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Contributions to the statistical analysis
of contingency tables: Notes on

quasi-symmetry, quasi-independence,
log-linear models, log-bilinear models,
and correspondence analysis models(*)

LEO A. GOODMAN (1)

Annales de la Faculte des Sciences de Toulouse Vol. XI, n° 4, 2002
pp. 525-540

RESUME. - Cet article commence par comparer le concept de quasi-
symetrie du a Henri Caussinus avec un concept parent mais different
que j’appellerai la quasi-symetrie de Karl Pearson ; et nous trouverons
que le concept de Caussinus est preferable et plus utile que celui de
Pearson. J’introduirais alors un ensemble de modeles log-bilineaires quasi
symetriques qui sont plus parcimonieux que le modele de quasi-symetrie
de Caussinus, et un ensemble de modeles d’analyse des correspondances
quasi symetriques qui sont plus parcimonieux que le modele correspon-
dant de Pearson ; et nous etablirons que les modeles log-bilineaires quasi
symetriques sont preferables et plus utiles que leurs vis-a-vis, les modeles
d’analyse des correspondances quasi symetriques. Notre attention est con-
centree dans cet article sur le modele de quasi-symetrie de Caussinus et
sur les modeles qui lui sont apparentes. En addition aux modeles men-
tionnes ci-dessus, nous commenterons brievement les modeles de quasi-
independance, et verrons comment les modeles de quasi-independance et
de quasi-symetrie peuvent etre consideres comme des precurseurs directs
des modeles log-lineaires et log-bilineaires. Finalement nous etudierons la
relation entre quasi-independance et quasi-symetrie ; et je citerai ici, pour
les lecteurs qui pourraient etre interesses, une serie particuliere d’articles
concernant la quasi-independance, publiés pendant une periode de trente
trois ans commencant en 1961.

ABSTRACT. - This paper begins by comparing Henri Caussinus’ con-
cept of quasi-symmetry with a related but different concept that I shall
call Karl Pearson’s quasi-symmetry; and we shall find that Caussinus’
concept is preferable to and more useful than Pearson’s concept. I shall
then introduce a set of quasi-symmetric log-bilinear models that are more
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parsimonious than Caussinus’ quasi-symmetry model, and a set of quasi-
symmetric correspondence analysis models that are more parsimonious
than Pearson’s quasi-symmetry model; and we shall find that the quasi-
symmetric log-bilinear models are preferable to and more useful than the
corresponding quasi-symmetric correspondence analysis models.

Our main focus of attention in this paper is on Caussinus’ quasi-
symmetry model and on other models related to it. In addition to the other
models referred to above, we shall also comment briefly in this paper on
the quasi-independence model, and on how the quasi-independence and
quasi-symmetry models can be viewed as direct precursers of the log-linear
models and the log-bilinear models. Finally, we shall comment on the
relationship between quasi-independence and quasi-symmetry; and I shall
also include here, for those readers who may be interested, citations to
a particular series of articles pertaining to quasi-independence, published
over a thirty-three year period beginning in 1961. .

1. Introductory comments

The concept of quasi-symmetry introduced by Henri Caussinus has been
and continues to be a major contribution to the statistical analysis of square
contingency tables (in which there is a one-to-one correspondence between
the row and column categories). This is well known. But I wonder whether
those who are familiar with Caussinus’ concept are aware of the fact that
it is, in a certain sense, "infinitely better" than an alternative concept of
"quasi-symmetry" . The alternative concept can be viewed as an expression
for "quasi-symmetry" obtained with the correspondence analysis approach
and/or with an approach based on Karl Pearson’s perspective. The present
paper will explain why Caussinus’ concept is infinitely better than the al-
ternative.

I shall also introduce here a set of models that can be viewed as special
cases of Caussinus’ quasi-symmetry model and that are more parsimonious
than his quasi-symmetry model. In addition, I shall introduce a set of mod-
els that can be viewed as special cases of the alternative model of "quasi-
symmetry" and that are more parsimonious than this alternative model.
We shall also find here that each model in the set of models that are special
cases of Caussinus’ quasi-symmetry model are, in a certain sense, infinitely
better than the corresponding model in the set of models that are special
cases of the alternative model of quasi-symmetry.

