
H such that K’ C K and restricting automorphisms of K to K’ corresponds
to the homomorphism ~ : ~ 2014~ H’. The field K is the function field of a
k-irreducible H-torsor Wand the inclusion K’ C K yields a morphism
~ : : W ~ W’ as desired. D

Note. - All of the above results are purely algebraic except for Proposi-
tion 3.3.2. Theorem 7.13 of [24] uses the Riemann Existence Theorem. Note
that if we let ~ = (1), Proposition 3.3.2 implies that any finite group is
a Galois group over C(x). We know of no proof of this latter result that
avoids analytic considerations.

4. Reduction to semidirect products

We will show that it is enough to prove Theorem 1.1 for groups that
are semidirect products of their identity component G° by the finite group
G/G° of their connected components and for homogeneous spaces of the
form W x G° where W is a k-irreducible G/G°-torsor. The reduction to
this case is made in several steps.

1. In ([25], p.142) or ([3], lemme 5.11 p.152) it is shown that any linear
algebraic group G over k is (on k-points) of the form H G° where
H is a finite group and G° is the identity component of G (this
result is sometimes quoted as Platonov’s theorem). Therefore, there



exists a surjective homomorphism 03C8 : G := H  GO ---+ G and in
particular H’ = G/G° is the homomorphic image of H. Let V be
a k-irreducible G-torsor and let W’ = be the associated k-
irreducible homogeneous space for H’ = G/G~. We wish to construct
a k-irreducible G-torsor V and a surjective morphism W : if ---+ V
such that = for all k-points v E V and 9 E G.

Proposition 3.3.2 implies that there exists a k-irreducible H-torsor
Wand a surjective morphism ~ 2014~ W’ such that =

for all k-points w E Wand all h E H. Proposition 2.1
states that there is a unique k-irreducible G-torsor V and surjective
G-morphism 03BE : if ---+ W. The kernel J of 03C8 is a finite group so the
quotient V//J exists and is a G/J = G-torsor. By uniqueness, V//J
is G-isomorphic to V so the composit if ---+ V gives the
desired map ~.

2. Suppose there exists a derivation D on satisfying the conclusion
of Theorem 1.1 for the group G and a k-irreducible V-torsor. Note
that in the above, V was identified with V//J where J is the kernel
J of the map ~ : G ~ G. Therefore, k (V ) is the fixed field of the
normal subgroup J and so is again a Picard-Vessiot extension with
Galois group G.

3. Let G = H ~ G° . Let V be a k-irreducible G-torsor and let W be
the associated k-irreducible G/G°-torsor. The k-irreducible variety
W x G° has the structure of a homogeneous space for G = H ~ G°
where the action of H  GO on W x GO is given by (w, g) (h’, g’) =
(wh’, h’-lgh’g’). Since this latter space is also inducing the GIGo-
torsor W, Proposition 2.1 implies that W x G° is G-isomorphic to V.

We have thus reduced the problem to the case where G is a semidirect
product of its identity component G° by a finite group H and V is of the
form W x G° where W is a k-irreducible H-torsor.

5. The logarithmic derivative

In this section we review some of the results of [10], [11] which we used
in [14]. Let k be a differential field of characteristic zero with algebraically
closed field of constants C. As in [10], 11 ~ , we shall let U denote a fixed
universal differential extension of k , that is, a field such that if K is a finitely
generated differential extension of k, then there is a k-differential embedding
of K into U. Using elementary facts from the theory of differential ideals and
Zorn’s Lemma, one can show that such a field exists ([8], p. 134). Note that
if K is a finitely generated differential extension of k and I a differential



ideal in ... , 1 ~ I, then I has a zero in Without further

mention, we shall assume that all fields under consideration are subfields
of U.

Let G C GLn be a connected linear algebraic group defined over a field C
and F any field containing C. If G denotes the Lie algebra of G (over C) one
can identify G(F) = with the space {A E gln (F) 1 + EA E G(F[~])},
where the F-algebra F[e] is defined by E2 = 0 ( cf. [4], see also [8] ex.1 p. 329,
or [15], [17]).

Kolchin [8] and Kovacic [10], [11] introduced the logarithmic derivative
defined by 16(g) = E gln(U) for any U-point g of G C GLn. The next
propositions ( cf. [8], , [10], [11], [15], [17]) describe useful properties of the
logarithmic derivative. We shall use the following notation. Let f : Un -~
U’n be a polynomial map and u, v E un. We will use to denote
the derivative of f at u applied to v. For example, if m = 1, dfu[v] =

(u)vi. Note that Taylor’s Formula implies f(u + Ev) = f(u) +
Edfu w~ .

PROPOSITION 5.1.2014 With notation as before, let G be a connected lin-
ear algebraic group defined over C. Then

1. . l~(g) E for all g E G(U)

2. For any A E C(U), there exists g E G(U) such that l~(g) = A. If
A E one can furthermore select g E G(U) such that k(g) is a
Picard- Vessiot extension of k (that is, such that the field of constants
of k(g) is C~. .

3. For any g E G(U) such that k(g) is a Picard- Vessiot extension of k,
the Galois group G’ of k(g) over k is a closed subgroup of G and the
action of G’ on g is given by right multiplication.

Proof. To show 1 we must show that 1-E- Eg’ g-1 E G (U ~E~ ) . To do this
it is enough to show that (1 + = g + Eg’ E G(U ~E~ ) . Let P be a
polynomial in the radical ideal defining G. Using Taylor’s formula and the
chain rule we clearly have P(g+Eg’) = = P(g)-f-E(P(g))’ = 0
since P(g) = 0.

Statement 2 is just a restatement of Corollary 4.3 (and some facts from
its proof) of [15]. Let I C R = be the radical ideal

defining G. We extend the derivation on k to a derivation on R0k by setting
- A(Xi,j).



We first claim that I Q9 k is a differential ideal in R Q9 k. To see this
let f E I. Note that ( f (X ) )’ = dfx[AX] where X = . Therefore, to
show that f’ E I, we will show that dfg ~Ag~ = 0 for all g E G(C). Since
A we have that E and so E G ( l~ ~E~ ) Therefore
0 = f(g + EAg) = f(g) + ~dfg[Ag] and f(g) = 0 implies that dfg[Ag] = 0.

Since I is a differential ideal, it is contained in a maximal differential
ideal P, which is furthermore prime. The quotient field K of (R Q9 is
a Picard-Vessiot extension of k. The image g of X in this field is a k-point
of G by construction.

To prove assertion 3 note that if a~ E then o-(g) = g . ~~~
for some [r] E GLn (C). Since g E G, g is a zero of the ideal I and so

is also a zero of I, hence E G. We can therefore conclude that

~~’~ = E G. D

The following properties of the logarithmic derivative will help reduce
the inverse problem to simpler cases.

PROPOSITION 5.2. - Let G, I be connected C- groups and let f : G -> G
be a C-morphism. If g E G(U) then

Proof. Let lb(g) = A, and let e denote the identity element of G.
We see that f(g + ~Ag) = f(e + EA)f (g) = (f (e) + = f(g) +

We also have that f(g + ~Ag) = f(g) + ~dfg[Ag] = f(g) +
= f(g) + E(f (g))’. Therefore (f(g))’ = so l~(f (9’)) =

dfe[A]. . D

PROPOSITION 5.3. - Let f : G -~ G be a surjective morphism of con-
nected C-groups. Let k(g) be a Picard- Vessiot extension of k with g E G(U)
and with g’ = Ag, A E . Then k( f(g)) is a Picard- Vessiot extension of
k with ( f (g))’ = dfe~A~ f (g) and with Galois group f(Gal(k(f(g))/k)) C G.

Furthermore, assume that if H is any C-subgroup of G satisfying f(H) =
G then H = G. If Gal(k(f(g))/k) = G, then Gal(k(g)/k) = G.

Proof. Proposition 5.2 implies that f (g) satisfies the differential equa-
tion Y’ = dfe[A]Y. Therefore k( f(g)) C k(g) is generated by a funda-
mental set of solutions of a linear differential equation and so is a Picard-
Vessiot extension of 1~. We end the proof of the first assertion by show-
ing that the subgroup of Gal(k(g)/k) leaving k(f(g)) fixed is precisely
the kernel of f in Gal(k(g)/k) C G(C). Proposition 5.1.3 implies that



the Galois group of k(g) over k acts on g by right multiplication. For
r E f(O"(g)) = = Therefore, ~ leaves f (g)
invariant if and only if f (o-) is the identity.

Now assume that if H is any C-subgroup of G satisfying f (H) = G then
H = G, and assume that the Galois group of k(f(g)) over k is G. Since this
Galois group is we must have Gal(k(g)jk) = G. D

6. A criterion for realizing a group as a Galois group

Let k be a differential field with field of constants C, and E a Picard-
Vessiot extension of k with Galois group G. It is a known fact ( cf. [1], [5],
[8], [13], [15], [17]) that E is the function field k(V) of some k-irreducible
G-torsor where the action of the Galois group on E is the same as the action

resulting from G(C) acting on V. We may furthermore write E = k(v) for
some E-point v E V. For any element 03C3 of the Galois group of E and any
E-point y E V we shall denote by 03C3 y the (differential Galois) action of 03C3
on y, and by the (translation) action of 03C3 on y via the G-torsor V. We
then have ~v = ~ ’ cr for all 0" E G(C).

Let us now restrict our attention to the field k = C(x) and groups of
the form G = H ~ G° as above (see Section 2). In this case, V = W x G°
for some k-irreducible H-torsor W. . The field K = k(W) C E is the fixed
field of G° and we may write K = k(w) for some K-point w E W and
E = K(g) = k(w, g) for some E-point g E G°. For notational convenience,
we think of G as being a subgroup of some GLn and its Lie algebra 9 as
being a subalgebra of the Lie algebra gln of all n x n matrices. In this case
A = E gln (K) since the entries of A are invariant under the action of
the (constant) group G°. For (~, T) E G(C) = H(C) x GO(C), we have that

and in particular for 03C3 E H(C),

This last equation shows that for 03C3 E H (C),

DEFINITION 6.1. - Let K be a Galois extension of k with Galois group
H. Let V be a right H-module over k. We consider K ~k V as a left H-
module via the action 03C3 . a ® v = a(a) ® v and as a right H-module via the
action a ® v . ~ = a ® (v ~ ~) for any a~ E H. We say an element u E K ®~ V
is H-equivariant if ~ . u = u . ~ for all ~ E H.



With notation as above, consider V = ~ as a right H-module via v H
h-1 vh for all h ~ H and v ~ G. We have then shown

PROPOSITION 6. 2. - Let E be a Picard- Vessiot extension of k with Ga-
lois group G = H ~ G° . Then

1. . K = EG~ is the function field of a k-irreducible H-torsor (and so K
is a Galois extension of k with Galois group H),

2. E is a Picard-Vessiot extension of K for an equation of the form
y’ = Ay where A is an H-equivariant element Furthermore
the Galois group of E over K is G° .

The converse of this result gives the following criterion, that we will use
to construct equations with a given Galois group.

PROPOSITION 6.3. - Let k be a differential field of characteristic zero
with algebraically closed field of constants C. Let G = H x GO c GLn be
an algebraic group defined over C, with H finite and GO connected with Lie
algebra ~ Let W be a k-irreducible H-torsor and let K = k(W). .

Let A E and assume that

1. . A is H-equivariant

2. The Picard- Vessiot extension E of K corresponding to the equation
y’ = Ay has Galois group G° .

Then E is the function field of the k-irreducible G-torsor W x GO and a
Picard- Vessiot extension of k with Galois group G. Furthermore the action
of the Galois group corresponds to the action of G on E induced by the
action of G on W x G°.

Note that by Proposition 5.1 the condition A E ~ implies that E = K (g)
for some g E G° with the action of G° on g given by right mutliplication.
The condition that the Galois group is G° implies that g is a generic point
of G°.

Proof. Lemma 3.1 states that there exists a matrix w E GLn (K) such
that for any 03C3 E H c GLn (C) we have that 03C3w = wa. Note that K = k(w)
since k(w) c K and the Galois group of K over k(w) is trivial.

We may write E = K(g) where g E G° satisfies g’ = Ag. This im-
plies that E = k(w, wg). By assumption the constant subfield of E is C..



Furthermore, Y = diag(w, wg) E GL2n (E) satisfies Y’ = AY where

Clearly and + lie in K. A calculation shows that
both of these are invariant under the action of H and so both must lie in k.
Therefore E is a Picard-Vessiot extension of k. Since Gal(E’/~) = G° and
Gal(K/k) = H we have an exact sequence of groups:

Since G° is connected, the field K is algebraically closed in E and so E is
the quotient field of K ®C C (G° ) Any automorphism a~ of K over k gives an
automorphism  = 03C3 0 of K 0c C(G°) (where 
and therefore of E. The map ~(cr) = ~ gives an injective homomorphism
of H to Gal(E/k). Since o~(w) = w and ~(wg) = wg we have that

= The image of G° in Gal(E/k) is diag(I, G°). Therefore
Gal(E/~-) is isomorphic to H x G°. D

EXAMPLE 6.4. - Consider the semidirect product G = Z/2Z ~ C* re-
presented in GL2 (C) as

Let k = C(x) and K = . The Galois group H of K over k is Z/2Z.
If we identify H with

then the matrix

satisfies = w~ for all ~ E H. The matrix

is H-equivariant and the Galois group of Y’ = AY over K is



A calculation shows that

and

Thus the differential equation Y’ = AY where

realizes Z/2Z ~ C* as its differential Galois group over C(x).

In the next sections we shall need the following

LEMMA 6.5. - Let k, K, H and V be as in Definition 6.1. Let W be
a right H-submodule of V and : V --~ be the associated projection
map. For any H-equivariant u E K 0 there exists an H-equivariant
w E K 0 V such that = u.

Proof. - Let t E K 0 V be any element such that = u. The element

w = 2014r ~ ~ u ~ ~-1 satisfies the conclusion of the lemma. D

7. Reduction steps

Our purpose, reached so far only in the case of a solvable identity com-
ponent G°, is to give a proof as constructive as possible of Theorem 1.1. The
idea is to mimick the proof we gave in [14] for connected groups, now over a
finite extension K of C(x), taking into account the equivariance condition
under the action of the finite Galois group of this extension.

In this section we recall the reduction steps of [14], inspired by Kovacic’s
strategy in ([10], [11]).

In the following, we will use the purely group theoretic fact that if G
is a connected linear algebraic group defined over C with unipotent radical
Ru and if p : G -~ G /[Ru, Ru] is the quotient homomorphism, then the only
C-subgroup H of G with p(H) = p(G) is G ( cf., Lemma 7 of [11]). The
following corollary of Proposition 5.3 then reduces the inverse problem for
arbitrary connected linear groups to the same problem for connected linear
groups whose unipotent radical is commutative.



COROLLARY 7.1.2014 Let G be a C-connected linear algebraic group with
unipotent radical Ru. . Let p : G ~ G = G/[Ru, Ru] and let B E ~ (K),
where ~ is the Lie algebra of G. Assume that the Galois group of Y’ = BY
is G. Then for any A E ~(K), where ~ is the Lie algebra of G, such that
dpe[A] = B, the Galois group of Y’ = AY is G.

Proof. - Let A be as in the hypotheses and let K(g) be the Picard-
Vessiot extension of K for the equation Y’ = AY. The element p(g) satisfies
the equation Y’ = BY so the field K(p(g)) is a Picard-Vessiot extension
for this equation. Furthermore, the Galois group of K ( p(g) ) over K is G.
Since G is the only algebraic subgroup of G mapping surjectively onto G,
the conclusion follows from Proposition 5.3. D

Let G be a connected group with commutative unipotent radical U. We
shall recall the conditions of Kovacic that allow us to lift a solution of the
inverse problem for G/U to a solution of the inverse problem for G. These
conditions are based on the Levi decomposition of G as a semidirect product
G = U ~ P where P is a reductive group ([7], p. 117).

To motivate Kovacic’s conditions, let L = K(g) be a Picard-Vessiot ex-
tension of K with Galois group G and g a L-point of G. We may write
g = up with u E U, p E P. Note that since tr.deg.KK(p)  dim P,

dim U and dim G = tr.deg. KK(g) = tr.deg.KK(p) +
we have that tr.deg.KK(p) = dim P and 

= dim U. In particular this implies that K(p) is a Picard-Vessiot extension
of K with Galois group P. Let g, P, and U be the Lie algebras of G, P, and
U respectively and let l~(g) = AG E ~ and l~(p) = Ap E P. Calculating,
we find

If p is any element such that K(p) is a Picard-Vessiot extension of K
and = lb(p), then a simple calculation shows that p = pc for some
c E P(C) and also that = We therefore
define

where p is any element of P such that l ~ (p) = A p and the constants of K (p)
are C. Note that U is left fixed by any automorphism of C, so E U.
The following result of Kovacic shows that one can reverse the process ( cf.,
[10], Proposition 13; [11], Proposition 19; [14], Proposition 2.6).



PROPOSITION 7.2. - Let G be a connected linear algebraic C-group and
let G = U ~ P be a Levi decomposition. Assume that U is commutative and
that Ap E P(K), , Au E U(K) satisfy

1. There exists an element pEP such that lb(p) = Ap and K(p) is a
Picard- Vessiot extension of K with Galois group P.

2. There exists an element u E U such that = Au, and such
that the field of constants of K(u, p) is C.

3. The map a ~-~ is a C-isomorphism from the diff erential
Galois group Gal(K(up)/K(p)) onto U(C). .

Then = Au + Ap and the Galois group of K(up) is G.

The condition = Au can be described in a simple way. To do
this note that U, being a commutative unipotent group, is the isomorphic
image, via the exponential map, of the vector group of its Lie algebra U.
Furthermore, it is easy to show that = ~y’ for any ~y E U.

This implies that y and if we identify U with the vector group
of U via the exponential map, we have that l~(g) = g’ for all g E U.

Via the identification of U with U the action of P on U by conjugation
induces the (adjoint) representation p : : P ~ GL(U) and the correspond-
ing representation dp : ~ -~ gl(U) on Lie algebras. For Au, Ap, u, p as in
Proposition 7.2, we have

Kovacic is able to refine Proposition 7.2 in the following way. Since P
is reductive we may write U as a sum of irreducible P-modules. Grouping
isomorphic copies, we write U = Ui EB ... (B where the Ui are non-
isomorphic P-modules. For all i = 1, ... , s let 03C1i : P ~ GL(Ui) be the
representation of P on the simple module Ui and dpi : 7~ 2014~ gl(Ui) the
corresponding representation on Lie algebras. We denote by pi i and dpi i
the corresponding representations on the powers. As before, we shall iden-
tify each Ui and its Lie algebra Ui with some Cvi . Kovacic shows ([11],
Proposition 19) : :

PROPOSITION 7.3.2014 Let G be a connected linear algebraic group de-
fined over an algebraically closed field C and let K be a differential field



with field of constants C. Assume that G = ® ... ~ ® ~ P as above.
Let Ap E P(K) and Ai E (Llz i )(K), i = 1 ... , s, be such that

1. There exists an element pEP with l~(p) = Ap such that K(p) is a
Picard- Vessiot extension of K with Galois group P.

2. There exist elements u2 E Ui i with u2 - dp2 (Ap)uz = Ai, such that
the field of constants of K(ui, p) is C.

3. The map ~ ~ , {o.(u2) - u2) is a C-isomorphism from Gal(K
(uip)/K(p)) onto .

Then for u = ul + ... + us , = Al + ... + As + Ap and K(up) is a
Picard- Vessiot extension of K with Galois group G.

We shall also need criteria to find Au and Ap. We do not know a general
criterion for realizing constructively an arbitrary reductive group as a Galois
group over a general differential field. The following is a criterion for realizing
tori over any differential field ( cf. ~ 10~ Proposition 15 ) . It is a consequence of
the Kolchin-Ostrowski Theorem ( cf. ~9~ ) . If T is a torus defined over C, we
identify T( G) with the l-fold product C* x ... x C* and the Lie algebra Tc of
T(G) with the l-fold sum With this identification, the logarithmic
derivative of an element in T becomes l~{a1, ... , al ) = (ai /a1, ... , al /cxt ).

PROPOSITION 7.4. - Let T be as above and F a differential field con-
taining C. Let (al, ... , al ) E TF = Fl . A necessary and sufficient condition
that (T1, ... , Tl) realize T over F is that there exists no relation of the form
n11 + ... + nll = f’ j f with n2 E Z not all zero and f E F.

Finally, Kovacic gives a criterion for finding elements satisfying Proposi-
tion 7.3. Let -~ where m = dimc(U), be the map defined
by = v’ - dp(Ap) ~ v and let -~ be the

quotient homomorphism of C-vector spaces. Kovacic shows ( cf. ~11~, Propo-
sition 20; ~14~, Proposition 2.11)

PROPOSITION 7. 5. - With notation as in Proposition ~. ~, assume that
s = 1 and rl = r. If Ap E P(K) satisfies condition 1 above, then Al =
(al, ... ar) E ?.h(K) satisfies conditions 2 and 3 if and only if 03C0a1, ... , 03C0ar
are linearly independent over C. 

_

8. Solvable-by-finite groups

We are now able to prove Theorem 1.1 for linear algebraic groups G,
defined over C, with a solvable identity component GO. We shall keep the



notation of the previous sections. We may assume that G is a semidirect
product G = H  G°, where H is a finite group, and that GO has a Levi-
decomposition GO = U tx P, where the unipotent radical U is commutative
and P is a torus. We have the decomposition U = ... 0 of U
into nonisomorphic irreducible P-modules Ui and since P is a torus we
know that all the Ui are one-dimensional. We shall moreover assume that
Ui is the trivial P-module (and so allow the possibility that ri = 0). Let
K denote a finite extension of k = C(x) with Galois group H. To satisfy
the criterion of Proposition 6.3 we need to find Ap E P(K), Ai E Lli (K)
satisfying conditions 1, 2 and 3 of Proposition 7.3 and such that Ap, and

A2+~ ~ ~+AS are H-equivariant. Before we show how to select these elements,
we must select H-invariant C-subspaces of K which are H-isomorphic to
~(C), to Wi = and to W2 = L122 ® ~ ~ respectively.

Corollary 3.2 implies that there exist H-invariant C-subspaces Wo, Wl
and W2 of K, isomorphic as H-modules to ~(C), Iili and W2 respectively.
We need to adjust these spaces so that the poles of their elements have
certain properties. Let Y be the curve corresponding to the function field
K and assume that Y is unramified over oo.

1. After multiplying by a suitable rational function r E C(x), we may
assume that all the elements of W2 are regular on Y except possibly
at points above oo. Multiplication by such an element does not change
the property of being an H-module isomorphic to W2. Let e > 2 be
a positive integer such that any element of W2 has a pole of order at
most e - 1 at any point above oo.

2. After multiplying by a suitable rational function, we may assume that
the nonzero elements of Wo are regular on Y except at points above
oo and at such points they have poles of order at least e. Again, this
does not change the property of being H-isomorphic to Wo.

3. Since H is reductive, we may (if ri > 0) write Wi = where

each W1,i is H-irreducible. Let c1, ... , ct be finite points of P1 such
that Y is not ramified above the Ci and such that the elements of

Wi are regular above all the Let ki be an integer such that all the
elements of Vi = (x - Wl,i have poles of order at most 1 above ci
and at least one element has a pole of order precisely 1 at some point
above ci. The space Wi = is again H-isomorphic to U[l.
Abusing notation, we may therefore assume that Wi = i

where, for each i, the elements of W1,i have poles of order at most 1
at Ci, are regular at c~ , j ~ i, and some element of W1,i has a simple
pole at cj . .

We now show how to select Ap, and A2 + ... + As . .



8.1. Choice of Ap

Let g1, ... , gl be an H-equivariant C-basis of Wo . We claim that if

di E C are such that digi + ... + dlgl = f’/ f for some f E K, then all
di = 0. Note that any element I’ j I has a zero of order at least one at any
point above oo. Since d1g1 + ... + dlgl is either zero or has a pole of order
at least e, we must have digi + ... + dlgl = 0, hence di = 0 for all i =

1,..., l. Proposition 7.4 implies that for Ap = (g1, ... , gl) E Kl = P(K),
Y’ = ApY has Galois group P over K. Since ~(~i,... ? , gt) = (gl, ... , gt) ~ ~
for all 0- E = H, Ap is H-equivariant and satisfies condition 1 of
Proposition 7.3.

8.2. Choice of ~4i

As before, we write Wi = ®Z=1 Wi,i if rl > 0. For each i, let 
be an H-equivariant C-basis of W1,i and let A1 = ( f l l, ... ftnt) E L1i (K) =

We claim that A 1 satisfies conditions 2 and 3 of Proposition 7.3.

Recall that pi is the trivial representation of P. Therefore LAp,PI (v) = v’
for all v E Lh (K) = K. Assume that there exist constants cij such that
03A3 cijfij = LAp,Pl (03C6) = 03C6’ for some 03C6 E K. Letting 03B3i = 03A3nij=1 Cijfij, we
have ~Z=1 ~y2 = ~’. For each i, let Si = {/ E W1,i ~ f + u = v’ for some u E
W1,1 + ... + + ... + Wl,t, v E K}. Note that each Si is an H-invariant
subspace of W1,i and 03B3i E Si. The elements of W1,j, j ~ i are all regular
above Ci and an element of the form ~/ cannot have a simple pole above .

Therefore, the element of W1,i having a simple pole above Ci is not in 
Since W1,i is irreducible, we must have that Si = ~0~. Therefore -y2 = 0.
Since, for each i, the lij form a basis of W1i we have that all Cij = 0.

We therefore have that A1 = (/n,..., E Ur11 (K) is H-equivariant
and satisfies conditions 2 and 3 of Proposition 7.3.

8.3. Choice of 

For each i, 2  i  s let be an H-equivariant basis of the C-
subspace of Hl2 isomorphic to Lli i The Lie algebra P acts on Ui via a nonzero
character of the form dpi ( (xl, ... xl ) ) = 03A3j nijxj for some integers ive
shall show that, for each i, the element Ai = ... , 03C6iri) E L1i (K) = 
satisfies conditions 2 and 3 of Proposition 7.3 . To do this we must show
that if ci,..., , cri are constants such that for some y E K, y’ - (03A3 nijgj)y =

03A3 cj03C6ij where Ap = (gl, ... , , gl ), then each cj = 0. Note that the gj and the
are regular except above oo. Therefore any such y must also be regular

at all points except those above oo. Therefore there is a point above oo such



that the order of y is at most 0. At such a point y’ - ( ~ ni~ will have
a pole of order at least e, if it is not zero, whereas £ cj03C6ij will have a pole
of order at most e - 1. We get y’ - (03A3nigi)y = 03A3 cj03C6ij = 0. Since the 03C6ij
form a basis, we conclude that all c~ = 0.

The H-equivariant elements Ap and Ai, i = 1..., s fulfill the conditions
of Proposition 7.3. This ends the proof of Theorem 1.1 for groups with a
solvable identity component.

EXAMPLE 8.1.2014 We shall apply the method of this section to the sub-
group G = Z/2Z  (C*  (C C C)) of GL4(C) defined as

Using the above notation, we have

Note that the action of H on P is trivial whereas the action of H on Wl
and W2 sends an element to its inverse. The action of P on Wl is trivial
while = vab for all pa E P and vb E W2.



Let k = C(x) and K = k(t) where t2 = ~ . Note that this has no
ramification above oo. A calculation shows that the following choices satisfy
conditions 1, ~ and 3.

1. W2 is the C-span of xt. This element has a pole of order 1 at points
above oo .

2. Wo is the C-span of x2. . This element has a pole of order 2 at points
above oo .

3. Wl is the C-span of ~ 12 t.

We therefore have that the matrix

is H-equivariant. As in Example 6.1~ one can find A E such that the

differential equation Y’ = AY realizes G as its Galois group over k = C(x). .

9. Final remark

In the special case of a solvable identity component G°, note that our
realization of G as a differential Galois group is constructive up to a finite

embedding problem of classical Galois theory over C(x). Let us briefly recall
this procedure.

Given G and an irreducible G-torsor V over k = C(x), and W the
induced (irreducible) G/G°-torsor, let K D k(W) be a solution of the finite
embedding problem for H --~ G/G°, where H is a finite subgroup of G
mapping surjectively to G/G° (with respect to k-points). We construct an
irreducible H-torsor W’ such that K = k(W’) and such that W’ induces
W for G/G". There is a unique derivation a extending d on k(W) and K,
and we extend 9 constructively to a derivation 9 on k(W’ x GO) realizing
H tx G° as the Galois group of the Picard-Vessiot extension k(W’ x G° )
of k. The G-stable subfield k(V) of k(W’ x G°) is then a Picard-Vessiot
extension of k with Galois group G.

In particular, if we are given a field K, algebraic over k with finite
Galois group H, we can effectively realize any group of the form H tx G°,
GO connected and solvable, as a differential Galois group over k.



Bibliography

[1] BERTRAND (D.). - Review of "Lectures on differential Galois theory" by A. Magid,
Bull. AMS, 33 (1996), 289-294. Springer Verlag, 1991.

[2] BOREL (A.). - Linear Algebraic Groups, second edition, Springer Verlag, 1991.

[3] BOREL (A.), SERRE (J.-P.). - Théorèmes de finitude en cohomologie galoisienne,
Comment. Math. Helv., 39 (1964-1965), 111-164.

[4] CHEVALLEY (C.). - Théorie des groupes de Lie, Vol.II, Groupes algébriques, Her-
mann, Paris, 1951.

[5] DELIGNE (P.). - Catégories tannakiennes, The Grothendieck Festschrift 2, p. 111-
195, Progress in Math., 87 (1990), Birkhäuser.

[6] HARTMANN (J.). - On the Inverse Problem in Differential Galois Theory, Preprint,
Universität Heidelberg, 2002.

[7] HOCHSCHILD (G.). - Basic Theory of Algebraic Groups and Lie Algebras, Graduate
Texts in Mathematics, 75, Springer-Verlag, 1981.

[8] KOLCHIN (E.R.). - Differential Algebra and Algebraic Groups, Academic Press,
1976.

[9] KOLCHIN (E.R.). - Algebraic groups and algebraic dependence, Amer. J. Math., 90
(1968), 1151-1164.

[10] KOVACIC (J.). - The Inverse Problem in the Galois Theory of Differential Fields,
Annals of Mathematics, 89 (1969), 583-608.

[11] KOVACIC (J.). - On the Inverse Problem in the Galois Theory of Differential
Fields, Annals of Mathematics, 93 (1971), 269-284.

[12] LANG (S.). - Algebra, Third Edition, Addison-Wesley, 1993.

[13] MAGID (A.). - Lectures on Differential Galois theory, University Lecture Series,
American Mathematical Society, Second edition, 1994.

[14] MITSCHI (C.), SINGER (M. F.). - Connected Linear Groups as Differential Galois
Groups, Journal of Algebra, 184 (1996), 333-361.

[15] VAN DER PUT (M.). - Galois Theory of differential equations, algebraic groups and
Lie algebras, Journal of Symbolic Computation, 28 (1999), 441-472.

[16] VAN DER PUT (M.). - Recent work in differential Galois theory, Séminaire Bour-
baki, volume 1997/98 (exposé 849), Astérisque, Société Mathématique de France,
Paris, 1998.

[17] VAN DER PUT (M.), SINGER (M.F.).2014 Galois Theory of Differential Equations, to
appear.

[18] RITT (J. F.). - Differential Algebra, Am. Math. Soc. Coll. Pub., Vol. 33, Am.
Math.Soc., 1950.

[19] RAMIS (J.P.). - About the Inverse Problem in Differential Galois Theory: the
Differential Abhyankar Conjecture, unpublished manuscript, 1996.

[20] RAMIS (J.P.). - About the inverse problem in differential Galois theory: the diffe-
rential Abhyankar conjecture, in The Stokes phenomenon and Hilbert’s 16th Pro-
blem, World Scientific Publ. (Editors B.L.J. Braaksma, G.K. Immink, M. van der
Put), Singapore 1996.

[21] SERRE (J.P.).2014 Cohomologie Galoisienne, cinquième édition, Lecture Notes in
Mathematics, 5, Springer-Verlag, 1994.



- 423 -

[22] SINGER (M.F.). - Moduli of linear differential equations on the Riemann sphere
with fixed Galois groups, Pacific J. Math., 106, No. 2 (1993), 343-395.

[23] TRETKOFF (C.), TRETKOFF (M.). - Solution of the inverse problem of differential
Galois theory in the classical case, Amer. J. Math., 1979, 1327-1332.

[24] VOLKLEIN (H.). - Groups as Galois Groups, Cambridge Studies in Advanced

Mathematics, Vol. 53, Cambridge University Press, 1996.

[25] WEHFRITZ (B.A.F.). - Infinite Linear Groups, Springer-Verlag, 1973.


