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Reduced rank quasi-symmetry
and quasi-skew symmetry: a generalized
bi-linear model approach *)

ANTOINE DE FALGUEROLLES (), PETER G.M. VAN DER HELIDEN (?)

RESUME. — Ce qui suit est une revue des modéles linéaires généralisés
classiques pour tableau carrés et une étude des modeles d’interaction de
rang réduit pour la symétrie et ’écart a la symétrie. Ces modeles offrent
une description parcimonieuse de questions fondamentales et se prétent a
des visualisations de type « biplot ». Nous discutons aussi les procédures
destimation.

ABSTRACT. — What follows is a review of standard generalized linear
models for square tables and an investigation into reduced rank models for
symmetry and departure from symmetry. These models offer parsimonious
representations of substantive questions and lend themselves to biplot
visualization. We also discuss estimation procedures.

1. Introduction

The terms of quasi-independence and quasi-symmetry entered the sta-
tistical literature in the context of truncated tables (see the seminal paper
on quasi-symmetry by Caussinus [5] and an history of truncated tables in
Stigler [20], chapter 19). In the context of square tables, these models have
been motivated either by the absence of diagonal entries or by the desire
to obtain analyses invariant with respect to these values. Square tables are
two-way tables cross-classified by homologous factors (McCullagh [18]): the
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levels for the row and column factors are in a meaningful one-to-one rela-
tionship. In matrix form, the levels of the homologous factors are listed in
the same order so that the main diagonal, often missing or uninteresting,
corresponds to entries referring to the ‘same’ level.

This paper will discuss three topics. First, quasi-independence and quasi-
symmetry models were originally developed in the context of multinomial,
product multinomial and Poisson distributions. These are log-linear models.
However, it is also possible and quite natural to develop them in the broader
context of generalized linear models (Aitkin et al. [1] and McCullagh and
Nelder [19]; compare also Caussinus and Falguerolles [6]).

Second, the hierarchy of quasi-independence, quasi-symmetry and sat-
urated models is somewhat restrictive and it is quite natural to refine
this grid. Not surprisingly, several useful intermediate models have already
been introduced, but only for the context of contingency tables. Some are
sub-models of quasi-symmetry: the reduced rank quasi-symmetry model
(Becker [2]) and, for ordered categories, the uniform association model
(Goodman [14]). Some have quasi-symmetry as a sub-model and introduce
further asymmetry than that ascribed to the margins (van der Heijden and
Mooijaart [22]). The general idea in these papers is to restrict the row x
column interaction term in a parsimonious way. It turns out that this can
be done in the framework of bi-linear models which preserve most of the
graphical outputs of exploratory methods based on singular value decom-
position (see Falguerolles [9]). What follows is an investigation into these
models and their biplot visualization.

Third, in this paper we show both exploratory approaches as well as
modelling approaches. We will illustrate that the possibilities offered by the
former are also offered by the latter. However, the modelling approach has
the advantage that it is possible to test (aspects of ) the model such as model
fit. These models are more flexible than exploratory approaches in the sense
that they can be adjusted easily. The reason that this is possible is that in
the modelling framework we have moved away from the matrix formulation
of the data to an array formulation.

We start by introducing two examples, one where the data are assumed
to be generated by a multinomial distribution, and one where the data are
generated by a normal distribution. Then we describe three strategies for the
analysis of square tables. First, we review purely exploratory approaches.
Second, we discuss approaches where both modelling as well as exploratory
approaches are used. And third, we discuss the generalized linear model
(GLM) approach, with reduced rank interactions. In the presence of such
an interaction we speak of a ‘generalized bi-linear model’ (GBM).
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2. Examples

In this section we present two examples of square tables where quasi-
symmetry has been applied under different distributional assumptions. Both
the examples as well as their distributional assumptions have been consid-
ered by Henri Caussinus ([5] and [6]).

2.1. A social mobility table

The first example is one of the earliest applications of the quasi-symme-
try model for count data (Example 3 in Caussinus [5], page 166). The data
pertain to the social mobility of a sample of 1384 workers between two time
points (1954 and 1962). The number of levels of social categories is N = 6,
but their labels are not reported.

Table 1. — Social mobility between 1954 and 1962

(marginal totals in parentheses do not include diagonal counts).

1964 total
1957 1 2 3 4 5 6
187 13 17 11 3 1 232 (45)
4 191 4 9 22 1] 231 (40)
22 8 182 20 14 3| 249 (67)

6 6 10 323 7 4| 35 (33)
4 2 126 17| 153  (27)

0o 2 2 5 1 153 | 163  (10)

total | 220 223 219 370 173 179 | 1384

(33) (32) (37) (47) (47) (26) (222)

S UL W=
[
w

In this example, it is quite natural to assume that the data come from
a multinomial distribution with known parameter n = 1384 and unknown
probabilities 7. In most practical circumstances, the modelling of the
multinomial probabilities can be performed assuming that the entries y//

in the table are independently Poisson distributed with unknown parameters
MY = nrld.
J ij

As seen by inspection, the entries on the main diagonal of the table (the
‘stayers’) are much larger than the non-diagonal entries (the ‘movers’): there
are 1162 ‘stayers’ and 222 ‘movers’. The analysis can be restricted to the
non-diagonal entries and we can still assume that the non-diagonal entries
are independently Poisson distributed.
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The quasi-symmetry model is an obvious candidate for such data: the
A, i # j, are decomposed on a log scale as the sum of a row effect (I), a
column effect (J) and a symmetric interaction effect (I x J):

nfjf] = log()\f;’) = g%+ B+ ﬁf + fj‘] where in‘] = JIZJ (1)
The model has (N — 1)(N — 2)/2 degrees of freedom. While the second
and third terms are intended to reflect the marginal sociological changes
between 1957 and 1962, the symmetric interaction term is introduced to
investigate the symmetry of transitions from ¢ to j and from j to ¢ which
expresses that comparable skills are needed for both transitions. In passing,
we note that the parameters are not identified and that ad hoc constraints
are needed. Moreover it turns out that the fit does not depend on the values
of the diagonal entries. In this example, the deviance goodness-of-fit chi-
square statistic for quasi-symmetry yields p = 0.0027 and the corresponding
Pearson statistic yields p = 0.0024, suggesting the need for modelling further
asymmetry beyond that induced by the margins.

2.2. A socio-matrix

Thomas’ socio-matrix reproduces the grades given by each of the 24
pupils of a class to all other schoolmates [4, page 295]. The evaluation was
unsupervised: each pupil was asked to grade on an integer scale ranging from
0 to 20 his/her ‘affinity’ with all other mates but no specific criteria were
suggested. In some experiments the diagonal entries give self-assessment
grades. But in this example the diagonal terms are missing and the analysis
must take that fact into account. In other words it should not depend on
imputed values for the diagonal values like the two principal components
analyses which are reported in Caillez and Pages [4]: one on the matrix of
grade given and one on the matrix of grade received with self assessments
(diagonal entries) set equal to 20.

It is quite natural to assume that the grades are normally and indepen-
dently distributed with unknown constant variance and unknown expected
values p//. Again the quasi-symmetry model is a sensible candidate for
modelling their expected values. In other words, the ,u{ ]J are decomposed as
the sum of a row effect (average rating attributed), a column effect (average

rating received) and a symmetry effect (symmetric preferences).

Here quasi-symmetry and departure from quasi-symmetry are to be in-
vestigated. In this normal setting, the variance is unknown and the problem
of model choice is different from that in the Poisson situation.
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3. Exploratory strategies for the analysis of square tables

In this section we review some of the well established approaches for the
exploratory analysis of the type of data which we just presented. Broadly
speaking, they may be classified into two categories: ‘purely’ exploratory
methods, and methods combining modelling and exploratory analysis of
residuals.

3.1. Exploratory reduced rank approximations

Square tables are efficiently analyzed by methods based on singular
value decomposition. We adopt here a simplified approach. A more sophis-
ticated approach where correspondence analysis, a generalized singular value
decomposition, is used can be found in Greenacre [17].

Exploratory reduced rank approximations have a few prerequisites:

e The data are in matrix form. In other words no other explanatory
variables than the homologous ‘row’ and ‘column’ effects can be taken
into account.

e The possibly missing values are imputed.

e The data are pre-processed with special attention to filtering the main
‘row’ and ‘column’ effects, and sometimes the diagonal.

Let M be the matrix under study. Our goal is to decompose it into sym-
metric and asymmetric parts. The symmetric part is intuitively estimated
by

1 1
=(=M+ =M
c (2I+2 )
and departure from symmetry by
1 1
D=(zM-=-M
(5M - 500

so that M = C + D. This is the so called Gower’s decomposition of a
square matrix into its symmetric part C and a skew symmetric part D
(D" = —D). Each can then be submitted to a singular value decomposition
(Constantine and Gower [7]). The pattern of singular elements are more
heavily constrained by skew-symmetry than by symmetry. For the symme-
tric matrix C, it may occur that a left and a right singular vector associated
with the same singular value have opposite signs. This is called an inversion
(Greenacre [16, chapter 8]). One or more inversions occur when a symme-
tric matrix is not positive definite, since singular values are constrained to be
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Reduced rank quasi-symmetry and quasi-skew symmetry

positive. For the skew-symmetric matrix D, the singular vectors occur in
pairs corresponding to pairs of equal singular values (see Constantine and
Gower [7]). It is appropriate to speak in this situation of ‘bi-dimension’.

We illustrate the standard exploratory strategy on the socio-matrix.
Firstly, unobserved diagonal entries are set equal to 20 (self-assessments
equal to maximal grade). Secondly, the full matrix is doubly-centered (so
that the margins of the resulting matrix are zero) and decomposed in its
symmetric part C and its skew-symmetric part D. Table 3 gives the values
of the four largest squared singular values of C and D. It also gives their as-
sociated so-called percentage of inertia: the ratios (in %) to their respective
sums, Trace(C’C) and Trace(D’D), as well as their ratios to their grand sum
Trace(M’'M) = Trace(C'C) + Trace(D’D). As seen in Table 3, singular
value decomposition singles out symmetry as the dominant feature of the
interaction in these data (79% versus 21%) and indicates that a rank two
approximation of symmetry may well suffice to depict it (56% of symmetry
or 45% of all).

For completeness we mention another strategy which consists in per-
forming the complex singular value decomposition of C + ¢D. Comparable
bi-dimensions arise in this context. This interesting strategy was suggested
by Escoufier and Grorud [8] but is not considered in this article.

Table 3. — Exploratory analysis of Example 2.
Singular value k (k =1, ...,4) is denoted by o.

a? o3 o3 o3 || Total

Symmetric part: C 2122.7 | 1672.1 | 618.1 | 5304 || 6797.3
% of Trace(C'C) 31 25 9 8 100

% of Trace(M'M) 25 20 7 6 79
Skew-symmetric part: D 241.2 | 241.2 | 202.0 | 202.0 || 1756.1
% of Trace(D'D) 14 14 12 12 100

% of Trace(M’'M) 3 3 2 2 21

3.2. Biplot representations

The reduced rank approximations obtained in the analysis of C' and D
allow to consider biplot representations (for a seminal paper, see Gabriel [12,
13] and for a review of the topic, Gower and Hand [15]).

The biplot representations of the symmetric matrix C are quite stan-
dard. Notice that if there is no inversion in the singular elements retained,
then there is only one marker by row and column level. When there is an

- 513 -



Antoine de Falguerolles, Peter G.M. van der Heijden

inversion, the biplot has different markers for the same row and column
level, with opposite coordinates on the corresponding axis.

The biplot representations of the skew-symmetric matrix D are more
intricate. Each bi-dimension give rise to a biplot which has a specific read-
ing in terms of oriented area. The interpretation of the relation between
two points in the biplot is not in terms of their inner product of the corre-
sponding vectors, but in terms of the area of their triangle with the origin
(compare Gower and Hand [15] and Greenacre [17] for more details).

However there are obvious limitations. First, the analysis of the sym-
metric part depends on the values of the diagonal terms (although this can
be alleviated as it will be shown in the next section). Since the diagonal
values are often arbitrary or not the focus of interest, this is a drawback in
this approach. Second, the simultaneous analyses of the symmetrical and
the skew symmetric part by reduced rank approximations do not follow
the accepted principle which states that departure from symmetry is to be
analyzed if quasi-symmetry fails to represent the data. Researchers who pre-
fer statistical models may therefore feel uncomfortable with this approach.
Third, a natural question to ask about biplots is how many dimensions or
bi-dimensions are needed to adequately represent the data and their is no
clear answer to this.

3.3. Combining modelling and exploratory analysis of residuals

Combined analyses were devised in order to answer to the limitations
just mentioned. They combine traditional modelling and exploratory me-
thods based on singular value decomposition. For an example where corres-
pondence analysis is used in a combined approach see van der Heijden et
al. [21).

The natural framework for modelling is that of generalized linear mo-
dels (see for example McCullagh and Nelder [19], Aitkin et al. [1]). This
framework can be summarized as follows. A unidimensional response varia-
ble is observed at fixed values of explanatory variables (mostly fixed levels
of factors in our context). These explanatory variables influence in turns
the distribution of the response through a linear predictor. The mean of
the response is smooth invertible function of the linear predictor whose
inverse function is called the link function. The distribution of the response
is assumed to follow the form of the exponential family of distribution. It
involves a scale parameter (possibly known) and known prior weights (which
can be used to weight out structurally valued or missing data). Some of the
above assumptions can be somehow relaxed but we will not discuss these
aspects except for the linearity of the predictor.
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This framework can accommodate our examples. Their main differences are

e their distributions (Poisson versus normal);

e their link functions (identity versus logarithmic).
But they have many common features:

e the diagonal entries are weighted out;

e the same simplified hierarchy of linear models is of interest for the
linear predictors 7/} .

The latter can be summarized as follows:

e Quasi-independence model nfj‘] =3+ B+ ﬂjJ (marginal effects of I
and J only).

e Quasi-symmetry model n}/ = 8% + 8! + 87 + 8]/ where 8]/ = B/
(marginal effects of I and J, and a symmetrical I x J interaction).

e Saturated model 17;’]?] =62+ 67 + ﬂjJ + ﬂiIJ-J (ﬂfj‘] unconstrained).

Note that the flexibility of generalized linear model allows one to take
into account other explanatory variables, as well as more complicated de-
signs than the simple two-way table without diagonal which is considered
in the examples.

Table 4. — Residual deviance from quasi-independence

et quasi-symmetry (degrees of freedom given in parentheses).

Quasi-independence | Quasi-symmetry
Example 1 101.1 (19) 27.2 (10)
Example 2 7119.9 (505) 1756.1 (253)

Now a hierarchical line can be held. If the symmetric interaction is of
main interest, then the residuals from quasi-independence should be sym-
metricized and analyzed by singular value decomposition. If departure from
symmetric interaction is of main interest, then the residuals from quasi-
symmetry should be submitted to singular value decomposition.

However there are many definitions for the residuals: raw, Pearson, de-
viance ...Interestingly, the raw residuals are skew symmetric for canonical
settings: quasi-symmetry for a two-way table of data and canonical link.
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But, except for the normal distribution, their singular value decomposition
has no direct connection with the deviance. By contrast, for the normal dis-
tribution with identity link, the situation is simple: the skew-symmetric part
of Gower’s decomposition of the matrix of residuals from independence or
quasi-independence is nothing else than the matrix of residuals from quasi-
symmetry (see Caussinus and Falguerolles [6]).

Table 5. — Raw and Pearson residuals from quasi-symmetry in Example 1.

Raw residuals

1 2 3 4 5 6
1 0.00 267 -200 -0.67 -0.14 0.13
2 -267 0.00 -0.56 0.21 4.45 -1.43
3 200 056 000 -092 -0.28 -1.37
4 067 -0.21 0.92  0.00 1.38 -2.75
5
6

0.14 -445 0.28 -138 0.00 5.42
-0.13 143 137 2.75 -542 0.00

Pearson residuals
1 2 3 4 5 6
0.00 0.83 -0.46 -0.20 -0.08 0.14
-1.04 0.00 -0.26 0.07 1.06 -0.92
0.45 0.21 0.00 -0.20 -0.07 -0.65
0.29 -0.09 0.31 0.00 0.58 -1.06
0.15 -1.63 0.14 -0.75 0.00 1.59
-0.36 1.89 1.72 1.84 -2.14 0.00

S Ot W N+

Table 6. — Combined analysis of Example 1.

Singular value analysis of the raw residuals from quasi-symmetry.

squared singular values: || 61.8 | 61.8 | 13.7 | 13.7 || 151.0
% of their sum: 41 41 9 9

Table 4 reports the deviance of the two baseline models applied in the
two examples. For Example 1, a chi-square test of the quasi-symmetry model
against the saturated model rejects quasi-symmetry. Table 5 gives the raw
and Pearson residuals from quasi symmetry in Example 1. These are domi-
nated by transitions between levels 5 and 6, and levels 2 and 5. Table 6
reports the squared singular values obtained in the analysis of the skew-
symmetric matrix of raw residuals from the quasi-symmetry model. It turns
out that a single bi-dimension dominates this skew symmetric matrix.
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Table 7. — Combined analysis of Example 2.
Singular value analysis of the residuals from quasi-independence.

o? o3 o3 o3 || Total
Symmetric part: C 1428.5 | 1045.6 | 609.0 | 492.6 || 5363.8
% of Trace(C'C) 27 19 11 9 100
% of Trace(M’M) 20 15 9 7 75
Skew-symmetric part: D 241.2 241.2 | 202.0 | 202.0 || 1756.1
% of Trace(D’'D) 14 14 12 12 100
% of Trace(M'M) 3 3 3 3 25
17
o + 7
+ As
14
16 +
+y 9
2 B 2 ;3 .2
© 4
2o ¥
3 21 19
8 A a a
8 s 2 6
. % 24
12" 20" | 1
N +
18
13"
4 2 0 2 4
first axis

Figure 1. — Example 2. Biplot of the rank two approximation of the symmetric part C,
boys are denoted by a +, girls by a A.

For Example 2 where the variance is unknown, a F-test of quasi-indepen-
dence against quasi-symmetry rejects quasi-independence (a F-statistics
equal to 3.07 for 252 and 253 degrees of freedom). In this situation the
particular properties of the normal distribution allow to analyze simultane-
ously the symmetric and the skew symmetric part. The results in Table 7
do not differ much from those of Table 3. Different values for the first two
singular values for the symmetric part are due to the fact that the diago-
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nal terms are not considered in the analysis described in Table 7. The fact
that the singular values in Table 7 are lower shows that the diagonal val-
ues arbitrarily set to 20 set in the previous analysis were too high. Notice
that Trace (D'D) is equal in Tables 3 and 7 because the skew-symmetric
parts are constructed in the same way. The associated biplot is given in
Figure 1. It discriminates clearly the boys from the girls but not along the
axes revealed by singular value decomposition.

One drawback of the method discussed in this section is that it combines
approaches of different natures: modelling and exploratory methods for the
residuals from modelling. These in turn use a different criterion: maximum
likelihood and least squares which do not coincide except in the normal case.
Thus it may look strange to pile up these two approaches. This point was
raised in the discussion of van der Heijden et al. [21] by John Gower who
suggested the introduction of reduced rank formulas in the linear predictor
of generalized linear models (see also McCullagh and Nelder [19, subsec-
tion 6.5.3]). Actually more recent articles have introduced related models
in the log-linear analysis of square tables. The quasi-symmetric model of
Becker ([2]) and the log-bi-linear model for skew-symmetric of van der Hei-
jden and Mooijaart ([22]) are notable examples. These can be further revi-
sited in the unifying context of generalized bi-linear models.

Table 8. — Reduced quasi-symmetry based on gender in Example 2
(degrees of freedom given in parentheses).

quasi- reduced quasi- quasi-
independence symmetry symmetry
7119.9 (505) 6434.0 (504) | 1756.1 (253)

4. Generalized bi-linear models

In this section we describe classes of models that were intended by Gower
(see the conclusion of the previous section), i.e., we are going to propose
models that share the same objectives as the exploratory approach and the
combined approach in section 3. An overall modelling approach has the
advantage that the likelihood is maximized. It is also possible to propose
parsimonious models, as these models turn out to be much more flexible than
the matrix decompositions performed in the exploratory approaches. This
is due to the fact that in the modelling approach the data are approached
as an array. Thus models can be formulated in a flexible way.

As an example of this flexibility, we discuss a GLM for the second ex-
ample of this paper. Here, gender information on the homologous factors
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I and J can be exploited. A restricted quasi-symmetry model can be ob-
tained by incorporating a symmetric interaction based on gender in the
quasi-independence model: a score of —¢ for boys and £ for girls generates
an explanatory variable with values &2 for intra-gender ratings and —&2
for inter-gender ratings. The deviance of this model is reported in Table 8.
However the significant deviance reduction is smaller than the one associ-
ated with the first two axes obtained in singular value decomposition. This
explains why this discrimination is observed in the biplot but not on the
axes obtained by singular value decomposition. Interestingly, the positive
sign of the corresponding parameter shows that in inter-gender grading the
pupils are lower.

Below we will work out models that have resemblance with what happens
in a singular value decomposition. In the absence of additional information
that can be incorporated in the model, the formulas suggested by singular
value decomposition are good candidates mostly on the ground that they
are parsimonious and that they lend themselves to biplot visualizations. We
will discuss two types of reduced rank models: reduced rank models for sym-
metric interaction and reduced rank models for skew-symmetric interaction.
These are particular instances of GBM’s and relevant earlier work can be
found in Falguerolles and Francis [10], van Eeuwijk [23] and Falguerolles [9].

4.1. Reduced rank quasi-symmetry

In the reduced rank quasi-symmetry model a reduced rank symmetrical
interaction term is introduced in the predictor:

M
ny o= BBl +8] 4D on(—1) %&bk (2)
k=1

where ¢, is either equal to 1 or to 2 and M being ‘small’ for a parsimonious
modelling. Clearly the parameters are not identified and it is quite natural
to use in the bi-linear term constraints similar to those used in singular
value decomposition. In particular, the ¢; is introduced in order to allow for
inverse factors (compare Section 2).

Thus, taking strictly positive weights wy, ..., wy such that Zfil w; =
1 (for example, for counts these could be marginal proportions), sensible
identification constraints for the scores are:

N
21-:1 Wik ; = 0 ,
N 17
Y im1 Wikk ik i = &y
oLz2...20=2...20p > 0
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Note that the choice of values for identification weights is often a matter of
taste although it may have a great impact on visual aspect of biplots.

An order M reduced rank quasi-symmetry model adds M(1+ N —1) —

M;H—l) independent parameters to quasi-independence. Hence, in the stan-

dard setting which is considered, it has N>—~3N+1—-MN + AI—(%&Q degrees
of freedom and there might not be a value of M which exactly reconstructs
quasi-symmetry ( ﬂ%:ﬁ extra parameters). In Example 2, M equal to 16
is maximal and defines a quasi-symmetric model of 257 degrees of freedom
(compared to the 253 degrees of freedom for quasi-symmetry).

The parameters of the bi-linear term define the usual order-two contrast:

M
U{J'J - 77{]{ - 771]'}] + 77{,'}]'/ = Z ok (=1)% (€kyi — ki) €k — Ekjv)-
k=1

This shows that this contrast is equal to the inner product of the vector
connecting the row markers ¢ to ¢’ and of the vector connecting the column
markers j to j'. Notice that for frequency data with a log link this equals
to usual log odds ratio (compare Becker [2]).

An order two reduced rank quasi-symmetry model in Example 2 has
a deviance equal to 4266.3 with 460 degrees of freedom. In Table 8 we
found a deviance of 7119.9 for quasi-independence and a deviance of 1756.1
for a deviance of quasi-symmetry. This shows that a rank two model takes
(7119.9—4266.3)/(7119.9—1756.1) = .53 of the quasi-symmetric association.
This is more than found for the exploratory approach described in Table 7,
where a similar calculation leads to a proportion of .46. This is due to the
fact that the singular value decomposition of the symmetricized residuals
from quasi-symmetry overestimates the number of dimensions allowed by
the degrees of freedom.

We do not show a biplot of the parameter estimates because it is very

similar to the biplot displayed in Figure 1.

4.2. Reduced rank skew-symmetry

In the reduced rank skew-symmetry model, a reduced rank skew-symme-
tric interaction term is introduced in the predictor:

M
mi = B+ +8]+8) + Z ok (8ar,ibok—1,5 — E2k—1,:€2k,5)  (3)
k=1
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second axis
0

T T T

-1 0 1
first axis

Figure 2. — Biplot of the first bi-dimension in Example 1.

where 85/ = ]/ and 2M < |I| = |J| = N, M being ‘small’ for a
parsimonious modelling. Again, identification constraints need to be set
for the score vectors. The number of degrees of freedom of this model is
2MN —3M —2M?. If N is even, then the maximal value of M is N/2 —1;

if N is odd, then the maximal value of M is (N —1)/2.

The parameters of the bi-linear term induce a special form for the usual
order-two contrast:

1J_ IJ _ 10 o 1J
M = Migr — Mirj + Mirye
The latter is the sum of two terms namely, one for quasi-symmetry:
1J 1J 1J 1J
Bij — Bij — By + Biryr

and one for reduced rank skew-symmetry:

M
> ok [(Eari — Eanir) (Ear-1,5 — E2k—1,57) — (E2k-1,6 — Ear—1/) (E2r,j — E2k,5)] -

k=1

Notice that the term given by reduced rank skew-symmetry, is a determi-
nant, and therefore has also an interpretation in terms of an oriented area
in the biplot.
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Figure 2 shows the biplot of first skew-symmetric bi-dimension added
to quasi-symmetry in the linear predictor of Example 1. The deviance is
equal to 2.1 for 7 degrees of freedom. The visual aspect of Figure 2 is
dominated by the triangle with vertices 5, 6 and the origin. Its area, the
largest among those of similarly constructed triangles, represents the large
value of the skew-symmetric transition parameter between 5 and 6: positive
for the transition from 5 to 6 and negative for the transition from 6 to 5.
Smaller values correspond to the transition between 2 and 5, and 6 and 2.
Clearly, the model has picked up the skew-symmetry seen in Table 5.

4.3. Algorithmic approach

The models above are special cases of bi-linear models for reduced rank
two-way interaction for non-homologous factors:

M
n =82+ +8] +8L +>_ 0Bl B (4)
k=1
and even of a particular tri-linear model for matched tables:

M
ey’ =B+ 85 + 8] + 8] + 8L + 85 + 85 +D_ox(=1)T'BL8L; (5)
k=1
where S has only two levels s = 1,2 (see Falguerolles [9] for a review of
these models).

All the models above can be fitted by alternative generalized linear re-
gressions. Details of this strategy can be found in Falguerolles and Fran-
cis [10, 11]. Note that one way to alleviate the problem of local optima is to
use several random starting values in the fitting process. It turns out that
the generalized bi-linear models for symmetry and departure from symmetry
can be fitted by using a trick analogous to the three-dimensional represen-
tation of a square table used to fit a quasi-symmetry model (see Bishop et
al. [3, page 289)).

4.3.1. Reduced rank quasi-symmetry

The data are duplicated thus creating a third factor S with values s =
1,2. The diagonal data are weighted out. Then the following generalized
bi-linear model is considered:

M
ms*ig.l = 8%+ + ﬂJ-J + Z Ukﬁlg,iﬂic],j
k=1

M
may = B+ Bl +8]+) owBi B
k=1
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The common linear part (ﬁo—!-ﬁ{ +6 ]J ) corresponds to quasi-independence.
The permutation of indices (¢, j) in the bi-linear part constrains symmetry
for the scores while its structure preserve the rank of the approximation in
the alternating process.

Thus the fitting process gives scores such as ﬁ,ﬁ’i = (—l)é’“ﬂ,{’i with
ly=1lor2fori=1,...,Nand k=1,...,M.

4.3.2. Reduced rank skew-symmetry

Again the data are duplicated but the replication is flipped over. A tri-
linear model, with an even number of dimensions, is then fitted:

2M
nSE =00+ 85 + 8L+ 8] + 85 + 85 + 85 + D on (1)L 61 ;-
k=1

In this model the linear part 3%+ B3+ 31 +,3]-J + inJ + fil + ,ijJ imposes the
baseline quasi-symmetry while the duplication (s = 1,2) coerces the even
number of dimensions into M bi-dimensions modelling skew-symmetry.
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