In addition to the various models referred to above, which are related,
in one way or another, to Caussinus’ quasi-symmetry model, we shall also
consider briefly the quasi-independence model; and we shall comment here
on how the quasi-independence and quasi-symmetry models can be viewed



as direct precursers of the log-linear approach and the log-bilinear approach.
We shall also comment on the relationship between quasi-independence and
quasi-symmetry. This relationship was also explored by Caussinus [6]. .

2. Caussinus’ quasi-symmetry, symmetric association,
Pearson’s quasi-symmetry, and symmetric contingency

We shall show in this section how Caussinus’ concept of quasi-symmetry
is related to a somewhat different concept which I shall call Pearson’s quasi-
symmetry. But first some necessary notation:

For the square I x I contingency table, let Pij denote the probability that
an observation will fall in the i-th row and j-th column of the table. The
Caussinus [6] concept of quasi-symmetry states that Pij can be expressed as

when there is a one-to-one correspondence between the i-th row category
and the i-th column category (for i = 1,..., , I ), and 03B1i  0, 0, > 0

(for i = 1,..., I ; and j = 1, ... , I). When - ~y (for i = 1, ... , I: and

j = 1,..., I), we can rewrite (1) as

which states that the row variable (say, variable A) and the column variable
(say, variable B) are statistically independent of each other. We can thus
view in (1) as a measure of a particular kind of "nonindependence"
or "association" ; and the quasi-symmetry model (1) can thus be called a
model of "symmetric nonindependence" or "symmetric association" (see
Goodman [28]).

Let us now consider a different measure of nonindependence based on
Karl Pearson’s coefficient of "mean squared contingency" :

where

From this definition of "mean squared contingency", we can see from (3)
that Pearson’s measure of "contingency" was

(The distribution used in calculating the mean of the squared contingency
here is PAPB (for i = 1, ... , I; and j = 1, ... , I).) When Cij = 0 (for



i = 1, ... , I ; and j = 1,..., , I ), we see again that the row variable A and the
column variable B are statistically independent of each other. We can thus
view Cij in (4) also as a measure of "nonindependence" or "contingency" ;
and, analogous to the quasi-symmetry condition that = qjj in (1), I

shall call the corresponding condition that Cij = Cji Pearson’s condition of
quasi-symmetry or Pearson’s "symmetric nonindependence" or "symmetric
contingency". From (4) we see that the model for Pearson’s quasi-symmetry
can be expressed as

where Dij = Cij + 1 (for i = 1,..., 7; and j = 1,..., 7). Note that Dij is
simply which I shall call "Pearson’s ratio".

Let us now compare Pearson’s quasi-symmetry (5) with Caussinus’ quasi-
symmetry (1). From (5) we see that the following set of equations will be
satisfied:

in addition to the usual equations

When Dij = Dji in (5), we see from (6) and (7) that the piA and the PB
will satisfy the same set of equations; and thus the condition that Dij = Dji
in (5) implies that PA = PB (for i = 1,.... I) when the contingency table
is irreducible. (A contingency table is irreducible if no two rows have the
same conditional distributions 2014 i.e., for all pairs of rows, say, rows i and
i’, with i ~ i’, we do not have = for all j = 1, ... I and
if no two columns have the same conditional distributions. ) Thus, Pearson’s
quasi-symmetry in an irreducible contingency table implies that PA = pB
(for i = 1, ... , I); i.e., that the row marginal and the column marginal are
homogeneous. Since the row and column marginals are homogeneous in this
case, we find that Pearson’s quasi-symmetry in this case implies also that
the contingency table is symmetric; i.e., that Pij = Pji (for i = 1, ... I;
j = 1, ... , I). The fact that Pearson’s quasi-symmetry in this case implies
symmetry is a serious limitation of this concept of quasi-symmetry. A some-
what related kind of limitation arises also when the contingency table is re-
ducible (i.e., when the table is not irreducible); see Goodman [34]. However,
these kinds of limitations do not arise when Pearson’s quasi-symmetry is
replaced by Caussinus’ quasi-symmetry.



Caussinus’ quasi-symmetry model can hold true in contingency tables
in which the row and column marginals are not homogeneous (and also
in tables in which the row and column marginals are homogeneous); while
Pearson’s quasi-symmetry model can not hold true in irreducible contin-
gency tables in which the row and column marginals are not homogeneous.
As we noted in the preceding paragraph, if Pearson’s quasi-symmetry model
holds true in an irreducible contingency table, then the row and columns
marginals in the table must be homogeneous and the table must be sym-
metric (and a somewhat related kind of limitation applies also when the
contingency table is reducible). When the usual symmetry model does not
hold true and/or the row and column marginals are not homogeneous,
then we can examine whether the Caussinus’ quasi-symmetry model holds
true; but there is no point in examining whether Pearson’s quasi-symmetry
model holds true. Under these circumstances, Pearson’s concept is of no use;
and Caussinus’ concept is, in this sense, "infinitely better" than Pearson’s
concept.

3. Caussinus’ quasi-symmetry, symmetric association models,
Pearson’s quasi-symmetry, and symmetric contingency models

Let us now consider the RC association model

where the J.-ti and vj are standardized row scores and standardized column
scores, respectively, with

and the parameter in (8) is called the intrinsic association coefficient; see,
e.g., Goodman [28]. Without loss of generality, the sign of the and the

sign of the vj in (8) can be chosen so that  0 and vi  0 (or the signs
can be chosen so that, for at least one value of i (i = 1,..., I), the /-1i  0

and the 03BDi  0).

Comparing (1) with (8), we see that

under model (8); and we can refer to model (8) as the RC log-bilinear asso-
ciation model. From (9) and (10), we see that, under model (8), Caussinus’
quasi-symmetry condition (namely, that = ’Yji) implies that J.Li = vi (for
i = 1, ... , I) in this model. Thus, quasi-symmetry here, under model (8),



implies that the row scores and the column scores vj are homogeneous
in this model. I shall, therefore, call the RC association model with homo-
geneous row and column scores the RC symmetric association model.

The RC symmetric association model is more parsimonious than Caus-
sinus’ quasi-symmetry model (when I > 3) . The number of degrees of free-
dom for testing this quasi-symmetry model is (I - 1)(1 - 2)/2; and we find
here that the number of degrees of freedom for testing the RC symmetric
association model is (I -1 ) (I - 2). Thus, there are twice as many degrees of
freedom for testing the RC symmetric association model than there are for
testing the quasi-symmetry model; and the description of the RC symmetric
association model uses (I - 1)(1 - 2)/2 fewer parameters than are needed
to describe the quasi-symmetry model. (Compare (8)-(9) with (1).) Also, if
the RC symmetric association model holds true, the quasi-symmetry model
will also hold true.

Next let us consider the following model which is somewhat analogous
to model (8):

where the .3~ and yj are standardized row scores and standardized column
scores, respect ively, with

From (11)-(12) we see that

and the parameter p in (11) is the correlation coefficient. We shall refer to
model (11) as the RC contingency model (or the RC correlation model).
Without loss of generality, the sign of the xi and the sign of the y2 in (11)
can be chosen so that Xl  0 and Yl  0 (or the signs can be chosen so
that, for at least one value of i (i = 1,..., I), the Xi  0 and the y2  0).

Comparing (5) with (11), we see that

where Cij = under model (11). From (14) we see that, under model
(11), Pearson’s quasi-symmetry condition (namely, that Cij = Cji) implies
that the Xi and y2 are proportional ( for = 1,..., I) in this model. The RC
contingency model with proportional row and column scores I shall call the



RC symmetric contingency model. This model is more parsimonious than
Pearson’s quasi-symmetry model (when I > 3).

We noted earlier herein a serious limitation of Pearson’s quasi-symmetry;
namely, that Pearson’s quasi-symmetry implies symmetry when the contin-
gency table is irreducible, and a somewhat related kind of limitation arises
also when the contingency table is reducible. Using the same approach now
with the corresponding RC symmetric contingency model, we find that this
model suffers from the same kind of serious limitations; namely that, if the
RC symmetric contingency model describes the contingency table, then the
usual symmetry model will also describe the contingency table when the
table is irreducible, and a somewhat related kind of limitation arises when
the contingency table is reducible. However, these kinds of limitations do
not arise when the RC symmetric contingency model is replaced by the RC
symmetric association model.

4. An example

To illustrate the application of some of the models described in the
preceding section, we now consider briefly the analysis of the following 8 x 8
mobility table:

Table 1. - Cross-classification of British male sample according to each sub ject’s
occupational status category and his father’s occupational status category.

These data were studied earlier by Duncan [7], Hauser [37], McCullagh
[38], and Goodman [28]. Focusing our attention now only on models pertain-
ing to symmetric association, we present in Table 2 the goodness-of-fit and
likelihood-ratio chi-square values obtained when these models are applied
to the data in Table 1.



Table 2. - Symmetric association models applied to the data in Table 1
with the main diagonal deleted.

The usual null association model (i.e., the model that states that the
row variable and the column variable are statistically independent of each
other) and the uniform association can be viewed as special cases of the RC
symmetric association model; and the RC symmetric association model can
be viewed as a special case of the quasi-symmetry model. From Table 2 we
see that (a) there is a dramatic improvement in fit when the null association
model is replaced by any of the three models considered in Table 2 that
take into account, in one form or another, the symmetric association; (b)
the quasi-symmetry model and the RC symmetric association model fit the
data well; and (c) there is a dramatic improvement in parsimony when the
quasi-symmetry model is replaced by the RC symmetric association model.

Because the entries in the eight cells on the main diagonal in Table 1
were deleted in this analysis, the degrees of freedom were reduced by eight
for each of the first three models in Table 2 - from 49, 48, and 42 degrees
of freedom to 41, 40, and 34, respectively. The number of degrees of freedom
is unaffected by the deletion of the main diagonal in the analysis of quasi-
symmetry.

5. The RC(M) symmetric association models,
the jRC(M) symmetric contingency models,

and the quasi-symmetric
correspondence analysis models

Let us now consider the following generalization of the RC association
model (8):



where 1~T  I - 1, and the J1ik and l/jk are standardized row scores and
standardized column scores, respectively, with

with k ~ k’ ; see, e.g., Goodman [30]. Without loss of generality, the intrinsic
association parameters ~~ in (15) can be ordered so that ~1 ~ > ~ ~2 ( ~ ... >

and the sign of the f.1ik and the sign of the vjk in (15) can be chosen
so that  0 and vik  0, for k = 1, ... , M (or the signs can be chosen
so that, for each k , there is at least one value of i (i = 1,..., I) with f.1ik  0

and l/ik  0). Model (15) is called the RC(AI) association model; and the
RC(1) association model is the same as the RC association model (8).

Comparing (1) with (15), we see that

under model (15). And Caussinus’ quasi-symmetry condition (namely, that
qjj = implies that

As we did earlier with the RC association model (8), we now introduce
the condition that the row scores and the column scores are homogeneous;
i.e.,

in model (15). I shall call the RC(M) association model (15), with the row
scores and column scores satisfying condition (19), the RC(AI) symmetric
association model. When condition (19) is satisfied, then condition (18) will
also be satisfied, and the association in model (15) is symmetric. In addition,
when condition (18) is satisfied, then it is possible to show that condition
(19) will also be satisfied.

The symmetric association model is more parsimonious than
Caussinus’ quasi-symmetry model when M  7 2014 1; and the two models are

equivalent when AI = I -1. We noted earlier that there are (I -1) (I - 2)/2



degrees of freedom for testing the quasi-symmetry model; and we find here
that the number of degrees of freedom for testing the RC(M) symmetric
association model is (I - 1)2 - M(2I - M - 1)/2. (Note that the number
of degrees of freedom is (I - 1)(1 - 2) when M = 1, and the corresponding
number of degrees of freedom is (I - 1)(I - 2)/2 when AI = I - I .)

Next let us consider the following generalization of model ( 11 ) :

where 1, and the x2~ and Yjk are standardized row scores and
standardized column scores, respectively, with

with k ~ k’. From (20)-(21), we see that

and we shall call model (20) the RC(AI) contingency model (or the RC(M)
correlation model). Without loss of generality, the intrinsic correlation pa-
rameters pk can be ordered so that |03C11|  |03C12|  ...  |03C1M| ; and the sign
of the Xik and the sign of the y2~ in (20) can be chosen so that X1k  0 and

Y1k  0, for k = 1, ... , M (or the signs can be chosen so that, for each k,
there is at least one value of i (i = 1, ... , I) with Xik  0 and y2~  0). .
When AI = 1, the RC(AI) contingency model is the same as the RC con-
tingency model (11); and when AI = I - 1, model (20) can be viewed as
equivalent to the basic formula of correspondence analysis (see, e.g., Good-
man [30,31]). When M  I - 1, we have more parsimonious models than
the usual correspondence analysis model.

Comparing model (5) with model (20), we see that



under model (20). From (23) we see that Pearson’s quasi-symmetry condi-
tion (namely, that Cij = Cji) implies that

(for i = 1,.... I; and j = 1,..., I) in model (20).

As earlier with the RC contingency model, we now introduce the condi-
tion that the row scores and the column scores are proportional; i.e.,

in model (20), with ck > 0. I shall call model (20), with the row scores and
column scores satisfying condition (25), the symmetric contingency
model. When the row scores and the column scores in (20) satisfy condition
(25), then condition (24) will also be satisfied, and Pearson’s contingency
in model (20) is symmetric.

Since model (20) can be viewed as equivalent to the basic formula of
correspondence analysis when AI = I - 1, the RC{M) symmetric contin-
gency model in this case can also be viewed as the quasi-symmetric
correspondence analysis model. The quasi-symmetric correspon-
dence analysis model is equivalent to Pearson’s quasi-symmetry model when
AI = I -1; and the former model is more parsimonious than the latter model
when M  I-I.

We noted earlier herein serious limitations of Pearson’s quasi-symmetry
model and the RC symmetric contingency model. Using the same approach
now with the RC(Af) quasi-symmetric correspondence analysis models, we
find that these models also suffer from the same serious limitations; but the
corresponding RC(AI) symmetric association models do not.

Before closing this section, let us return for a moment to the RC(M)
symmetric association models. As we noted earlier herein, each of these
models can be viewed as a more parsimonious special case of the Caussinus
quasi-symmetry model (when AI  I - 1 ) . Various other kinds of sym-
metric association models, which are different from the RC(ll-T ) symmetric
association models, can also be viewed as more parsimonious special cases
of the Caussinus quasi-symmetry model. Examples of these other kinds of
symmetric association models were introduced in, e.g., Goodman [23,29,32].
These models will not be considered here, as this would go beyond the scope
of the present paper.



6. Quasi-independence, quasi-symmetry, multiplicative models,
log-linear models, and log-bilinear models

In the earlier sections herein, our attention was focused on the analysis
of the square I x I contingency table. Now we shall consider the analysis of
the more general rectangular I x J contingency table. The quasi-symmetry
concept can be applied to the square table (in which there is a one-to-one
correspondence between the row and column categories), while the other
models to be considered in this section can be applied both to the square
table and to the more general rectangular table.

We shall begin now with the quasi-independence model. For the I x J
contingency table, we let Pij denote the probability that an observation will
fall in the i-th row and the j-th column of the table (for i = 1,..., I ; and
j = 1,..., J). The quasi-independence model pertaining to a given subset
S of the I x J cells in the table states that the Pij can be expressed as

with 03B1i  0, 0, 0 (for i = 1,..., 7; and j = 1, ... , J). Let S
denote the subset of the I x J cells that are not in S. For the cells (i, j ) in
S, we find that = if > 0. Comparing models (1), (2),
and (26), we see that each of these models expresses Pi3 in terms of multi-
plicative effects; and the multiplicative effects are subject to somewhat
different restrictions in the three models. A model that expresses Pij in
terms of multiplicative effects can also be described by expressing log PZ~ in
terms of the corresponding additive effects (i.e., adding the logarithms of the
multiplicative effects). So we can describe these models as "multiplicative
models" and/or as "log-additive models" (or log-linear models).

In addition to the multiplicative (or log-linear) models (1), (2), and (26),
we can obtain many other multiplicative (or log-linear) models by introduc-
ing other restrictions on the and/or by expressing the as a product
of other multiplicative effects. A more general multiplicative model was in-
troduced in Goodman [23], and models (1), (2), and (26) can be viewed as
special cases of this more general model. The iterative methods that can be
used to calculate the maximum-likelihood estimate of the Pij under mod-
els (1), (2), and (26) can also be generalized in a straightforward way to
obtain a more general iterative method that can be used to calculate the
maximum-likelihood estimate of the Pij under the more general multiplica-
tive model. (The maximum-likelihood estimate of the Pij under model (2)
can be calculated by the iterative method and/or by the usual elementary
explicit formula in this case. )



The statistical methods developed for the log-linear analysis of quasi-
independence and quasi-symmetry, and the statistical methods developed
for the log-linear analysis of three-factor interaction in a three-way contin-
gency table (see, e.g., Goodman [15,16]), could be generalized then in a
straightforward way to obtain the corresponding statistical methods devel-
oped for the analysis of the more general log-linear models in the multi-way
contingency table (see, e.g., Goodman [21,23]); and the statistical methods
developed for the log-linear model in the two-way table could be developed
further to obtain statistical methods for the analysis of the log-bilinear
model (see, e.g., Goodman [28,30]). .

7. Quasi-independence and quasi-symmetry,
and some references to additional articles

pertaining to quasi-independence

We shall now consider how the quasi-independence model (26) differs
from the quasi-symmetry model (1).

From (1) we see that Caussinus’ quasi-symmetry condition (namely, that
’ij = ’ji in (1), for i = 1, ... , I, and j = 1, ... , I ) applies when i ~ j; but
when i = j, the condition is tautological. So the quasi-symmetry model
applied to the square I x I contingency table will yield the same results for
the cells that are not on the main diagonal regardless of what the entries
in the cells on the main diagonal might be. And, in particular, the model
will yield the same results for the cells that are not on the main diagonal
even when the entries in the cells on the main diagonal are deleted or when
these cells are empty.

From (26) we see that the quasi-independence model can be applied to
any given subset of the I x J cells in the I x J contingency table; and the
cells that are not in the subset S (i.e., the cells that are in the subset 5, the
complement of S) can be viewed as empty cells or as cells in which the entries
are deleted. The quasi-independence model can be applied in many different
contexts when the contingency table is square and/or when the contingency
table is rectangular, when the cells in S are the cells on the main diagonal
and/or when the cells in S are any given subset of the cells in the I x J table
(not necessarily the cells on the main diagonal). In the special case where
the quasi-independence model is applied to the square I x I table and where
the subset S consists of the cells on the main diagonal, then we can see from
(26) and (1) that this special case of the quasi-independence model is also
a special case of the quasi-symmetry model (when I > 3). However, when
we consider the more general quasi-independence model applied either to
the I x I table or the I x J table, where the subset does not consist of



the cells on the main diagonal, then the quasi-independence model is not
a special case of the quasi-symmetry model. Each of these models can be
applied in many different contexts.

Now for some closing comments pertaining to quasi-independence. Just
in case some readers of this article may be interested, I shall take the liberty
of including here a brief description of the development of my interest in
quasi-independence and in the analysis of contingency tables in which some
of the cells in the table are deleted or empty or are not of interest. My
interest in this subject arose about forty-five years ago when Bill Kruskal
and I were working on our second article on measures of association (see
Goodman and Kruskal [35]). We considered then measures of association
in contingency tables in which the main diagonal is not of interest. The
measures of association we proposed for such a table did not require the
comparison of the given contingency table (with the main diagonal deleted)
with the corresponding table under quasi-independence; and so we did not
consider the concept of quasi-independence in that article. Later on I found
that there was a need, in many different contexts, for a concept of this kind
and for iterative procedures for estimating the Pij when this concept is

applied; e.g., in the development of methods for the analysis of the mover-
stayer problem, for the analysis of the transaction flows, for the analysis of
persistence in a chain of multiple events, for the analysis of mobility tables,
for the analysis of status persistence, for the development of scaling methods,
for the analysis of triangular contingency tables (see, e.g., Goodman [11-
14,17-20,22-27,33]).

The term quasi-perfect mobility was introduced in [17] for the analysis
of mobility tables, and the term quasi-independence was introduced in [18].
The citations in the preceding paragraph were limited to my own work on
these subjects; and the relevant work of others is referred to in the articles
cited above (in the preceding paragraph) and also in, e.g., Agresti [1,2],
Bishop et al. [5], Fienberg [9], and Haberman [36].
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