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Optimal Lipschitz estimates for the d equation
on a class of convex domains ¥

VIET ANH NGuyEN ) AND EL HAsSAN Youssri (2

RESUME. — Dans ce travail, nous considérons l’équation de Cauchy-
Riemann du = f dans une nouvelle classe de domaines convexes de C™.
Nous prouvons que si la donnée f est dans I’espace LP, alors il existe une
solution u dans un espace de Lipschitz Ay, ol le nombre o > 0 donné
explicitement en fonction de p est optimal.

ABSTRACT. — In this paper, we consider the Cauchy-Riemann equation
Bu = f in a new class of convex domains in C". We prove that under L?
data, we can choose a solution in the Lipschitz space Ay, where a is an
optimal positive number given explicitly in terms of p.
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1. Introduction and statement of the main results

For every m-uplet of positive integers N := (ni,...,nm), we consider
the following domain:

m

On = Z=(Z1,...,2Zm) €C™ x - x C*: Y (|Z;]*+|Z; 0 Zj]) <1},

Jj=1
(1.1)
k
where zew := ) z;w; and |z| ;= V/z e Z, for all elements z := (z1,..., 2g)
j=1
and w := (wy,...,wy) of CF.

The euclidean ball of radius 3@ in C™ and the minimal ball in C™
correspond respectively to the cases ny = --- = n,, = 1 and m = 1. The
domains Qn were introduced by the second author in [?] where he com-
puted their Bergman and Szeg6 kernels. We should point out that these
domains are convex but they are neither strictly pseudoconvex nor piece-

wisely smooth except for the case of the euclidean balls.

Optimal estimates for the d-equation were considered for the category
of smooth domains by several authors. In [?], Krantz obtained the opti-
mal Lipschitz and LP estimates for smooth strongly pseudoconvex domains.
Later in [?], Chen, Krantz and Ma established that this kind of regularity
holds for smooth complex ellipsoids. The general case of smooth convex do-
mains of finite type was considered only recently in the works of Cumenge
([?1,[?]), Diederich-Fischer-Forness [?], Fischer [?] and Hefer [?]. The aim
of the present paper is to study the optimal Lipschitz regularity for the
D-equation in the class of convex domains Q.
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To state the main results, we fix some notations and suppose without
loss of generality that n; < -+ < n,. Since the case of the euclidean balls
is well-known, we shall assume that NV # (1,...,1) and let ! denote the

m

smallest nonnegative integer such that n;41 > 1. We set |N|:= 3 n;.

Jj=1

The Lipschitz spaces we use herein are the classical ones and those given
for0<a<1,by

h) —
Az (@) =1 F : Iflz=(an) +2123359le<12|t ul - }{ﬁz)l = flla~em <0

o<lrl<}

The first main result is the following. It generalizes our previous result

[7]:

THEOREM 1.1.— Suppose that N := (ny,...,ny) is as above and the
domain Qp is given by (1.1). Let

1 _ |NJ+m=lt+1 . ~ '
a=aV,p)={2 . P , if N#(2,...,2) and p > 2(|N|+m—1+1);
3T o if N=(2,...,2) and p > 6m.

Then for every O-closed (0,1)-form f with coefficients in LP(S2n), there
ezists a function u defined on Qn that satisfies Ou = f (in the distribution
sense) and the estimate

[l Ac(@n) < Collfllze(@n)s if p < oo;
”u”AT(QN) < COO“f”L""(QN)’ if p = oo.
b
The following result asserts that the regularity in Theorem 1.1 is sharp.
THEOREM 1.2.— Let N, Qn, p, and o := a(N,p) be as in the statement
of Theorem 1.1. Then there exists a d-closed (0,1)-form f with coefficients
in C®°(Qn) that satisfies

fFeL(Qn), Vs <p, if p < oo;
f € L>®Qn), if p=o0;

and if u is a function satisfying Ou = f, then u & Aoye(Qn), Ve > 0.
These results have been announced in [?].
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Theorem 1.2 implies that if N # (2,...,2) and p <2(IN|+m -1 +1)
or if N = (2,...,2) and p < 6m, then we can not solve the J-equation on
Qn under LP data with the Lipschitz regularity given above.

We observe that for N = (2), the domain {)(2) is linearly biholomorphic
to the Reinhardt triangle {(z1,22) € C? : |21| + |22| < 1}. The reduction of
our Theorems 1.1 and 1.2 to this case, compared with the results obtained
for domains of finite type ([?],[?],[?],[?],[?],[?]), shows that domain Q) has
the same gain of smoothness for the d-equation as strictly pseudoconvex
smooth domains in C2. Our results show also that there exist smooth do-
mains of finite type for which the gain of smoothness for the d-equation is
worse than that of the singular domains Q.

The paper is organised as follows.

In Section 2 we introduce the main tools and prove preliminary results.
The objects used are a complex manifold Hy, its intersection M with the
euclidean unit ball and a proper holomorphic mapping Fy relating the 0-
equation on My to that on 2. We establish in this section Proposition 2.2
which gives an integral representation formula of Berndtsson type for the
complex manifold Mpy. From this result we derive in Section 3 a formula
of Martinelli-Bochner type (Theorem 3.1) and two formulas of Cauchy type
(Theorems 3.2 and 3.3) for the complex manifold M. These integral repre-
sentations play a peculiar role in the construction of the d-solving operators
on M N and O N-

In Section 4 we give appropriate local coordinates on the complex man-
ifold Hy which permit us to prove Theorem 5.1 in Section 5. The latter
result will be called Theorem of reduction of estimates since from broad
outlines, it reduces certain integral estimates on My to analogous integrals,
but simpler, which are taken on some balls of C!V!. This result, combined
with Section 6, allows us to establish integral estimates in Section 7.

An operator solution T} of the d-equation on My is constructed in Sec-
tion 8 and related Lipschitz estimates are established there. The formula
for T; is explicit and contains an integral term taken over the boundary
OMp of My. In order to handle this term, we prove a sort of Stokes theo-
rem in Section 9 which allows us to transform these integral estimates into
analogous ones taken over My and then apply the Theorem of reduction of
estimates.

Theorem 1.1 is proved in Section 10. By means of the operator 17 and the
proper holomorphic mapping F, we define an operator T, solution of the
O-equation on the domain Qp and transfer the Lipschitz regularity for T3
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to that of the operator 7' Finally, we prove Theorem 1.2 by giving concrete
examples to show the sharpness of the results of Theorem 1.1. Then we
conclude the paper by some remarks and open questions.

Throughout the paper, the letter C denotes a finite constant that is
not necessarily the same at each occurence and that depends on N and
eventually other parameters.

2. The complex manifolds Hy and My

In this section we fix the notations and prove some preliminary results.
For the simplicity of calculations we only consider, without loss of generality,
the case of the domain Qy with N = (1,...,1,n,m), where [,m,n are

N, e’

1
positive integers and n,m > 1. In this case we have |N| =l +n + m and
QN can be written in the form

Qn={Z=(z,2,w)€ C'xC"xC™:2|z|*+|2[*+|z ® z|+|w|*+|w e w| < 1}.
Consider the complex manifold Hy given by

Hy = {Z = (z,2,w) € C' x C"*1\ {0} x C"*!\ {0} : z0 2 =wew=0}.
Let By be the euclidean open unit ball in CI¥1+2 and 8By its boundary.
We set My := Hy NBy and OMy := Hy N OBy. We first point out that
Hy and 8By are transverse while the variety {Z = (z, z,w) € C! x C"*+! x
C™t! : 2 ez = wew = 0} does not meet OBy transversally. Denote by

dv,dV,,dV,, and dV,, the respective canonical measures on the complex
manifolds Hy, C!, H, and H,,. These measures are related by the following

PrROPOSITION 2.1.— For all compactly supported continuous functions
f on Hy, we have

/H @z =c /C | /H n /H o2 )YV )i ).

Proof.— Observe that

l+n+m
l n+1 m+1
AV(Z)=C | Y dap AdTp+ »_ dz; NdZ;+ Y dwg Adiy
p=1 j=1 k=1 H
N
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In this formula the constant C is equal to (%)l+n+m . Therefore,

a direct computing shows that

1 U 1 " me1 m
c (Z@ﬂ\d@) > dz; Adz; (Z dwy, Adm)
p=1 j=1

k=1

1
(I+n+m)!

dv(2)

Hx

This completes the proof. O

Let E := {t = (t1,t2,t3) €)0,1[3 3 +t2+t2 < 1} and 9E := {t €
0,1[3: ¢2 + t2 + t2 = 1} its boundary. Then the mapping F : E x 0B; x
M, x M, — My given by F(t,z, 2z, w) 1= tZ = (t1z,t22, tsw), where
t = (t1,t2,t3) and Z = (z,z,w), is a diffeomorphism. Moreover, it maps
OE x 9B; x 6M,, x OM,,, onto OMy.

Let do,, be the unique probability measure, SO(n + 1, R)-invariant on
OM,,. Similarly, let do,,, be the unique probability measure, SO(m + 1,R)-
invariant on OM,,,. Finally, let do; be the surface measure on 9B;. Combining
Proposition 2.1 of [?] and Lemma 2.1 of [?], we obtain

COROLLARY 2.2.— For all compactly supported continuous functions f
on H,,, we have

“+00
F@)dVa(z)=C [ 71 [ f(t()don(C)dt.
Jromor=e o |

M,

There are obviously analogous integral formulas in polar coordinates
with M, and B; in place of H,. We now define a natural measure do on
OMy by setting do := (F.) (d¢ A do; A do, A doy,), where do is the surface
measure of the unit sphere JE. Using this, Corollary 2.2 and integration in
polar coordinates, one can establish the following

LEMMA 2.3.— For all compactly supported continuous functions f on
Hpy, we have

“+00
/ f(Z)dV(Z) = C(N) / ¢2INI-1 / f(t©)do(©)dt.
Hy 0 My
In what follows we shall establish some integral formulas on My. To
do so, we shall approximate My by appropriate regular varieties which are

complete intersections. Then we apply to each of these varieties the results
of Berndtsson in [?].
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For 0 < r < 1, let D, be the domain of C!N*2 defined by
D, :={Z = (z,z,w) € By : |2| >, |w| > r}.

Note that the boundary of D, is piecewisely smooth. We put M. := HyND,..
Let

5:= (81, -+, S|N|+2) D, x D, — CINI+2
be a C! function that satisfies
5(8,2)|<C|®@—Z| and [5(6,2)e(©6-2Z)|>ClO—-2Z* (2.1)

uniformly for © € D, and for Z in any compact subset of D,. We shall use
the same symbol s and set

|N|+2
S = Z de@j.

=1

In the sequel, we shall use simultaneously the following notations for © €
CINI+2,

© = (01,...,9n42) = (§¢,n) € Cl x C™H x C™HL,

We next set

j=1 k=1

n+1 m+1
= (Z((j + zj)de) A (Z(nk + 'wk)dnk> .

For every € > 0, consider the differential form of bidegree (|N| + 2, |N|+1)

_ sA @)V A (3Q0)*

K = 2.2
TN R 22

where Q. is the differential form of bidegree (1,0) given by
0. ¢ (S5 +29)des ) + 7o (SR (e + wi)dne) 25

ICe 2+ nenl*+e
Denote by d© the canonical holomorphic form of CINI+2 given by

del/\.../\d@INH_gEdgl/\.../\dfl/\dC1/\.../\an+1/\d771/\.../\d’l’]m+1.
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LEMMA 2.4.— Suppose that 0 < r < 1.
1) Ifu e C1(D,) and Z € M,, then

u(Z)=C(N) lir% ( / uKS — gu/\Kg) .
D,

D,

2) If u € C(D,), then

elPnu®) s b6 = o 0)dV (e
=0 (CoCP+nen+e)’ ( )M/U( e

3) If u € C(OBy) and w is the canonical volume form of OBy, then

€ 2 2u
lim / ( ClI"u®) @) = o) / u(©)da(©).

° 2_+_ 2+ 3
. CeCE +lrenP+9 o

Proof .— Part 1) follows from formulas (23) and (26) in the proof of
Theorem 1 in [?]. Also, part 2) is an immediate consequence of identity (25)
in [?].

To prove part 3), we may assume without loss of generality that the
support of u is contained in a sufficiently small open neighborhood U C
CINI+2 of a point ©g € OMy. Using local coordinates and Lelong theory
[?], we see that there exists a smooth (2|N| — 1)-volume form dy defined on
U N OMpy such that

lim ¢l n[*u(©) ~w(@)=C wW(©)du(®), (2.4)
HOaBN/nu (I¢®Cl2+ Inen?+e) 6M-]Lu

for all u € Co(U). Therefore, part 3) is equivalent to the identity du = Cdo.

Let v be a function of class Cg°([0,1]) supported in [3,1] such that

1
J PN =14(p)dp = 1. Consider the C{° extension of u given by
0

u(pZ) :==Y(p)u(Z), for0<p<1land Z € dByNU.
On the one hand, using (2.4), we have that

lim/ €l¢2In*u(©) _dB A dO
=0 ([CeCl2+Inenl®+e)

N
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1
2| N|+7]~12]1]2
— lim / €p €% |n]*u(p®) w(©)dp
(o
1

e—0 (2 4+ pt 2 3
D oBu [CeCl2+ ptlnenl?+e)

€ 2 2’u
0

2 2
B [CoCl2+[nen|?+e) oML

On the other hand, by part 2) and Lemma 2.3, we see that

€l¢?[n*u(©) 3d'é/\de=C(N)/udV
=0) (Co P+ nenl+e) M

1

—cw) [Ntu) [ wodp=c) [ ude,
0 UNOM N UNSMy
Thus du = C(N)do and thereby completes the proof. O

Next, set

K SN (Bs)INI=LADAD(C e ) AD(nen)
°T [¢12InI2[s(©, Z) o (6 — Z)]INI

(2.5)

In view of (2.2), (2.3) and the equality which precedes Lemma 4 in [?], we
see that K satisfies the identity

e elePp 26
P (CelP+Inen+e)
For every 1 < k < |N| + 2, denote by wg(©) the (0, |[N|+ 1)-form
(—1)k1dBy A ... AdB A ... A dB|yy4a-
We can write K in the form
INJ+2
K,= > h(®,2)w(6) A de, (2.7)
k=1

where hj, are the component functions of K, with respect to the forms
wi(©) AdO,...,wN+2(0) AdO.

Let My be the closure of My in By and denote by C*(My), k € N,
the space of all C* functions defined in a neighborhood of My in By. If
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INj+2 —
f= Y f;dO;isa (0,1)-form with coefficients in C(My), let f|p, denote
j=1

the pull-back of f under the canonical injection of My in this neighborhood.
Set
|N|+2

p > Ifi(©) (2.8)

[ flIMy, o = sU
0eMny j=1

Let Oy ~ be the J-operator on My . We end this section by the following

PROPOSITION 2.5.— Consider a section s satisfying (2.1), a function
_ INI+2 —
u € CY(My) and a (0,1)-form f := 5 frdOy with coefficients in C(My)
k=1

that satisfy O, u = flmy on Mn. Let hy, be the functions defined in (2.7).
Then for Z € My,

|N|+2 |IN|+2
w(Z)=C u(e)< S erhi(e, Z))do(@)+C / ( >~ fu(@)hi(8, Z))dV(@).

My k=1 My k=1

Proof .— For every r €]0,1] such that Z € M, consider a C! extension
of ulyg, (which is also denoted by u) on D, that satisfies du = f on M.
Suppose without loss of generality that f = du on D,. Parts 1) and 2) of
Lemma 2.4, combined with (2.6) and (2.7), imply that u(z) = CI}! + CI?,
where

|N|+2
B (Z fk<e>hk<e,2>) av(e),

M, k=1
2|2 IN|+2
12 = lim el i "w(®) s | > m(©,2)wi(®)nde | .
0L (e CP+Inenl*+¢” \ i3
The proof is a consequence of the following two equalities
IN|+2 -\
izt =[S sem©z))ave), (2.9)
My k=1

|N|+2
limI? = / u(@)(z @khk(@,Z)) do(©). (2.10)

r—0
My k=1
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In order to prove these, fix a point Z € My. By (2.1), (2.5) and (2.7),
there is a constant C' such that

c
he(©,2) < —o—, forall ® e My \M,, with0<r<<1. (2.11)

IC12 I’

We deduce easily from (2.11) and the hypothesis || fllp, ., < oo that

|N[+2

1%

fim, > f1(©)h(8,2)|dV(®) < lim c"gzlal? o,
MN\MT k=1 MN\MT n

where the equality follows from Corollary 2.2. This proves (2.9).

Next, we prove (2.10). Appealing to Corollary 2.2, Lemma 2.3, (2.11)
and the fact that the function u is bounded, we see that

[N|+2
lim / > 6xhi(,Z)|[u(8)|do(®) < im / %%:
My \8M,. | k=1 SM n\SM., 7
This, combined with part 3) of Lemma 2.4, implies that
201206 |N|+2 .
lim 1 elfl Il 12) s | > m(®, 2)wr(®) A de
€— ®
By, CollP+nen>+¢)° \ 1=
IN|+2
= / u(0) Z ©khi(0,2) | do(®) — 0, asT— 0. (2.12)
My \OM,. k=1

from which it follows that (2.10) is a consequent of
|N|+2

21,12
lim lim / 6'5' In “(92) 7| Y (@, 2)w®) nde | =o.
.- (ICe¢l+nenl?+e€)” \ 1=

(2.13)

Next, we prove equality (2.13). We first make use of the following remark

related to homogeneity properties of certain differential forms. Indeed, let

a, 3 > 0 and write the complex manifold My as a complete intersection of

By and the two varieties given by the equations o>Ce( = 0 and 3%nen = 0.

Applying Berndtsson’s formulas to these two equations and observing that
(2.13) corresponds to the particular case @ = 3 = 1, then we obtain
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|N[+2
lim / ( ea4ﬂ4|<|2|77[2u(@) ( Z hk(@,Z)Wk(é—) /\d@)

e—0 4 2 4 2 3
o oB & ICeCl>+B4nen®+e€)” \ =1

IN|+2
=1 ¢ nlu(©) hi (O, Z)wi (B) A dO |, (2.14
Gl“n%ap\/amﬁl“f'”'"'"'”e)g > hu(@, 24u®)1d0 |, 219

forall0<r<1.

We write 8D,. \ By as a union of the two smooth manifolds

M{ = {ZeBy:|zl=rw|l>r}
Mj = {ZeBy:lz|2rnw=r}

Let do,; be the canonical volume form on the manifold ‘M]T ,j=12.
Applying equality (3) in Proposition 16.4.4 of Rudin [?] yields that on M7,

wr(©) AdO = C(N, j, k)doy;. (2.15)

Choosing a function u and a section s appropriately and applying Lelong
theory as in the proof of (2.4), it follows from (2.14) and (2.15) that on M7,
0<r<l, je{1,2}, we have

i e3¢ |2|n|?
=0 (a?|( o (|24 B nen|> +¢)

3dor; (©)

= 1i el¢IInl? o (O) = du(©), 016
CI—%(IC‘C|2+|17017|2+6)3 0 (©) uri(©) (2.16)

in the distribution sense, where du,; is a C* differential form of maximal
degree on the manifold M} N Hy. In view of (2.11) and (2.16), equality
(2.13) will follow from the following equalities

lim / D=0, j=1,2 (2.17)
r—0 I¢12[n?
MJTﬁlH[N

We prove (2.17) for j = 1 which suffices to complete the proof. To do so,
consider, for every «, 8 > 0, the mapping F, g given by:

F,5(z, z,w) := (z, oz, fw), for Z = (z, z,w) € Hy.
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We remark immediately that we have the following property of homogene-
ity :

F; :(dor1)(0) = C(N)r*~1s™doy (€) A dVi(€) A dVin(n),

for0<r,s < % and © = (¢,(,n) € C' x OM,, x M,,,. This, combined with
equality (2.16), implies that

F}5(dprt) = C(N,)0? " 6%"dpz 1 on MF.  (2.18)
Take 7o := 1. Since the differential form dp, 1 is in C*°(M7°), we see that
d.ur 1(@)
Lrol =) < . 2.19)
[ e (

I¢l=ro, R <In|<ro

Using (2.18) and (2.19), it is easy to show that

d/‘rl(e) < T >2n—3 d/‘ro,l(@)
<C|— ———" 0, — 0.
/ e S <\ / e % e 0

MInHy I¢l=ro, 2 <Inl<ro

This implies (2.17) and thus completes the proof. O

3. Integral formulas on the manifold My

In this section we establish integral formulas of Martinelli-Bochner type
(Theorem 3.1) and those of Cauchy type (Theorems 3.3 and 3.6). These
formulas will allow us to construct the d-solving operators.

__ |N|+2 _
THEOREM 3.1.— Suppose that u € C}(My) and f:= Y. frdOy is a
k:l

(0,1)-form with coefficients in C(My) such that Oyg,u = flp,- Then for
every Z € My,

A(®,7) do(©)
uzn = | FECEARNUIEE

OMnN

IN|+2 av(e)
/ Z- T —ep (Z Bi (6,2 fk(e’) TR
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where
A(©,2) :==C(I¢? =z e &)(I¢I* + z 0 O)(Inl* + w e 7)
+ C(=lzo¢P+1zelP = [CPU¢1P + 200 —Z () (Inf° +wen)
+ C(—lwenl®+wen® — [nf*(In* + wen —wen) (ICI> + 2 ),
and By, are polynomials given by the following formulas:
(i) if 1 <k <L, then

Bi(©,2) = CE& — zu)(IC1* + z 0 O)(In|* + w o 7);

(i) fl<k<l+n+1andj=Fk—1, then

By(8,2) i=C (55 = {)(z 0 T+1¢2) = (25 + )z e (C— 2)) (Inl* +w e );

(@) ifl+n+l<k<l+n+m+2andi=k—1—-n—1, then

B(6,2) = C (@i = 1) (w e M+ [nf*) = (wi + niwe (= w)) ([¢[>+2e).

Proof .— Consider the Martinelli-Bochner section s3(Z,0) := © — Z.
In order to prove the theorem, we apply Proposition 2.5 to the section s;.
Using formulas (2.5), (2.7) and arguing as in the proof of Theorem 2.4 of
[?], we compute explicitly the functions hj associated to s, and obtain the
desired formula. |

Remark 3.2.— If u € C}*(My) is bounded, then Proposition 2.5 and
Theorem 3.1 hold for the dilated functions u,.(Z) := u(rZ), 0 < r < 1. This
shows that Theorem 3.1 remains true if we only assume that u € C!(My)
is bounded and

Tl_igl_ / |uw(®) — u(r®)|do(©) = 0.
oM N

Following Charpentier [?] let
50(0,2):=0(1-0eZ)—Z(1—1|0|?), and D(©, Z) := 50(0,Z) e (0 — Z).

In what follows, grad; f denotes the gradient of a differentiable function f
at a point Z.
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THEOREM 3.3.— There exist polynomials R(©,Z) and Py(©,2),
Qr(©,2) for 1 < k < |N|+ 2, that satisfy the following properties:

(i) R(©,Z) = (CIEI> + CISI? + CInf?) (I + z 0 )(Inl? + w e 7).

(i) For every Z,0 € By, and for every 1 < k < |N|+2,
Py(©,2) = O0(1&=Z|(IKP + [=lI<h(nl* + [wllnD) ,
Qx(©,2) = O(1&~=Z|(CI* + I=lI¢h(Inl* + lwlinl)) ,

o
lgrad; Fx(©, Z)| O ((I¢I* + I¢lzh (il + InllwD) ,
lgradz Qu(©,2)] = O ((IKI” + [CllzD(Inl* + [nllw])) -

_ |N|+2
(iii) Given a function u € C1(My) and a (0,1)-form f := Z frxd©;, €

C(My) that satisfy Opyu = flmy, then for every Z € My,

~ R(©,2) do(©)
w2 = / ~-ze0)" u(©) ¢[?|n]?

ainy (1
|N|+2 _ .— |N|-2 _
/ Z a D%,ZZ))'N‘ [(1-©eZ)Py(6,2)

dv(e)
I¢12Inl?”

+ (1 -181)Qx(©, 2)]fu(©)

Proof.— From the proof of Proposition 2.5 we may assume without
loss of generality that there is a C* extension of ulyy,, denoted again by u,
such that du = f on By. Let K, be the kernel associated to the section
so by formula (2.5). By virtue of (2.6), when we integrate uK§ over 0By,
all terms which contain 8|8|? vanish. In addition we have 1 — |©]? = 0 and

D(©,2) = |1 - Z e8| so that

2 2
e elclIn | 1
L ““/ MO e+ menP < CEWME( = Z =0

BN

|N|+2 |N|+2 INI-1
(Z @kd@k) (Z d@k/\d@k) AT A eC)AND(en)
k=1

k=1
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|N|+2 _
Rewriting the differential form in braces in the form Y hg(0, Z)wi(0) A
k=1

d®© and applying part 3) of Lemma 2.4, we obtain
hm wKE = / = Ohi(8, 2) do (8).

2 P~ Ze 8™
BN

A straightforward calculation of the functions hg(©, Z) shows that

|N|+2
R(©,Z) = ) ©yh(8,2) (3.1)
k=1

satisfies assertion (i) of the theorem.

|N|+2
Write the kernel K in the form (2.7) as Ko = Z hi(©, Z)wi(©)AdO.

Then we have
|N|+2
I:=0unKy= Z f1(®)hi (0, Z)dO A dO. (3.2)
k=1

To finish the proof of the theorem, it suffices to prove the following lemma:

LEMMA 3.4.— The functions hy in the formula (3.2) can be rewritten
in the form

(1-0©eZ)Nl-2

"(8:2) = {EED(e, )M

[(1-©e2)P:(8,2)+ (1~ 0]")Qx(®,2)],

(3.3)
where Py and Q) are some polynomials that satisfy assertion (i) of the
theorem.

End of the proof of Theorem 3.3.— Suppose that the lemma above is
proved. Applying Proposition 2.5 and using (3.1)-(3.3), the theorem
follows. O

Proof of Lemma 3.4.— By virtue of (2.5) and (3.2), we can write [ =
I, + I, where

INl+2 (1-0eZ)N-1 [N|+2 o 2
= kgl fedOg |IA ICI2[n2D(©, Z) N ; [@j(l-@°Z)—Z,~(1—|@| )]

IN|+2 INI-1
dO; AU NI el)AD(en) A [Z de, /\d@] ,

q=1
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and

[N|+2
L= > frd®y
k=1
N|+2

S\ (Nl—2 |
{ (1-0eZ)NI-2 Z [0,(1-©eZ)-Z;(1-10/?)] dO;,
j=1

I¢I2Inl?D(®, Z)IN!

n+1

Z ZxdOy

k=1
|N|—2}

A straightforward computation shows that

AU ADC O A Do)

A 3|82 A

INl+2
Al Y dBy A dO,

g=1

- (1 ys .7)]N|—1 1 _ _ ~
I“‘mwwnxazW“{CZ?%P““‘@'@+wM1—@FH

n+1

(o CH I weT+ ) +C Y furi {[-Cr(1 — © 0 2) +Z(1 - [O)]

k=1
(zoC+C1%) = (1= [¢P) (o + Gr)z @ C} (w e T+ [n]?)

m+1
+C Z Frrtentr {[~T(1 = © 0 Z) + Wi (1 - |6*)] (w e T + |n]?)
k=1

~ (1= ) (wk + m)T o7} (2 0 C+ %)} dO A dB.

Hence the functions hy associated with I; are of the form (3.3).

To simplify notations we set
n+1 m-+1

l
we =Y d& NdE, we:= kzldgk AdCr, wn = kzl dni A dTg,
k=1 - —

and we set for every form w and every positive integer k,

wk =wA.LLAW.
N e’
k
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Then a simple calculation gives that

|N|+2

IN|—2
\I//\a(CoC)/\(')(non)/\l:Z d@k/\d@k:I =UAI el)ANI(nen)
k=1

-2 -2 1 -2 -1
(CwE AwCAw +C’w§/\w§ /\w,'7n+Cw€/\wg/\w,’7" —%—Co.)g

A w?‘l /\w,T + C’wé /\w’g 1 Awgt™ 1y Cwi._l Awg /\w,';‘_l)

=UADCel)ADmen) A <2Jk). (3.5)
k=1

To conclude the proof of Lemma 3.4, it suffices to prove the following
lemma :

LEMMA 3.5.— For every 1 < k < 6, the differential form

|N|+2 . |N|+2 L N
L = | > £d8;| A Y [6;(1-0e2)-Z;(1-|0*)]do; 3|6
j=1 Jj=1
|IN|+2
> Z;d0;| AJ AT AD(Cel)AB(nen)
j=1

can be expressed as the product of the canonical volume form d© A d© and
a function of the form

|N|+2
3 £ ((1-0e2)P(8,2)+(1-01)Q;(8,2)),

=1
where P;, Q; are some polynomials satisfying assertion (ii) of Theorem 3.3.

End of the proof of Lemma 3.4 .— Suppose that Lemma 3.5 is proved. We
deduce from the definition of I, I5x and (3.5) that

(1-©eZ)N-2
2= I¢|2|n[2D(©, Z)INI (Zfzk>

Therefore Lemma 3.4 follows from Lemma 3.5. O

Proof of Lemma 3.5.— We break the proof into 6 cases according to
the integer k£, 1 < k < 6.
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Case 1: J; = w£ —2 Awg Awy'. In this case a direct computation shows that

=1

l
In = (2eC+ ) wen+nl*) {ijdg_]]

l

A Z (1-0eZ)—7,;(1-0 )]dng A D¢l

AN Z—.’fjdfjil /\wé—2
_J=1
l
= (1-0eZ)(ze(+ () (weT+n*) { [nydﬁj]
Jj=1

- ]
A Zgjdfj I:Z%dg{l /\8|512/\W }
=i

j=1

Since

l

) !
{Z@-d@-] > Fdg | = Z ajmk &%) de; A dé,
j=1 |7=1

k=1,

we see easily that I, satisfies the conclusion of the lemma.
Case 2: J, = w§ A “’C 2A wy® In this case we can rewrite Is5 in the form

n+1 n+1
(we 7+ Inf?) { [Z fj+zdé_j} Ay G0 -0eZ) —7;(1— 18] d¢; A DI

n+1 n+1
A [Z Ejdcj} A { Z (2x + Cr)CpdCr A d@} A w?“2} Awk AwltL
j=1

k,p=1
In view of the proof of Lemma 2.7 in [?], the differential form in braces can
be expressed as the product of d¢ A d¢ and a function of the form

n+1
S i (1-©2)5,(0,2) + (1 - [6])T5(8, 2))

j=1
where S, T; are some polynomials such that

S;(8,2) = O(lz=<lKI), T;(8,2) =0 (lz=<lIKf)
grad,;S;(0,2) = O (ISP +ICllzl), gradT;(8,2) = O (I¢]* +[Cllz]) -
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Combining what we have proved so far, we obtain that Iso satisfies the
conclusion of the lemma.

Case 3: J3 = wé Awg A w,’;’_z. This case can be treated in the same way as
the previous case.

Case 4: J; =Wt P AWl A w;*. Then we have

3 ¢

l4+n+1

La=| Y f;d8;
j=1

I4+n+1
A{ 3 [B.1-0e2) - Z.(1 - [0P)] d&: AD(EI? + [¢[?)
t=1

l+n+1 n+1 _
A [ D Zud0 [ A | D (2 + Ce)CpdCh A | AwET AW
s=1 k,p=1
ANw o 77 + [ )wp .
+n+1 — l _ n+1 _
By splitting Y. f;d©; into a sum of the two parts Y f;d¢; and Y fri1dCx,
j=1 j=1 k=1

we also split I»4 into two corresponding parts as Ioq = Ip41 + I242. A little

calculation gives that
I n+l

Lar=>_ Y filzk+ Ge)Cpd&; A dlk A dG,

J=1kp=1
+n+1 _
A{[ S [B.1-047) - 71— [0P)] 461 ABC
t=1

+n+1
A [ > ZidO, | AW AWETIA (we T + )t
s=1

! n+1
=C(1-0eZ)(wen+n*) § D fi | D (ar+ &) Gplr (6% — T56p)
Jj=1 k,p=1

Awg A w?“ Awptt,
— l __
Similarly, since 9|¢|2 = 5 &£:dE,, we obtain
s=1
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l n+1

Laz =2 > frst(zk + o) Gl A dli; A dGy A dEs

s=1 k,p=1
k#p

A { [Hg [B.(1-007) - Zi(1-|0P)] d@t] A rtglzdet} }

/\wé—l/\wC YA (wem+ |nf? Jowprtt

—C(- 00 D)wen+ ) L fn{ £ T [ + G

s=1 p=1
p#k

(TG — &%) — (2p + Gp)Gpbs (Tl — &) | } Awp AWPHE AWt
It can be checked that I241, 242 and Iy satisfy the conclusion of the lemma.

Case 5: J; = wg Awg™ LA wp” 1, Observe that

|N|+2 IN|+2
Ls=| Y f£;d8;| A Y [6:(1-0e7)-Z,(1-|0)] d6;
j=l+1 t=I+1
|N|+2 n+1 . .
NS+ ) A | D Zed®s| A | Y (2k + Ce)Gpdi A dG
s=l+1 k,p=1
m+1
Z (wr + ) Tsdny A dn_s] A w?’l A w,’;‘_l} A wé.
r,s=1
IN|+2 _ n+l _
Rewriting ). f;dO; as the sum of two differential forms ) fx4:d{x and
j=l+1 k=1

m+1

> fi+i+n+1d7;, we thus divide Io5 into two corresponding terms: Iz5 =
Jj=1

Is51 + Iogo. A straightforward computation shows that
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n+l m+l1
Isi= Y Y fulzq+ C)Gp(m + we)Tadl A dCq AdCy A dny A di;

k,p,g=17,5=1

IN|+2
ALY [B:(1-©0Z) - Z:(1— |6]%)] d; | ADnl?
t=l+1
|N|+2
A Z Z,dO, /\w?_1 Awpt /\wé
s=l+1
n+1 -
=(1-0eZ)ne(w-n)?$ Y fr |C (2p + () CpCr + Clzr + GGkl
k=1 p#£k
/\w?“*'1 /\<,c.;,’7""'1 /\wé. (3.6)

We obtain in exactly the same way an explicit expression for I550. Finally, we
deduce from these expressions that Iss1, I252 and Io5 satisfy the conclusion
of the lemma.

Case 6: Jg = WA w? A w;”‘l. This last case can be treated in the same
way as Case 4. The proof of Lemma 3.5 is therefore complete. O

We end this section with the study of the particular case N = (2,2). In
this case we write for Z,0 € By :

Z= (Z’ w) = (21, 22, 23, W1, W2, 'lU3), and ©= (Cv 77) = (Ch G2,C3, M1, M2, 773)'
To establish optimal Lipschitz estimates for the domain €2(; 7), we need

a more precise formulation of the Cauchy type formula given in Theorem
3.3.

THEOREM 3.6.— Let N := (2,2). There are polynomials R(©, Z) and
Pjr(©,2), Qix(0,2), 1 < j < 2, 1 <k < 4, that satisfy the following
properties:

(i) R(8,2) = (CICI* + Clnl?) (ISP + 2 O)(Inf* + w e 7).
(%) For every Z,0 € By, and for every 1 < j <2 and 1 <k <4,

P1(8,2) = 0 (16 — Z|(I¢3] + Ins| + € = ZD(ICI* + [¢ll=D)(Inl* + Inllw]) ,
Q1x(8,2) = 0 (16 — Z|(I¢s] + Ins| +10 = ZD(ICI* + [Cll=D) (Inl* + Inllw]) ,
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lgradz Pix(©,2)] = O ((KI* + Kll=l)(Inl* + Inllw]) ,
lgradz Q;x(©,2)] = O ((KKI* + Kl (Inl* + Inllw]) -

(iii) Let u € C*(My) and f := fid(, + f2d§2 + f3df; + fad7, is a (0,1)-
form with coefficients in C(My) that satisfy Oyyu = f IMy > then for every
Z e MN,

B R©,2) .o do(®)
ua)= (- zeg) " OlcEmE *

OMn
4 — .
1-0e )it =
/ Z (_———)4_[(1—‘@.Z)P]k(@,Z)'F(].—lelz)Q]k(@,Z)]
" D(©,2)
My J=1lk=1
dV(0©)
fx(©)
O
Proof.— We return to the arguments used in the proof of Theorem
3.3. By the hypothesis on f and (3.2), we have that
I:=0un Ko = (fiH1 + foH> + fsHs + f4H,)dO A dO, (8.7)

with Hy := hy, Hz := ho, H3 := hg and Hy := hs. To complete the proof, it
suffices to prove the following

LEMMA 3.7.— The functions Hy, in formula (3.7) can be expressed in
the form
2
1—-Qe 1+]
ZWBe—le —0eZ)P;i(8, Z)+(1-|6])Q;x(8, 2)],
_ (3.8)

where Pj, and Qji are some polynomials satisfying assertion (i) of the
theorem.

End of the proof of Theorem 3.6 .— Suppose that the lemma is proved.
Using the arguments that precede Lemma 3.4 in the proof of Theorem 3.3
and applying Proposition 2.5, the theorem follows. O

Proof of Lemma 3.7.— Following the proof of Lemma 3.4, we write
I = I, + I,. By virtue of (3.4), the functions Hj, associated to I; (similarly
to those associated to I in (3.7)) are in the form (3.8) with j = 2.

Since { = 0 and we = 0, formula (3.5) becomes
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6 2
UAICe)ANI(nen) A Zd@k /\d@k]
k=1

=\I//\a(g.g)Aa(n.n)/\(2w</\w,,+w?7+w§)

=TUADCeO)VADnen) A (Ji+ Tz + Ja). (3.9)

Therefore, to conclude the proof of Lemma 3.7, it suffices to prove the
following

LEMMA 3.8.— For every 1 < k < 3, the differential form
Ly = [f1d() + f2dCy + f3dmy + fadiy)
6
AY [6:1-0e2)-Z,.(1-6)]de,
r=1
6

Z?sd@s} AJeAUABeC)AD(men)

s=1

A 3|82 A

can be expressed as the product of the canonical volume form d© A d©® and
a function of the form

4
Y i ((1-©eZ)P(8,2)+(1-10])Qu(®,2)),

t=1
where Piy, Q1+ are some polynomials satisfying assertion (ii) of the theorem.

End of the proof of Lemma 3.7.— Suppose that Lemma 3.8 is proved.
In view of (3.9) and the expression of I> given at the beginning of the proof
of Lemma 3.4, we see that

= 3
(1-0eZ)?
= ——ru«———. Ik ).
* 7 [cPInPD(®, 2)* ,; :
Therefore, Lemma 3.7 follows from Lemma 3.8. O

Proof of Lemma 3.8 .— We first remark that the case kK = 1 corresponds
to the case 5 in the proof of Lemma 3.5. Hence, by virtue of identity (3.6),
I satisfies the conclusion of the lemma. Consider the case k = 2 which
corresponds to case 2 in the proof of Lemma 3.5. Then we have
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r=1

3
I = {[flda + £2d0] A [C.(1-©02) —Z,.(1 - |0)] d(- AB|¢I?

3 3
A [Z zsdcs} A lz (2 + C)CpdG A dfp} } A (w o7+ [nf*)wy.
i

s=1 ,p=1

A simple calculation gives that
Lz = {f1(1-©eZ)(CTya + CsTy) [ Y (-1

+(C,Zs — CZr) (2t + &) 5 (1 — ©  Z)(CL3¢1 + Ca(y)

[Z(_l)e(m’t) (¢,Zs — CZr)(ze + Ct)] (weT+ ]77|2)w2 A wf’,,

where the sum is taken over all permutations (r, s,t) of {1,2,3} such that
r < s and where €(r, s,t) is the sign of such permutations. It follows from
this that I», satisfies the conclusion of the lemma. Similarly, we have the
same conclusion for I3, which completes the proof. O

4. Local coordinate systems
on the complex manifolds H,, and H,,

In the next theorem, we construct an open neighborhood U, of H,, in
C™*1, and for every z € U,, a coordinate chart ® defined on a coordinate
patch U(z) of H,, that possess some interesting properties of homogeneity.
The same construction will be applied to the complex manifold H,,. These
local coordinate systems will allow us in the next section to reduce certain
types of integral estimates over My to simpler integral estimates over CIVI,

THEOREM 4.1.— There are an open neighborhood U,, of H,, in C*t!
and constants Cy,Ca,C5 > 1 that satisfy the following properties:

1) If 2 € C™*1\ U, then dist(z,H,) > & with the understanding that
dist(.,.) is the euclidean distance.

2) If z € U,, and if the open setU(z) := {C eH,:|(—z|< Ic—zll} is non-
empty, then there exists a diffeomorphism ®* mapping U (2) into the open
neighborhood U(Z) := {EG Cn:|C-3< lg;l} of a point Z € C™ which is
ezactly ®*(z) in case z € H,, such that
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(i) @ Z = ®*({) @ ®=(2), for all ¢ € U(z).
(ii) |2%(2)] = |2| and Bl < |@*(Q)| < ¢, for all ¢ €U(2).
(i) For all ¢ € U(z), we have H—[ <Cg 2 (C , where ®%:=(®%,...,P2).

() For all compactly supported functions f € Co(U(z)) such that f > 0
we have

/ fdv, < C / @2 1) Qv (d),

U(z) Ij(;)

where an(Z) denotes the Lebesgue measure on C™ and ®Z f is the pushfor-
ward of f under the diffeomorphism ®*.

Remark 4.2.— We construct in the same way an open neighborhood
Uy, of H,,, in C™t1, and for every w € U,,, a coordinate chart ®* defined on
a coordinate patch U(w) of H,, that possess the same properties as U, , ®*
and U(z).

To prove Theorem 4.1, we need the following

LEMMA 4.3.— There exists a constant Cy > 0 such that

Kjx(n}?él_’_l Im(z;Z5)| > Co, for all z := (21,...,2p41) € OM,. Here ImA

denotes the imaginary part of A € C.

Proof .— Since the function z — max |Im(z;Zx)| is continuous on
1<j<k<n+1

the compact set OM,, it attains its minimum at a point z. Therefore it
suffices to prove that there exist 1 < j < k < n+ 1 such that Im(2,%Zx) # 0.
Suppose the contrary. Since |z| = 1, there is an k such that z; # 0. Hence
for every 1 < j < m+ 1, we have z; = Az with A; € R, from which it

n+1
follows that 0 = [ > A? z2. Thus 2;, = 0 and we obtain a contradiction.
This completes the proof of the lemma. O

We now turn to the proof of Theorem 4.1.

Proof of Theorem 4.1.— The construction of the open neighborhood
U,,, the coordinate patches /(z) and the coordinate charts ®* : U(z) - C"
for every z € U,,, will be done within two steps. First, by Lemma 4.3, we
divide M, into ﬂﬁ+—1) compact sets Eji, j < k, where Eji := {z € OM,
Im(z,Zx)| > Co} -

Fix a sufficiently small number § > 0. The exact value of 6 will be clear
in the course of the proof. Let z be a point of C**+1.
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Step 1: dist(z,0M,) < 6.

According to the discussion above, suppose without loss of generality
that there exist j < k and 2 € Ej; such that |z — 2| < 4. Define the
diffeomorphism ®* as follows : &% := (®%,...,P%), where

97, (0) 1= SrZtiiet,

Vzi2+zx]?’
O () :=¢, ifl<y;
Q7 (¢) :==Ci41, Hj<I<k—-lork<l<n.

‘We can choose the functions (;, [ # j, as the n-local coordinate functions
of H, at the point 2. Substituting {; by ¢ /> ¢? in the expression of &7,
I#7

straightforward computations show that the real Jacobian of ®* at the point
¢ corresponding to this local coordinate system is equal to ﬁ%ﬁm
This quantity is uniformly bounded from above and from below by some
positive constants as ( € H, and z are very near to 2 € E;;. Therefore,
when C: is sufficiently large, there exists a sufficiently small § so that for

every 2 € Ej;, and every z such that |z — 2| < 6, ®* is a diffeomorphism
from {¢ € Hy s ¢ — 2] < 26} to {Te C: [T - @%(2)] < =)

Taking C; > 35 and observing that |®*(z)| = |z| ~ 1, it follows from
the previous discussion that ®* is a diffeomorphism from U(z) onto an open
neighborhood U(Z) of the point z := ®*(z) € C™.

To finish part 2) of the theorem, it remains to prove assertions (i)-(iv).

Assertions (i) and (ii) can be checked direcly. In particular, the estimate
|®%(¢)| < [¢] follows from the Cauchy-Schwarz inequality.

We prove now assertion (iii). Consider two cases according to k:
Case k < n+ 1. In this case, in view of the definition of ®*, we have
Cnt+1 = PZ(C). This, combined with (ii), implies assertion (iii).
Case k =n+ 1. If ¢ € U(z), then when C; is sufficiently large, we have
1> |{nt1]| = |2n+1| = Co. Hence assertion (iii) is almost obvious.

It now remains to prove assertion (iv). By Proposition 2.1 in [?], for
¢ € U(z) we have the following identity:

2 . — - _
V() = CLLdes AT A NG AT A A dpr Ay

I¢512
Since 2 > |C] > |¢;| & |3] > Co, it follows that dV,(¢) ~ (@) (dvn(Z))
for { = ®*({). This implies assertion (iv).

- 205 -



Viét Anh Nguyén, El Hassan Youssfi

Step 2: General case.
Set Uy, := {rz:r > 0 and dist(z, OM,,) < 6} .

If z € U,, then according to the definition above, there exist 2 € M,
and r > 0 such that |rz — 2| < 8. Therefore, the construction given in Step
1 can then be applied to the point rz. Hence, we can define

Uz) = -U(rz);

SI=3 =

®*(¢) = —-9"(r(), VCeU(z).

Using the homogeneous invariance of the complex manifold H,, with respect
to the dilations, we conclude that for every z € U, the function ®* just
defined satisfies part 2) of the theorem. To finish the proof of the theorem, it
only remains to check part 1). Let z € U,,. Then there exists a point 2 € H,
such that |z — 2| = dist(z, H,,). Since z ¢ U,,, we deduce that |z — 2| > d|2|.
Hence

é

Thus, if we choose C; > % + 1, then part 1) is satisfied. This completes the
proof of the theorem. O

1
(— + 1> dist(z,H,) > |z — 2| + || = |2].

5. Reduction of estimates from My to By,

This section proves the Theorem of reduction of estimates. We use the
notations and the constants introduced in the previous section. In order to
state this theorem, we need some more notations and definitions.

We denote by By the euclidean unit ball of CIVl. We often use the
following notations for ©, Z e CIVI

0=(EE6A) eC xC*xC™ and Z = (F,3,w) € C' x C* x C™.

Let dV(©) be the Lebesgue measure on C¥l. For every i € {1,2}, note
B; || the euclidean ball of CINI centered at the origin with radius . Thus
Bin =By, n|-

We shall define various notions of comparability.

DEFINITION 5.1.— Consider two points Z = (z,z,w) € By and Z=
(&, 2,W) € CIV|. Z is said to be comparable with Z if the following conditions
are true:
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(1) z =7
(2) If z € Uy, and U(z) # D, then Z = ®*(z), if not |Z] = |z|.
(3) If w € Uy, and U(w) # @, then © = ¥ (w), if not |F] = |w).

Remark 5.2.— It should be noted that by this definition and Theorem
4.1 (ii), we have |z| = |Z], |2| = |Z], |w| = |w|. Hence Z € By

DEFINITION 5.3. — Let i € {1,2} and fiz two comparable points Z =
(x,2,w) € By and Z = (&,%,w) € CVI,

We say that &€ € C! is i-comparable with £ € C! if £ = €.

We say that ¢ € H,, is i-comparable with Z € C" if the following condi-
tions are true :

(1) If [¢| > V2], then [C] = [¢].

(2) If I¢ — 2| < &L, then { = @%(¢).

(3) If IC| < V32| and |¢ — 2| > BL, then (] < VEIZ] and |§ - 3] > BL;
if moreover i = 1, then we have |C| < |C|.

We can define in the same way the notion of i-comparability between
n € H,, and 5 € C™ upon substituting n by m and &% by dv.
Finally, two points © = (¢,(,n) € My and © = (E ¢, ~) e CIV gre

said to be i-comparable if & (resp. ¢ and m) is i-comparable with § (resp
and 7).

Remark 5.4. — We deduce easily from this definition and Theorem 4.1
(ii) that if © € My is i-comparable with © € CIV|, then © € B; -

DEFINITION 5.5.— Let ¢ € {1,2} and fiz two comparable points Z € By
and Z € B)n|. Consider two non-negative measurable functions K, K defined
respectively on My and E’,! N|-

o We write K < CK (respectively, K S CK ) at (Z,Z) for a positive
constant C if for all points © € My i-comparable with Oc Bt INs

K(©) < CK(©) (respectively, K(6) < CK(©)).

o We write K ~ K at (Z,Z) if there ezists C > 0 such that K < CK <
C?K.
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Now we are in a position to state the main theorem of this section.

THEOREM 5.6.— Let i € {1,2} and fixr two comparable points Z €
By and Z € Bjn|- Let C be a positive constant. Consider non-negative
measurable functions K, L defined on My and K, L defined on Ei,iNl such
that

K<CK and LSCLZC’L at (2,2).
For every a := (a1, a2, as,aq) such that 0 < a1 < 2n, 0 < a2 < 2m and
0 < ag,a4 <2, we set

- B ( M)‘”_c_‘“ n_[*
Ka(®) = K(©) <1+|§| 1+|n| Cnt1 Mm+1
s E ( |fﬁ|)‘” ¢ |ﬁ ™
K1.(8) = K(© v W) 1Sl |Fml
1a(®) = R( ><1+|<|> RG]
N A

K2al®) = KO |5,

Then there exists a constant Cy that depends only on N,a and C, C1,C2, Cs,
(in particular this constant is independant of Z and Z), such that

1)

/ K.(0)dV(0) < Cy / R:o(8)av(8);
Mn

B~
2) for 6 >0,
/ Ko(©)dV(O) < C / Ria(®)dV (©);
©eMy, L(©)<é éGBMN;, Z(é)€045

3) for 0 < 61 < dg,

K,(8)dV(©) < Cy / K o(©)dv ().
€My, 6:1<L(0)<52 6eB, | n|, $<L(6)<Cis2
Proof.— We shall only prove part 3). The two other assertions can be

shown in exactly the same way. Firstly, we extend the domain of definition
of the functions K, L, K, L by setting

K®) = L©):=0, if©®cHy\Mypy;
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By the hypothesis on L and E, for every © € My such that 6; < L(©) < 4,
and for every © € TB?M N| i-comparable with ©, we have

‘551 < L(®) < C6b,. (5.1)

For every &, £~ € B; and 7,7 € H,,, consider the following integrals
¢

a3

2\ ™
REm = K6 (1+3) Vi (0)
Kl <n+1
C€ML,., 61<L(§,¢,m)<S2
. o AN~
RED = K (£87) (1 + :—Z—D —Cf— dva(©),
TeCn, B<E(83n)<cés "
BEn) = RETH || and),
Gecn, B<L(EEm)<chn "
" where an(Z ) denotes the Lebesgue measure on C™.
Next, consider the following integrals
w Qo (e 7%
s© = [ren(1+8) || v,
|77| NIm+1
]H[m
— - R '1/17 (7] ~ |0yq
50 = [fED(1+2) L] oo,
177l NMm
Cm
50 = [RED|E| v
(Cm

where dV,,,(7) is the Lebesgue measure on C™.

We outline the main ideas of the proof. Suppose that £ (resp. 1) is i-
comparable with £ (resp. 77). Using the hypothesis that K < CK, we shall
prove that

R(&,n) < C4Ri(€,7), i=1,2. (5.2)

Next, we shall establish in the same way as in the proof of (5.2) the following

estimate : (note that £ = §)
S(€) < CaSi(), i=12. (5.3)
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Finally, an application of Fubini’s theorem gives that
Ka(©)av(®) = [ s©av(),
OeMy, 61<L(0)<d2
and
/ Ria®3dv(®) = [S0m(e)
6€B, |n|, % <L(8)<Cs2 B,

Part 3) now follows by combining (5.3) with the latter two estimates. It now
remains to prove inequality (5.2).

To do so, divide the domain of integration {¢ € H, : % < L, ¢ n) <
Cé2} of R(&,n) into the three subsets :

Bo= o< Bl e {i0s vaR)
{i¢1< Vst and i - 21> At

Il

E;

Also, divide the domain of integration {Z eC": 51 <L (5 G, ~) < 062}
of 13,,(5, 77) into three corresponding subsets :

B o= {T-a<g}i  Be={d>vam);
Be = {0l< ViR and =315 g )

Estimate (5.2) will follow by combining three integral estimates of the form
J < C4f withsome appropriate integrands and j = 1,2, 3. Therefore,
E; E,

we may assume without loss of generality that E; # @, j = 1,2,3.

Combining Theorem 4.1, definition 5.3 and estimate (5.1), we see that
(&,¢,n) is i-comparable with (5, ®%((), 77) € E,, for every ¢ € E;. Hence, the

hypothesis K < CK implies that K (¢,¢,n) < CK (E, d*((), 77) . Moreover,
the fact that ¢ € F; gives that |{| > (1 - Cil) |z|- Therefore, applying
Theorem 4.1 (iii)-(iv) gives that
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-

Next, we prove the estimate of the form [ < Cy [ .Set I :={|¢|: ¢ € E2}.
E, By

We remark that % < %, for every ( € E,. Therefore, by integration in

polar coordinates (Corollary 2.2), we obtain

E[K(s,c,m (H%)al :

Cn+1
sup K (57 Cv 77) r2n—1dr )
/ L

T CEEL,|¢|=r

«

¢

Cn+ 1

z

c dV(Q).

<

W0 < OB (0%, 7) :

Eq

ZK(&C,U) (1+]
(5.4)

ag

dVa(4)

«

" dow(0)

N

Cn+1

< / sup K (6,¢m)r>dr,
' CEE:,[C|=r

where the latter inequality holds by an application of Lemma 4.1 in [?] with
ag < 2.

On account of definition 5.3 and estimate (5.1), (£, ¢, n) is i-comparable
with (gN, E, ?7') € Ez, for every ¢ € E5 and Ze Eg such that ]a = |¢|. This,
combined with the hypothesis K < CK , implies that

/ sup K (&¢,n) r2lar < /~ inf_ K (5,5,77) r2=ldp.

T <€E2V|CI=T T <€E2,|<|=7‘

The right side of the latter estimate is majorized by Cy [ K (E, G, ﬁ) dv, (Z ).
E,
In summary, we have that

.»ZK(&C’U) (H%)m

It now remains to prove the estimate of the form f < Cy f . Consider
Es3 Eg

¢

Cn+1

Cavo <o [ R (ECH) @

E;
(5.5)

two cases according to the value of ¢:
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Case ¢ = 1. We set R := sup;cp, (|- In view of definition 5.3, Remark 5.2
and estimate (5.1), we see that (£,¢,n) is 1- comparable with (E, ¢, 77) € E;

for every ¢ € F3 and ¢ € C™ such that = z| > & and I¢] < |¢|. Therefore,
using integration in polar coordinates, we obtain

[rtn (81

a3

L

<n+1

R
s[ sw KEemen (1+ 'z') - / < don(Q)dr
CEEs,|¢|=r Cn+l
0 SM
f ENG ATl
< inf K ’“,~’~ 2n—1 i) . 2| doy, =
NO/ZeEl;,l|2|=r (6 ¢ n)r <1+ " BB/ z on(¢)dr
<@/%@&®Q+%> | an@, (56)
E, "

where on the third line, don(z ) is the surface measure of the euclidean unit
sphere 9B,, of C™.

Case ¢ = 2. We see easily that
~ ~ ~ Z]
B—{fec: QI<vamad -7}
Moreover, (£,(,n) is 2-comparable with (5, Z, 17) for every ( € E3 and
¢ € E3. On the other hand, by Remark 5.2, we have |z| = |Z]. Thus,

Jreen (i)

a3

¢

Cn+1

dVn(¢)

< sup K (&,¢,m) / (1 + :CD Cniz Va(0) S | sup K (¢,¢,m)
’ Icl<val]

S B int K (£67) <Ca [ K (667) dva 5.7

i int K (6..7) 4/ (£.87) av@. (57)

Es
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Now estimate (5.2) follows from (5.4)-(5.7). This completes the proof of
part 3). O

To conclude this section, we give without proof some properties of the
relations ” <” and ” = 7.

PROPOSITION 5.7.— Let Z, Z and K, L, I~(,~Z be as in_the statement of
Theorem 5.6. Suppose that K S K and L <L at(Z,2). Then K+L <
K+ L and K*LP < K®LP, for every o, 3 > 0.

_Ifin addition K ~ K and L~ L then K + L ~ K + L and K*L® ~
K<LA, for every o, 3 € R.

6. Integral kernels

The pairs of integral kernels K, K satisfying the condition K ~ K that
we shall use are studied here. Recall the function D introduced by Charp-
entier [?] :

D(©,Z):=|1-0eZ|>—(1—|0*)(1—|Z|?), forall ©,Z € C* and k € N.
THEOREM 6.1.— Let i € {1,2} and fix two comparable points Z € By

and Z € Byn|. Consider two functions K, K defined respectively on My and
TB—EM N| that correspond to one of the following three cases :

(1)i=2and K(©):=10—Z|, K(©):=1|6-Z|;

(2)i=1ad K©):=1-0eZ|, K(@®):=|1—0eZ

(8)i=1 and K(©) :=D(®,Z), K(©):=D(®,Z).

Then K ~ K at (Z,Z2).

Proof . — Using the definitions 5.1, 5.3 and 5.5, it can be easily checked

that _ _
|z =¢|~|z2—=¢| and |Jw—n|=|w-7] at(Z,2).

Applying Proposition 5.7 to the latter two relations, assertion (1) follows.

To prove assertions (2) and (3), we need the following estimates of
Bonami-Charpentier [?, p. 67] :

1-0eZ|=(1-|Z)+(1-|0P)+|Im©eZ|+|0-Z  (6.1)
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and
D(©,2) ~ (1-|Z]7)|0-Z*+ (16 - |12?)* +|Im © « Z|*+|6—-2Z|*, (6.2)
for every ©, Z € By, where By, is as usual the euclidean ball of CF.

Write Z = (z, 2,w) € By and Z = (%,3,%) € Bjy|. Let © = (£,{,n) €
My be 1-comparable with 6= (§~, Z , 77) € Bn|- We break the proof into
four cases.

Case 1: 7 = 9%(2),{ = ®*(¢) and @ = ¥ (w), 7j = B¥(n).
In this case by Theorem 4.1 (i)-(ii), we have that
(ez=(Cez new=rew, and|z|=]z], |w|= D (6.3)
We deduce easily from the first two equalities of (6.3) that |1 —© e Z| =
|1 — © e Z|, which proves assertion (2).

On the other hand, we have the following identity:

D©,2)=01-|2ZP)0 -2 +|Ze(©-2)|".

By assertion (1), we have |© — Z|2 ~ |© — Z|2. This, combined with (6.3),
implies that D(©,Z) ~ D (é, Z) , which completes the proof of assertion
3)

Case 2: 7= 9%(2),( = ®*(¢) and |w—n| > &, |& - 7] > I&.

2

In this case it is easy to check that
max {Jwl, ||} S lw—nl, and [Im7new| S w7 (6.4)
Now we set
7' = (2,2), 7 = (&72), @ :=(£¢),8 = (§0)
Combining (6.1),(6.3) and (6.4), we obtain
1-0eZl~n—wf+(1~|Z)+1-10T)
+|tm &’ .7‘ 410 —ZPxn-wP+1-0 eZ|.  (65)
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On the one hand, we have |n— w|2 ~ |f—wl?. On the other hand, proceeding
as in the first case, we get |1 — "eZ’ | = [l— oz |. This, combined with
(6.5), shows that |1 — © e Z| ~ |1 — © o Z|, which completes the proof of
assertion (2).

We now come to the proof of assertion (3). Applying (6.2),(6.3) and
(6.4), we see easily that

7 / 2 ! _, 2 ’
D(®,2) ~ (1-1ZP)e-ZP+ 16/ - 1Z') + \Im o +16 -

Z'1 + I — wlt.

Since (1— |Z)|@ = 22 = (1= 1212 - [w*) (16" = Z'* + |n - wl?) , we
obtain

’ ! 7’ 7 ’ 2 ’
D(©,2) ~ [(1- Z' Pl -z + (16'2-12'1) + ’Im o

+10" = Z [+ In—wf? (1-121)
~D(©,2) +In-w? (1-12'7). (6.6)

On the one hand, we have |n—w|? ~ |[fj—@|> and 1—|Z |2 = 1—|Z’ |*. On the
other hand, proceeding as in the first case, we can show that D(@ A ) &

D (e Z ) . This, combined with (6.6), shows that D(©, Z) (@,Z)
and the proof of assertion (3) is thereby completed. _
Case 3: w = ®¥(w), 7 = ®¥(n) and |z — (| > Jg—L,IE——a > JCf;[
This case can be treated analogously as the previous case.
Case 4: |z — (| > Cl,|z~C| 22 and |w — 77|>l_l|w 77|>J_

We repeat the arguments used in the proof of the second case. More
precisely, proceeding as in the proof of (6.5) and (6.6), one can show that

1-0 eZ' |~ ¢~z +|1-£eF|D(O,Z)) ~ D(¢,2) + ¢ — 2> (1 - Ia(vlz)j
6.7

On the other hand, it is clear that |1 —£eZ| = |1 — e Z| and D(¢,x) =
D(¢, 7).

These equalities, combined with (6.5), (6.6) and (6.7), imply that |1 —
OeZ|~|1-6eZ|and D(6,Z)~ D ((:), 2) . The proof of the theorem is
complete in this last case. O
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7. Integral estimates

In this section, we prove, with the help of Theorem 5.6, two important
integral estimates that will be used repeatedly throughout the paper.

For every A > 0 and Z € By, consider the function

1
Ky z(©) := — ,
-0 ZI|N|+1+>\

for all © € By.

The first result of this section is the following
THEOREM 7.1.— For every a := (a1, az,a3,a4) € R* such that 0 <

az, a4 <2 and 0 < oy +az < 2n, 0 < as+ay < 2m, there exists a constant
C independant of Z € By such that

[ a0 (i) ()

N

a3 Oy

<

<n+1

n
NTm+1

dv (©)

C (1 _ |Z|2)—(>‘+22§+92_4) X

In order to state the second result of this section, we introduce some
more notations. Let © := (§,(,7n), Z := (z,2,w) and Z = (z ,z ,w ) be
three points of M. Define

[N|+2

, B;(©,2) B;(©,Z2
A®,Z,Z) = |<|2 T Z ( i(9,2)

16— 2™ 86— Z AN |’

where B;(©, Z) are the polynomials given in the statement of Theorem 3.1.

2|N|+4

THEOREM 7.2.— Let q be a real number such that 1 < g < SINT3-
Then we have the estimate

/A ,2,2) (| Ml )2@_3V(@)

Cat1lImm+1]

'Z _ Z'|2]N|+4—(2|N|+3)q’ if ¢ > 1;
|Z - Z'||log|Z - Z'||, if g=1.

To prove these theorems, we need some preparatory lemmas.
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LEMMA 7.3.— Given 0 < Ry < Rz, a <1 and 0 < 83,7, then

R1 Rl

dr dx
O/xa(x+R1)’8(a7+Rz)"’ <C(a’ﬁ’y)o/(w+R1)°‘+ﬁ(x+R2)7'

LEMMA 7.4.— Consider a = (oy,02,03,a4,05) € R such that
0<ay, as <2, and az < 2n, az < 2m. For a := (a;,az) € C2, we set

¢

Cn_al

Oy

n
ﬁm — a2

as

~ 1
I, 4(0) i = ——=
«a(®) ]2 [C[e2|]e

(£,¢,m) e M.

Then

/ I0.4(0)dV(6) < C(N,a)6?NI=(eataztes) it o) 4 0y + ag < 2|N|;
|8]<s

/ I0,4(©)dV(8) < C(N,a)s?NI=(eatartes) it o) 4+ ay + a3 > 2|N|.

5<|8|

Proof . — Consider the case a = (0,0). We use integration in polar
coordinates and then apply Lemma 7.3 four times to obtain

~ ~ 1 ~
< - < 2|N|—(a1+az+as)
@@ 5 [ @) <o e ,
1)< 0<|6|<s

which is the first estimate in the lemma. The second estimate can be proved
in the same way. Now we consider the general case a € C2. We write © =
((:)I,ﬁm) and observe that if |©| < ¢ and |, — a2] < 1%2[, then we have

‘(é/,t), < 34, for every t € C such that |t — ag| < J%"l In addition, it is

clear that
dt A dt dt AN dt
/ F—agler < @) / EE
[t—az|<log! [t—az|< 22!

On the other hand, if |7, — az2| > J%"—L, then |77,| < 3|Tm — az|. It follows
from these considerations that

(s 7} as

¢

Cn_al

1
18] ¢ 7]

i

Tm

/ I0.o(©)dV(8) < C(as) /

|8)<é |8]<35
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The same reasoning, applied to the variables E and Zn, shows that

/ L0 a(8)dV(®) < Clas, as) / Lao(8)dV (8).

|8]<s |8]<96

The proof of the first estimate is now complete. The second estimate can
be established in a similar way. O

Proof of Theorem 7.1.— Let Z= (Z,z,w) be a point of B|x| which is
comparable with Z. Consider the function

-

f{'/\z(é) = for all © = ({, Z, 77) € B|n|-

—(IN[+1+X°
Se Z‘

-
By Theorem 6.1(2) we have K z = I:’)\ - By Remark 5.2 we obtain |Z| =

IZ |. Therefore, in view of Theorem 5.6 we see that Theorem 7.1 will follow
from the estimate

/ K, ®) (1 + %) (1 + %’) Ei % av(®)
B "
C (1 - |Z;2)_(A+a_23+%) . (7.1)

Now we go back to the proof of Lemma 1.5 in the work of Bonaml-Charpentler
[?, p. 68-69]. We may assume without loss of generality that |w;| > m

and set

’

w := (Wey...,Wy) and A:=1- |Z|2
As in [?, p. 68], observe that

u _1_l@|27 v =Im(e Z)7 < and 7) = (527"'777771)

form a system of coordinates whose jacobian is bounded from above and
from below by positive constants uniformly in Z € By and that satisfies

|Z-8|< Using the following estimate (see [?, p. 68]) :
\/_
1-6eZ|~Atul+ ol +E-EP+[F-(F+1@ -7,
we see that in order to prove (7.1), it suffices to establish
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(HEJ) AL qudvdV (§)dV )dV (7 )
ANHFE S i nloe ol l -

2o s N\ INFIA
cim (A+ Tl + vl + 3 — €2+ 5= 2 + & -7 )

/°° dv av (&)
(L+l)t*s ) (1 +[F - gR)*e

< C(N,a,2) /

5

/<H%)~ &, v (@ / (1+|~,'jm"‘ v (7).

2 1+ 3 - <|2)n+ 7 [2)m— 1+2

To finish the proof we only need show that the last two integrals in the
last line are finite. But this will follow from the following

LEMMA 7.5.— For every real numbers o, 3,7 such that0 < v,0 < 8 < 2
and 0 < a+ B < 2n, there is a constant C := C(n, a, 3,7) such that

I (1 * 'z’)a i dv(() <C, forall z€C"
T ) AH =P ’ ’

where dV is the Lebesgue measure of C™.

Proof.— Dividing the domain of integration C™ of I into the three
subsets {|C| < J%l}, {|¢] > 2|#|} and {%l <€) < 2[z|}, we thus divide I
into three corresponding terms I, Is and I3. We now estimate each of these
terms. On the one hand, we have

J—r?;? |2|* 2n—a—p3
I < Ll R n—&
15 / 1 + |Z|2 n+"y (C) ~ (1 T |Z|2)n+7 |Z| < C,
{le1<5t}

where the second inequality holds by applying a variant of Lemma 7.4. On
the other hand,

1
ns | (1_+ICI2)"+7dV(O"’/ ToF T / PGP <
{I¢1>2]z} [¢]<1
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where the last inequality follows from applying twice a variant of Lemma
7.4. Finally,

1
[CalP
L5 / 5Tz - ey @V )

{H<icl<2lzl}

v (Q) av(¢)
s / T / PR

la—¢I<1 le=¢I>1

where the last inequality holds by applying twice a variant of Lemma 7.4
and an obvious change of variable. The lemma is now proved. O

In order to prove Theorem 7.2, we need the following

LEMMA 7.6.— There is a constant C = C(n) > 1 such that for all
points z,z € Hy,, there is a smooth curve v =1, ,» : [0,1] — H, satisfying

’

¥0) =2 ~(1)=2, W) <max{lz]]Z']}, W (@®)|<Clz-7].

Proof — Suppose without loss of generality that |z| > |z |. We set
=2 | & BR Then a little geometric argument shows that |z — 3| < |z — 2]

and |z — 2| < |z — Z|. Since the group SO(n 4+ 1,R) acts transitively on
OM,,, there exists a curve 7, : [0,1] — H, satisfying

MmO =2 mA) =2, M@= Mme)lI<cm)]: -4l

Define ( 1
. 1-2t)z+2t2, f0<t<35;
Y2(t) == { Mn@t-1), if3<t<L

It is easy to see that for every ¢ # %, the curve ~-(t) satisfies all the proper-
ties stated in the lemma. To conclude the proof, it suffices to approximate
in H,, the curve 2 by a smooth curve ~. a

Proof of Theorem 7.2.— We only give the proof for the case ¢ > 1. For
every points Z, Z € Hjy, consider the smooth curve

Y=zz T (Vz,z’v'yz,z”'yw,w’) :[0,1] = Hy =By x Hy x Hp,

where v, 7,7, are given by Lemma 7.6 and v, ./ (t) = (1 — )z +tz .
Then it follows from Lemma 7.6 that there is a constant C := C(N) such
that
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10) =2, v(1)=Z, W @) <C|Z-Z,
I¢] < max {|z], ]2 [}, In] < max {|w], |},
where © = (£,(,n) = v(¢). Set

E:= {@eHN:|@—Z|>2c;Z’—Z|}.

On the one hand, for © € E, using the definition of A and Theorem 3.1, we
check easily that

: Climl \*@
ho= [ a@z2) (———) av(e)
|Cn+1||77m+1|
Mn\E
2 2
(R O+ 8D g e
< nl ( 77' ) dV(@)
~ |© — Z|(2INI=1)q [Cnr1lMmt1l
lo-z|<2c|Z’ -Z|
, 2q ’ 2q
() (+5) gy ©)
+ .
|© — Z'|GINI=1)a (lCn+1I|nm+1l)

le—z'|<3C|Z’ -Z|

=Ii1 + I12.

To estimate I1; and I2, it suffices to apply part 2) of Theorem 5.6 with
i = 2 and Theorem 6.6 (1). This can be reduced to majorizing I1; and I;2
by S I.(©)dV (), where

Bl<c|z-2'|

Q= ((2IN| - 1)q72(q - 1)a2(q - 1)’2((1 - 1)’2((] - 1)) .

An application of Lemma 7.4 shows that the latter integral is bounded from
above by C|Z — Z |2INI+4=2INI+3)a_ Hence

L<|Z- ZI|2|N|+4—(21N|+3)‘]. (7.2)

On the other hand, if © € E, then for every 0 < ¢ < 1 and v := vz »,
we have that |y(t) — ©| ~ |© — Z|. Therefore, using the explicit formula of
B,(©, Z) and taking into account the properties of the curve v stated at the
beginning of the proof, the Mean Value Theorem, applied to the functions
of variable Z : I—G%’ shows that
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i+ J!_l)

A (@, Z, Z,> <\Z - Z |( |6 — Z|AN

7 ! 3
Lzl 4 Jw]
, (H a + |n|>
2~ 2 15— (7.3)

Proceeding exactly as in estimating I;; and I, we get

4 w 3q
o (t+i+ ) ( lin) )2“‘” e
|@ - ZP'qu |<n+1”"7m+1|
<|Z — Z PINIHA-QINI3)g (7.4)
Also,
1w
] /4 <1+ <] + |n|> ( €] )2(q—1) (©)
== |© — Z'|2INle ICn+1l1Mme+1]
<z - Z'|2|N|+4—(2|N|+3)Q_ (7.5)

Therefore, it follows from (7.3), (7.4) and (7.5) that

/ A©,Z2,2) (M)Z(q—n dv(e)
E

|Cn+1||77m+1|
< Iy + Inp S |Z = Z/ PINIH4-@INIH3)g

This, combined with estimate (7.2), completes the proof of the
theorem. O

8. Lipschitz estimates on the complex manifold My
Let u be a function in C*(My ). For every Z € My, define

(gradyg,,w) (Z) = sup |(f 0 7) (0)],

where the supremum is taken over all smooth curves v : [0, 1] — My such
that v(0) = Z and |y ()] < 1.
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We begin this section with the following Hardy-Littlewood type lemma.

LEMMA 8.1.— For every 0 < a < 1, there exists a constant C =
C(N, a) with the following property: Suppose u € C1(My) and K is some
finite constant such that

(gradyg u) (Z2) < K (1-1|Z)*™"  for all Z € My.

Then |u(Z) —uw(Z')| < CK|Z — Z'|* for all Z,Z € My.

Proof . — First we make the following remark :

 Write Z = gx,z,w), Z =@&,7,w), X = (z,2), Y = w and X =
(z 52 ), Y :=w . Suppose without loss of generality that |Z'| < |Z|. Then
X P+ P<IXP+YP <1,

o If | X'| < |X|, by noticing that [(X/,Y)| < |Z|, then we write
[u(2) = u(Z))] = [u(X,Y) — u(X,Y)
<u(X,Y) —u(X,Y)|+ u(X,Y) —u(X,Y)|
o If |Y'| <|Y|, by noticing that |(X,Y")| < |Z|, then we write
[u(2) ~ w(Z)] = [u(X,Y) - u(X,Y)|
<X, Y) —w(X, V)| + (X, Y) —u(X,Y)].
Llet Z, Z’/| be two points of My such that 0 < |Z'| < |Z| < 1 and set
6:=|Z-27|.

First assume that 0 < 1—|Z|. Applying the previous remark three times,
we only need prove the lemma in one of the following three cases:

Dz=z,2=2; Ne=z,w=uw; ) z=z,w=w.

Suppose for example we are in the first case z = T,z = Z. In this case,
take the curve v = v, 5. According to the hypothesis of the lemma and
the properties of the curve v given in the proof of Theorem 7.2, we have

(gradyg, u) (©) < K6*7',  for all © € ([0, 1]).
Therefore,
lu(Z) - w(Z)| < CK§* Y2z -Z|=CK|Z - Z |
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The remaining cases 1 — |Z| < <1—|Z'| and 1 —|Z'| < & can be checked
using the same argument as in Lemma 6.4.8 of [?]. a

In order to state the main result of this section, we consider, for 1 < p < o0,
the space

LP(My) : { (f |£( e>|p'“—“}'r77%dwe>> —nanN,,,<oo}-

|N|+2

If f:= Z fjd@ is a (0, 1)-form defined in a neighborhood of My in By,
j=1
we set
|N|+2
£ llbtn, = D 15l (8.1)
=1

Recall that the norm || ||p, ., Was defined by formula (2.8).
Next, for every 0 < o < 8 < 1 and for X = My or My, we define
Pap(X):=qf Iflacco+ sup lfovllasqom

vec2@®y)
VEX

I fllr. sx) < o0

We can say informally that I', g(X) is the trace of the non-isotropic Lipchitz
space ' 3(Bn) (see Definition 1.1 in Krantz [?]) on the manifold X.

THEOREM 8.2. — Suppose that u € C*(My) and consider a (0,1)-form

INl+2
f = { Z fkdek, if N 7é (0$2v2)a

k=1 _

f1dCy + f2d(y + fadmy + fadi,, if N =(0,2,2);

with coefficients in C(My) such that Oy, u = flm, on Mn. Define Tif on
OMpy as follows:

IN|+2

(Tuf)(2) = / >

[(1 ~0eZ)P(©,2) + (1 - 0])Q(®, 2)
(1-0e2)N(1-6e2)2

v(®)

f’“(@)m 22

- 224 -



Optimal Lipschitz estimates for the 8 equation on a class of convex domains

e for N = (0,2,2),

2 4
1-0eZ)t =
(T1)(2) = / >y 828 T ee)pue.2)
My j=1lk=1 |1— .ZI
dv(e)
I¢12Im]?”
where Py, Q. and Py, Q1 are the polynomials given by Theorems 3.3 and
3.6.

+(1 = 181*)Qjx (8, 2)fx(8) 7313

Then the definition of T1 f can be extended to My by setting

(T )(2) = J1(Z) + J2(2), (8.2)
where A8, 2) do(®)
J1(2) m(ﬁf)(@)w,
aMN
1 Iz av (o)
Jo(2) = N TVl Bi(©,2)fx(©) | T
: /N |Z — 62N (,; R ) HE

and the operator T1f satisfies
(%) Omy (T1f) = flmy-

Moreover, for every p > 0, we set (as in the statement of Theorem 1.1) :

1_ |N|+3 . .
a=a(Nyp) =] 3 g7 ' FN#022) andp>2(N]|+3)
1-¢, if N=1(0,2,2) and p > 12.

Then there ezists a constant C:= C(N,p) such that
(i)
T1 floMn€ Ta20(OMN) and || 71 flomy lIr, 20 (0Ma)SCll My 0 if P < 005
T flomye Ty 1(0M) and | T3 flomy Iy ;om) SCIFllmy oo 3 = 005
(iit) To f € Aa(Mn) and || T1f||a, My) < Cllf My, -

Proof.— We only give the proof in the case N # (0,2,2) and p < co.
The first remaining case N = (0,2,2) can be proved in exactly the same
way by applying Theorem 3.6 instead of Theorem 3.3. The second remaining
case p = oo follows essentially along the same lines as in our previous work
[?] basing on the work of Greiner-Stein [?].
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We first introduce two new integral operators 15 and T3 :

|1VI+2

@@ = [ Z D(% ZZ S 1-0e )P0, 2)
My
+(1= [B)2(, 2)}1u(€) T Clz‘ﬁl,
(T3£)(Z)
- [ 3 [ et e

for all Z € By.
Applying Theorem 3.3 to the function u gives that

R(®,Z) do(©)
—Ze©) ¢I2n|?’

(T2f)(2) = w(Z) - / for all Z € My. (8.3)

uw(©)
IN|
My ( :

Moreover, we note that
(Tyf)(Z) = (T2f)(Z) = (T3£)(Z), forall Ze dMy.  (8.4)

Arguing as in the proof of Lemma 3.5 in [?] and using Theorems 5.6, 6.1
and 7.1, one can show that

lim [ |(T2f)(8) = (T2f)(r®)|do(©) = 0.
"= 8MN

Therefore, in view of Remark 3.2, we can apply Theorem 3.1 to the function
T, f. Next observe that (8.2) is just the Martinelli-Bochner formula. Hence
by virtue of (8.3), the hypothesis and the fact that R(©, Z) is holomorphic
in the variable Z, we obtain

Tlf = T2fIMN and EMN(Tlf) = EMN’U, = flMN (8.5)

This completes the proof of assertion (i). In view of (8.4), assertion (ii) will
follow from the following lemma.

LEMMA 8.3.—

1T f My lIre savn) < CllfliMy, i p<oo;
ITsflan iy ;0an) < CllfImy,o.  if p= oo
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Proof .— Using the properties of the polynomials Py (0, Z) and Qx(©, Z)
in Theorem 3.3(ii), we see that

|N|+2
r ©-2 EAYA
(Erd BAD)IS 2 / eez™ (1+5) (14 5 J@ravee)

|N|+2

Z /|1—e Z|" <1+ :ED(H 'I Il)fk(@)dv(e)'

Since |© — Z| < 21/|1 -0 o—Z—l, this implies by Holder’s inequality that
|(grad T3f)(Z)| is bounded from above by

1 g ]
Clflhay| [ e (”E) (”W
N

1
29 q

’ dV<e>> :

¢

Cn+1

29
P ’ 17
Nm+1

where q verifies = + % = 1. Now applying Theorem 7.1 yields

1
p

_1_|N|+3
)R

|(grad T3.£)(2)| < C| flmy,, (1 = 1Z] (8.6)

so that by the classical Hardy-Littlewood lemma for the euclidean ball By
we see that

1 |N|+3
| P

(T3 £)(Z) — (T2 < Clif vy, 12 — 2|2 , forall Z,Z €Buy.

Therefore, choosing Z "= 0, we obtain

IT5f e @r) <TI0+ Cliflimy,, < Cllfliny,,- (8.7)

For every u € C*(By), set

(grad’v) (Z) == sup (wo7) (0)]-
YECI(BnN): ¥(0)=Z

By the proof Lemma 4.8 in [?], we see that (grad‘|1—© e Z|) (Z) <C|6-Z|.
Therefore, a straightforward calculation shows that
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IN|I+-2

(grad’ T3£)(2) <Z /Il _lz—zz||'N'+2 <1+ l'—é’)(u%)fk( )dV (©)

|]§2/ 1-© Z|'N‘+1 <l :CD (Hl_lEIl) f(©)dV(©)-

Hence, arguing as in the proof of (8.6), we see that

(grad! Tsf) (2) < Cllflwy, A — 12D 7 . (8.8)

Combining (8.6), (8.7) and (8.8), the lemma follows from Lemma 4.7
in [?]. O

To prove assertion (iii), we need the following

LEMMA 8.4. —

/l_N+3
| »

|J1(Z) — J(Z) < C\fllmy, | Z - Z'|2 . foral Z,Z €My.

Proof .— Observe that the polynomial A(©, Z) satisfies

1| g 4O 2)
S22 |77 % 1o — z AN
JEd] lw| lw| 1 JEd|
(1+ |<|) (” Inl) N I (” lnl) L (1+ |<|)
N |@ Zl2|N| |@ _ Z|2|N| 1 le _ Zl2|N|_1 *

In addition, if we set u = 1 in Theorem 3.1, then we see that

A©,2) do(©) _
|Z — AN I¢[2nf2

OM N
Setting Z := rZ', Z' € &My, this implies that

AT @) - mn@)| .

grad , ————
Zlo -z

(gradur, 1) (2)< /

SMn
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Combining (8.4) and Lemma 8.3, we obtain

|(@.)(©) - (1)) < Cllflhay, 10 = 2 |5,

Hence,
(gradyg, J1) (2) < Cl|f vy,

2] v
(1 + 'I?F) (1 + Tr?l') 3 LNits
/ 0 - 732 450)

o —rz' P

My

|é| ( ["7’| >
, N|+
/ |C Z |1 l sdo(e)

16— TZ/|2|N|—1
BMN

T%T(1+JIZT|[) 7,1
+/ 0—Z |~

Ie _ TZ’|2|N|—1 @
My

We shall establish in Proposition 9.4 below that the latter three integrals

IN|+3
are dominated by C (1 — |Z|)‘%‘ »
it follows that

. Taking for granted Proposition 9.4,

|N|+3
P

—i_
(gradyy J1) (2) < Cllflmy, (1~ 1272
Finally, applying Lemma 8.1 to this gives the desired conclusion. |

We now complete the proof of Theorem 8.2. By Hélder’s inequality and
Theorem 7.2, we have

_J_I_ ’
‘,]2 Z) - Ja(Z )‘ Cllflhy, |2 = Z 55, forall 2,7 e My.
This, combined with Lemma 8.4 gives that
’ 11 IN|+3 ’
(@N@) — @NE)| < Cllf Iy, 12-2'13752, torall 2,7 € My.

Arguing as in the proof of (8.7), one can show that

”Tlf”LW(MN) C“f”MNp

This proves assertion (iii). d
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9. A Stokes type theorem on the manifold My and applications
The main result of this section is the following Stokes type theorem:
THEOREM 9.1.— Consider for every function v € C* (MN) and every

real numbers A < 2n — 1 and p < 2m — 1, the function u given by u(©) :=
ﬁ(?n—)lu, for ©® € M. Then there is a constant C := C(N) such that

/ udo

Mn
SC/ (I€]I(gradeuw)(©)] + [¢]|(grad,u)(©)] + |nll(grad,u)(©)]

My
+|u(e)|)dV(@).

REMARK 9.2.— We do not know whether it is possible to establish a
theorem of reduction of estimates from My to 9By, similar to Theorem
5.6. To overcome this, we use Theorem 9.1 to estimate difficult integrals
taken over OMy by simpler ones taken over My and then apply Theorem
5.6. We have already encountered this type of integral estimates in the proof
of Lemma 8.4.

Proof .— Set d€ :=d&; N ... ANd§ and
1 (- 1) ny

an(¢) = n+1 Ao ANdG A NGt
1 m+1 k—1 o
am(n) = m+lz dm A ANdgg Ao A dDmg

By Proposition 2.1 in [?] and Proposition 2.1 above, we see that

dVi(§) = Cdg A d,

dva(¢) = CICIZ%(C) Aan@ly » V(1) = Clnl?am(n) A am(@)|g_
dV(©) = dV(&) A dVn(C) A dVin(n). 9.1)
Next, put
wi(€) = d& A AN NdE, (1<)
we(€) = dO A ANAEA .. Adlry1,  (1<E<n+1)
wp(n) = dm/\.../\gn\p/\.../\dnmﬂ, (1<p<m+1)
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Finally, we define w;x(¢),@;x(¢) (1 < jok < m+ 1) and wye(n), @pg(n)
(1 < p,g < m+1) in just the same way as wy;(2),Wjx(2) in [?, p. 507
508).

Consider the mapping g :]0, +oo[xCIV+2 —, CINI+2 given by
g(t®) :=t\.
Using (9.1) and proceeding as in the proof of Lemma 2.1 in [?], we see that
(g7dV) (t,8) = *NI=1dt A [Ie A dVo(¢) A dVia () + Ic A dVI(E) A dVin(n)
+ I, AdVI(€) A dV,(C)] + 2NNV (B), (9.2)

where

l

I o= O3 (~1)P7 (5,48 Awp(®) + Gpup(€) A dE)

p=1
n+1 itk mtl
(—1)7+F _ —1)Pte
o= oy G0, ad =i Y S, ).
i SCk pa=1 P

Now set

w(©) := I AdV, () AdVin(n) + I¢ AdVi(E) AdVi (1) + Iy AdVi(§) AdV,(C).
(9.3)

Since g is a diffeomorphism from ]0, +00[xOMy — Hy, it follows from
(9.2) and (9.3) that

/ w(©)dV (6) = / £2IN1-1 / w(tO)w(®),  for all u € Co(Hy),
]H[N 0 3MN
so that by Lemma 2.3, we obtain do = Cw|gp, . Therefore, since by the

hypothesis A < 2n—1, u < 2m—1, |u(©)| < mrllﬁl—“ for all © € My, the ho-

mogeneity properties of the differential form w(©) and the same arguments
as in the proof of (2.12), (2.13) and (2.17) of Proposition 2.5 imply that

/ udo = lir% Uw. (9.4)
T
8Mn SM..
Stokes theorem gives that
/ Uw = /du/\w+/udw. (9.5)
oM, M., M,
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We shall estimate | [ du A w|. Let Z be a point of M,.. Choose j and k with
M,
1<j7<n+1, 1<k <m+1 so that in a sufficiently small neighborhood

Z/{ = U(Z) 11’1 MT, we haVe
|< | LEL::ICP' l‘:l | ;kl 2 me x‘ ;q! (E 6)
J ) 5 z 2 q#k ’ ’

By (9.3) and (9.5), we obtain

/du/\w < /du/\lg/\an(C)/\de(n) + /du/\Ig/\dVl(ﬁ)/\de(n)
u u

+ / du A I, AdVi(€) A dVa(C)] - (9.7)
174

We shall estimate for example | [ du A Ic A dVi(€) A de(n)‘ . It should be

u
noted that the following identity is implicit in the proof of Lemma 2.1 of

7] :

1 \ _ (1T

<9 < .
(n+1)? < Cng Wik (C)l ) for1<jk<n+1

H.

Therefore, I¢|y, is equal to

o 168 -

e

G

'n.

J=l  \p—1 _
— 1S E e (0) A an(@)
p=1

nt+l . \p _ j=1 /_ 1\n+q—-17 _
e S S C"wjp«)mn(m|<|22ﬂz—ﬁwqj<<>mn<o
g=1

p=j+1 G J

ntl (_1yn+q7 _
e S (—i)z—ﬁqu«)mn(c).

q=j+1 J

Combining the identity o, (¢) = (n + )&= w,,(g) 1<p<n+1, (see
formula (2.6) in [?]) and formula (9.1), a stralghtforward calculation gives
that
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/du A Ig A d‘/}(é) A de(n)
u

- / deu N Ig AdVi(€) A dVin ()

n+1
o] £, (Bores g o

p=1,p#j J

ou

Zz
—(=1)"*P~122 | gV (@).
57 (-1 C) ©)

J
By virtue of (9.6), we majorize easily the latter integral and obtain

[ duntc ndvi(©) Advm(a)| < V) [ Kiiradcud @)V (@),
u u

Hence, in view of (9.7), it follows that

/du/\w

u

<CW) / (€]l (eradeu)(©)] + [¢]l (radcu)(©)]
U
+nl|(grad,u)(©)|dV ().

On the other hand, we can prove in just the same way that

/udw <C’(N)u/]u|dV.

u

These two estimates, combined with (9.4) and (9.5), complete the
proof. O

We now present two applications of Theorem 9.1.

PROPOSITION 9.3. — Let A\, a1, a2 be real numbers such that 0 < A <1,
and 0 < a1 < 2n, 0 < az < 2m. Then there erists a constant C =
C(N, A, a1,a2) such that for every Z € By,

1 E‘l)m (1 'wl) o(0) < C (1— |Z?)1
BN{ 1= Zeg (1+77) (1) @@ <c-1zn
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Proof .— Applying Theorem 9.1 gives that

— @||NH‘1 . <1+ :?Z:)“l <1+ |iw||>a2 do(©)

ir

< (1 IZI)

where the latter inequality follows from Theorem 7.1. O

The following proposition completes the missing point in the proof of
Lemma 8.4 on page 51.

PROPOSITION 9.4. — Suppose that 0 < A < 1. Then there is a constant
C = C(N, \) such that for every 0 <r <1 and Z € OMy,

(1+f) (1+4)
L I<l [n] oA NP S
no= o LT 1o = ZPde@) <c =),
OMnN
L (14 M)
. <] ( [n] A A-1
I = / o ANETO -~ 2Phe®) o=

Proof .— We only give the proof of the estimate for I5. Starting from
the elementary estimate |© —rZ| ~ (1 —r) + |© — Z| for all © € dMy, we
see that

1+
s / - r|>c I+<|e _@a”"l 0= 21 ao(®)

(1)
| [a-r)+le -z 110 - 2PaV(e)

1+ﬂ)( le) -
: /[(1—r)+[®—z|]2lNl1|C_Z||9—Z| av(e),

A

- 234 -



Optimal Lipschitz estimates for the 9 equation on a class of convex domains

where the last two estimates follow respectively from Theorem 9.1 and the
very elementary inequality I%I' < (1 + léll) K—iz[ Hence, by part 3) of The-

orem 5.6, the latter integral is dominated by Cfg, where

I:= 6 -7 - av ().

s [A-n+16-2]" -7

Dividing the domain of integration of 1:; into two regions
El = {66B2,|N| : ,é—gl <1—7"}

and _ o
E2 I={@€B2’|N|Z ]@—Zl?l—’f‘},

we thus break fg into two corresponding terms I~21 and ng. We then apply
Lemma 7.4 to estimate each of these terms and obtain

= 1 |é—2|’\—1 ~ A—1
In < / A @) < @ -mr
A—nav1 ) -3
E;
~ e — Z|A-1 _
T S [© 2] V(®) < (1 -,

J 16~ ZPINI-1|¢ - 7]
2

In summary, we have

L Sh=In+I <C1 -,

which completes the proof of the proposition. O

10. Proof of the main results

In this section we prove Theorems 1.1 and 1.2. For this purpose, we first
establish some preparatory results.

Consider the holomorphic mapping Fy : My — Qp \ {0} which maps
every Z = (z,2,w) = (X1, &1, 21+ ++» Zntly Wi, - - -y Wry1) , €lement of
Mpy to

1 Iy

Fn(Z) =27 = ey =y 21y e ey By Wy e ey Wiy | -
&) (G oo ommonsvm)
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Recall that dV(é) is the canonical volume form of CIVI. It follows from
formula (5.2) in [?] and formula (9.1) that

1Cn+1|2|77m+1|2

R4V (€)=CFy (av(8)), for & € My and & = Fy(®).

(10.1)
PROPOSITION 10.1.— Consider a 8-closed (0,1)-form f of class C* de-

fined in a neighborhood of Qn. Then the solution Ti(Fy f) given by Theorem
8.2 satisfies

(Tu(F% ) (2) = (TW(F3 ) (Z),
for all Z,Z' € My such that Fy(Z) = Fx(Z').

Proof .— Suppose that f € Cj,(rQy) for some r > 1. Since rQy is

pseudoconvex, there exists a function u € C*(Qy) such that du = f in Qp.
Therefore, it follows from (8.3) and (8.5) that for every Z € My,

(TL(F3 1)) (2) = (wo FN)(2) — [ 20D (uo Fn)(©) s
My (1 Zc@)

Using this and the explicit formula of R(©,Z), we see that the proof
follows. O

THEOREM 10.2.— For every 0 < A < %, there is a constant
C .= C(N, )\) such that ||u!|rA’2>\(MN) < CHUHA)\(aMN)

for all functions u in C(My) which are holomorphic in My .

Proof .— Consider the holomorphic function U € H(By) defined by

U(Z) = / R6.2) )% forall Z € By. (10.2)

=z P
N

Applying Theorem 3.3 to the function u yields
U(Z)=w(Z), for all Z € My.
This shows that the theorem will follow from the estimate

IUlIrs 2n@w) < Cliwllas@my)- (10.3)

To prove this, observe by (10.2) and formula (2) in [?, