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logit item response models
and quasi-symmetric loglinear models *)
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RESUME. — Le modele log-linaire de quasi-symétrie introduit par
Caussinus a des liens intéressants avec les modeles pour les effets indi-
viduels dans des mesures qualitatives répétées. Pour les réponses binaires,
Tjur (1982) a montré que les estimateurs des parameétres des effets prin-
cipaux dans le modele de quasi-symétrie sont aussi des estimateurs du
maximum de vraisemblance conditionnelle des parametres relatifs aux
questions dans un traitement de type effets fixes des paramétres individu-
els du modele de Rasch. Il a montré qu’ils sont aussi des estimateurs non
paramétriques des parameétres des questions dans un traitement de type
effets aléatoires des parameétres des effets individuels. Je décris quelques
généralisations du modele de quasi-symétrie qui ont des liens similaires
avec des généralisations du modele de Rasch. Celles-ci incluent I’existence
d’un lien entre un modele de quasi-symétrie ordinale et un modeéle logit
sur catégories adjacentes avec effets aléatoires, et un lien entre un modele
de quasi-symétrie multivariée et un modele logit a effets aléatoires pour
des mesures répétées d’un vecteur multivarié de réponses binaires.

ABSTRACT. — Caussinus’s loglinear model of quasi symmetry has inter-
esting connections with models for within-subject effects with repeated
categorical measurement. For binary responses, Tjur (1982) showed that
estimates of main effect parameters in the quasi-symmetry model are
also conditional maximum likelihood estimates of item parameters for a
fixed effects treatment of subject terms in the Rasch item response model.
He showed they are also nonparametric estimates of item parameters for
a random effects treatment of subject terms in the Rasch model. I de-
scribe some generalizations of the quasi-symmetry model that have simi-
lar connections with generalizations of the Rasch model. These include a
link between an ordinal quasi-symmetry model and an adjacent-categories
logit model with random effects, and a link between a multivariate quasi-
symmetry model and a logit random effects model for repeated measure-
ment of a multivariate vector of binary responses.

(*) Recu le 18 septembre 2001, accepté le 18 septembre 2002
(1) Department of Statistics, University of Florida, Gainesville, Florida 32611-8545,
U.S.A. E-mail: aa@stat.ufl.edu
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1. Introduction

The Caussinus (1966) quasi-symmetry model is one of the most useful
models for analyzing contingency tables having the same categories for each
classification. Like many, I became aware of this model and its utility by
the detailed discussion of it and its generalizations in the seminal text on
loglinear models by Bishop, Fienberg, and Holland (1975). In my study of
categorical data methods in the period 1975-1990, I became increasingly
aware of its connections with other standard models, such as the Bradley-
Terry model for paired evaluations (Fienberg and Larntz 1976).

In the past ten years, some of my own research has dealt with extensions
of this model as well as connections between it and certain logit models for
repeated measurement having subject-specific terms. This paper summa-
rizes these research results. The logit models of interest are extensions of
the Rasch model. One of them is a generalization to multivariate binary
responses. Two others refer to ordinal generalizations. The three standard
types of ordinal logit models are (1) cumulative logit models, which use
all cumulative probabilities and their complements, (2) adjacent-categories
logit models, which use all pairs of probabilities from adjacent categories,
and (3) continuation-ratio logits (sometimes also called “sequential logits”),
which use each category probability together with the probability of a lower
response, or each category probability together with the probability of a
higher response. We consider (1) and (2); see Tutz (1990) for (3).

I begin by reviewing the Rasch model. Suppose n subjects respond to
T items (e.g., questions on an exam or questionnaire) that use the same ¢
categories. For subject ¢ and item ¢, let Y;; denote the response outcome.
For the binary-response case (¢ = 2), the Rasch model is

logit[P(Yir = 1) =+ B, i=1,.,n, t=1,..T. (1)

(This and all other models in this paper require constraints for identifiability.
For simplicity of exposition, we will not discuss these.) The usual assump-
tion for model fitting is local independence for the repeated responses by a
subject, given the subject effect.

Rasch treated subject parameters {a;} as fixed effects, but much subse-
quent work treats them as random effects. Tjur (1982) studied a distribution-
free approach for them. He showed that the marginal distribution, integrat-
ing out the random effects, satisfies a multiplicative model. Although he did
not note it, that model is in fact the quasi-symmetry model, as pointed out
in related work of the same era (Fienberg 1981, Fienberg and Meyer 1983).
Since similar results occur for models discussed in this paper, the next sec-
tion outlines an argument that connects the Rasch and quasi-symmetry
models.
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2. Quasi-symmetry and the Rasch model

Cross-classifying responses on the T binary items yields a 2T contingency
table. Let Y; = (Y;1,. .., Yir) denote the sequence of T responses for subject
i, which contributes an observation to a particular cell of this table. For a
possible sequence of outcomes r = (71, ..., 77) for Y;, where each ry =1 or 0,

_ N exp(oy + Bt) " 1 o
P(Y; =r|o) = 1:1 [1 ¥ exp(a; + ﬂt)] [1 + exp(a; + Bt)

_ exploi(3, o) + 3, i
[T[1 +exp(ai +8:)]

With a random effects approach, let F' denote the cumulative distribution
function of ;. Then the marginal probability of sequence r for the responses
Y for a randomly selected subject is (suppressing the subject label)

N expla(}-; 7¢)]
P(Y=r)= exp(; rt,Bt)/ LI+ exp(a + 5] dF ().

This probability contributes to the likelihood, which is that for a multino-
mial distribution over the 27 cells for possible r. Regardless of the choice for
F, the integral is complex. However, it depends on the data only through
s = Y., Tt so a more general model replaces this integral by a separate
parameter for each value of this sum. This model has form

log P(Y =1) =) 7B+ Xs. 2)

t

The term ), in the implied marginal model (2) represents an interaction
parameter A, . that is the same at each value of s = >+ Tt These inter-
action parameters result from the marginal dependence in responses, due to
heterogeneity in {o;}. The interaction term is invariant to any permutation
of the response outcomes (71, ..., 71 ), since each such permutation yields the
same sum. Because of this symmetry in interaction, it is the extension of
Caussinus’s loglinear model of quasi symmetry for the T-way table in the
binary response case (Bishop et al. 1975).

No matter what form the random effects distribution takes, the implied
marginal model has the same main effects structure, and it has an interac-
tion term that is a special case of the one in (2). Thus, one can consistently
estimate the item effects {3;} using the ordinary ML estimates for the quasi-
symmetry model. In fact, Tjur (1982) showed that these estimates are also
the conditional ML estimates of {3;} for model (1), treating {o;} as fixed
effects and conditioning on their sufficient statistics.
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Tjur (1982) also proved that these quasi-symmetric ML estimators and
conditional ML estimators for the Rasch model are identical to those ob-
tained in a slightly extended version of ML for a nonparametric treatment of
the distribution of o;. Later papers showed strong connections between the
actual nonparametric marginal ML estimates and conditional ML estimates.
Under the assumption that the Rasch model holds, de Leeuw and Verhelst
(1986) showed that the probability that nonparametric ML estimators are
identical to conditional ML estimators (and hence also to quasi-symmetric
loglinear ML estimators) converges to 1 as n increases, for a fixed number
of items. Lindsay et al. (1991) strengthened this, showing the same result if
the subject-effect distribution has at least (T"+ 1)/2 support points.

Darroch (1981), Fienberg (1981), Kelderman (1984), and Hatzinger
(1989) made related observations about the connection between the Rasch
and quasi-symmetry models. I found similar connections useful in research
on modeling rater agreement (Agresti and Lang 1993a) and capture-recap-
ture modeling for estimating population size (Agresti 1994), as did others
for these and related applications (Darroch and McCloud 1986, Becker 1990,
Darroch et al. 1993, Fienberg et al. 1999).

An extension of the Rasch form of model for nominal response variables
is
log[P(Y}t = ])/P(Ylt = C)] =045 + Btj, j=1..,c—1. (3)
Similar connections with quasi symmetry occur for this model. The condi-
tional ML estimates of the item effects are identical to estimates of main
effect parameters in the general quasi-symmetry loglinear model for a ¢T
contingency table (Conaway 1989, McCullagh 1982). For expected frequen-
cies {Lqb...c} in that table, the quasi-symmetry model has form

10g Had...c = )‘al + )\b2 + ...+ /\cT + )\ab...c, (4)

where the interaction term is symmetric in its indices.

3. Quasi-symmetry and an ordinal model
using adjacent-category logits

I considered extensions of Tjur’s results for ordinal responses and for
multivariate binary responses. First consider an ordinal model that has the
adjacent-categories logit representation for the response for subject i on
item ¢,

log[P(Ya = j +1)/P(Yie = )] = asj + fs- (5)

This is a special case of the nominal-scale model in which the item effects
have the structure B j41—08¢; = B, for all j; that is, {;;} are linear in 5. The
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item effects are assumed to be identical for each pair of adjacent categories.
A somewhat simpler model decomposes «;; in (5) into a; + J; (Andersen
1973, Andrich 1978, Duncan 1984, Hout et al. 1987, Agresti 1993a).

Agresti (1993a) showed that conditional ML estimates and extended
nonparametric marginal ML estimates of the item effects in model (5) are
identical to the ordinary ML estimates obtained in fitting the loglinear
model

IOg Mab...c = aB1+b62+ -+ cBr + Aab...c 5 (6)

where ) is permutationally invariant. This is a special case of the quasi-
symmetry model that has linear structure for the main effects. It treats
the main effects as variates, with equally-spaced scores, rather than qual-
itative factors. Each main effect term has a single parameter, rather than
the ¢ — 1 parameters in the Caussinus model. Model (6) is an ordinal quasi-
symmetry model, since it reflects the ordering of the response categories.
Agresti (1993a) also showed that estimates of {{3;} for the model with sim-
pler structure for o;; equal those for a simpler loglinear model in which the
interaction parameter depends only on the sum of the scores for the T" items.
For examples of the use of model (6), see Agresti (1993a, 1993b, 1995). It
is simple to fit the model using software for generalized linear models. See
Agresti (1996, p. 277) for the use of SAS (PROC GENMOD).

The ML estimates of {3;} in (6) have the same order as the sample mean
responses (using equally-spaced scores) in the T' one-way margins of the c’
table, as those are the sufficient statistics for {3;}. The complete symmetry
model for a ¢! contingency table is the special case of (6) in which 38, =
... = Br. Given that model (6) holds, marginal homogeneity is equivalent
to symmetry. When model (6) fits well, one can test marginal homogeneity
using a likelihood-ratio test with df = T — 1, based on comparing its fit
to that of complete symmetry. This is an ordinal analog of the Caussinus
(1966) test of marginal homogeneity based on comparing the ordinary quasi-
symmetry model to the complete symmetry model.

4. Quasi-symmetry and an ordinal model
using cumulative logits

An alternative model form for ordinal responses uses cumulative logits.
For subject ¢ and item ¢, the cumulative logit analog of model (5) is

log[P(Yi: < j)/(1 = P(Yi < j))] = i — Bt (7)

This model has the proportional odds property, for which the item effects
{B:} are identical at each j. Complete symmetry is implied by 8; = ... = Br.
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The conditional ML approach does not apply to model (7) since these
logits are not the canonical parameters for the multinomial. Agresti and
Lang (1993b) eliminated the subject parameters by noting that (7) corre-
sponds to a Rasch model for all ¢ — 1 binary collapsings of the response,
with the same item effects for each collapsing. Hence, because of the connec-
tion between Rasch models and quasi symmetry, one can estimate the item
parameters by fitting a quasi-symmetry model simultaneously to all such
binary collapsings, using the same main effect parameters for each. They
did this using methods for maximizing a likelihood subject to constraints
(Lang and Agresti 1994).

See Agresti and Lang (1993b) and Agresti (1993b, 1995) for examples
and a more detailed discussion of this approach. Samejima (1969), Andrich
(1978), Masters (1982), Duncan (1984), and Tutz (1990) described related
models for ordinal responses. Hedeker and Gibbons (1994) presented a ran-
dom effects approach for a simpler form of the subject term.

5. Quasi-symmetry and analyses of ordinal matched pairs

This section considers separately the matched-pairs case T = 2 with an
ordinal response. In this case, quasi-symmetry models have simple logit rep-
resentations, and additional ways exist of obtaining item estimates. These
models refer to probabilities {73} for the ¢ x ¢ table of counts {n,s} for the
pairs of possible responses for the n subjects.

Section 3 noted that the logit model (5) for adjacent categories relates
to a special ordinal version (6) of quasi symmetry. Letting 8 = 3, — 31 in
that loglinear model, it is equivalent to the logit model (Agresti 1983),

log(map/mba) = B(b — a). (8)

This is a special case of Goodman’s diagonals-parameter symmetry model,
with a linear trend for the diagonals parameters (Goodman 1979; for related
material, see Goodman 2002). One can also estimate 3 using software for
logistic regression models, treating {nq, a < b} as independent binomial
variates with sample sizes {nqs + npq }-

Simple ordinal tests of marginal homogeneity derive from model (8). A
Wald test uses as test statistic the ratio of 3 to its asymptotic standard error.
The likelihood-ratio test compares this model with the symmetry model.
Rao’s efficient score test is based on the difference in sample means for the
marginal distributions, for equally-spaced category scores. Specifically, let
{Pap} denote the sample proportions in the observed ¢ x c table. A z test

— 448 -



Links between binary and multi-category logit item response models

statistic is the ratio of d = [}, a(Pat+ — P+a)] to its estimated standard
error, which is the square root of (1/n)[, 3", (a — b)*pas — d?].

For cumulative logit model (7) with 7" = 2, a simple estimate of 3 =
B2 — 31 uses the fact that the model implies a Rasch model for each of the
¢ — 1 collapsings of the response to a binary variable. For each collapsing,
the off-main-diagonal cells of the 2x2 table provide an estimate in the form
of the binary conditional ML estimate for two items, log(n12/m21). A nearly
efficient estimator results by combining these ¢ — 1 estimates, adding the
numerators and adding the denominators before taking their ratio and their
logarithm (Agresti and Lang 1993b). In terms of the cell counts {n.s} in
the full ¢ x c table, the resulting estimate is

B =log{[D_(b— a)nas]/[Y_(a - b)nas]}. 9)
a<b a>b

The estimated asymptotic variance of this estimator equals

o St - 0P | Sasyle—bPna
VO = 5 ool | (@bl

Another simple test of marginal homogeneity for ordinal matched-pairs data

uses z = B/\/V(ﬁ) Like the test based on the ordinal quasi-symmetry
model, it is sensitive to location shifts in the marginal distributions. Mc-
Cullagh (1977) discussed other estimators for the cumulative logit model
applied to matched pairs.

6. Quasi-symmetry and a multivariate logit model
for repeated measurement

A multivariate extension of the Rasch model also has connections to
quasi-symmetric loglinear models. It refers to V separate binary variables,
each measured for T items. For subject 7, denote the response for item ¢
with variable v by Y, with observed value 1 or 0. Consider the model

logit[P(Yity = 1)] = iy + Bto- (10)

For each variable v, this model has the additive subject and item form of the
Rasch model. The {814, ..., Brv} for each v describe the item effects for each
variable. The {a;,} reflect the heterogeneity among subjects that induces
the correlations among repeated responses on a variable.

Agresti (1997) gave a nonparametric treatment of a; = (a1, ..., V'),
treating this as a vector of correlated random effects. Integrating out the
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random effects yields a marginal model for the outcomes y = (v11, ..., yrv)
on the TV combinations of items and variables with expected frequencies
{uy} in a 2TV contingency table. Regardless of the joint distribution for
those random effects, this model satisfies

log py = Z Zﬂtuytv + /\(Z Yt1s oo zytV)v (11)
t v t t

where the final term represents a separate parameter for each possible or-
dered set of the V' sums of item scores. Specifically, model (10) implies that
a marginal model has the same main effects structure as (10), and it has an
interaction term that is a special case of the one in (11). Thus, one can con-
sistently estimate {f;,} in a nonparametric manner using the ordinary ML
estimates for the loglinear model. Moreover, the conditional ML estimates
of {4} for model (10) are identical to the ordinary ML estimates of {Biv}
obtained by fitting loglinear model (11).

For this loglinear model, the interaction involving any set of items for
a particular variable has term that is invariant for any permutation of the
response outcomes for those items. For the univariate case, model (11) is the
quasi-symmetry model. Thus, model (11) is a multivariate quasi-symmetry
model.

In the matched-pairs case (' = 2), model (11) has fitted values in the
2x2 marginal table for each variable that are identical to the observed
counts. The estimate of exp(B2, — B1,) then equals the number of cases
with (y1v, Y20) = (0, 1) divided by the number of cases with (y1,,v2,) = (1,
0). In the univariate case (V' = 1), this is also the conditional ML estimate
for the logit model, and Neuhaus et al. (1994) showed that it is also normally
the estimate for a parametric random effects approach.

7. Summary

This paper has discussed the connection between item response models
and quasi-symmetric loglinear models. Other articles that dealt in part with
this connection or exploited it to fit an item response form of model with
loglinear software include Fienberg and Meyer (1983), Kelderman (1984),
Fischer et al. (1986), Kelderman and Rijkes (1994), and Erosheva et al.
(2002). Ten Have and Becker (1995) discussed a wide variety of loglinear
models with quasi-symmetric structure.

One can extend the models of this article to incorporate covariates, as
long as the main focus is on within-subjects effects. For instance, one might
stratify a sample by some group factor (e.g., gender), and analyze whether
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the same item effects apply for each group. One could do this by comparing
the fits of two models, one assuming homogeneous item effects and the other
permitting heterogeneous item effects. The related quasi-symmetry models
also have homogeneous or heterogeneous main effects, with the symmetric
interaction term having different parameters for each group. Agresti (1993b)
gave examples of this type.

In my experience, quasi-symmetry models very often fit quite well, even
for large sample sizes. This may partly reflect the fact that the Rasch form
of model is a natural one for many applications. Moreover, quasi-symmetry
models address components of relationships not analyzed by standard log-
linear analyses. When quasi-symmetry models show lack of fit, they usually
still it much better than complete symmetry or mutual independence log-
linear models. From their structure of heterogeneous main effects and their
connection with Rasch-like models, ordinal quasi-symmetry models are de-
signed to detect shifts in location among margins of the ¢T table. Thus, they
may fit poorly when marginal distributions show differences in dispersion
as well as location.

In summary, the quasi-symmetry model benefits from wide scope, from
close connections with other useful models, and from ease of generaliza-
tion to other models for multinomial or multivariate repeated categorical
responses. The statistical community as well as methodologists who fre-
quently deal with categorical responses owe Professor Henri Caussinus their
grateful thanks and congratulations for introducing this model.
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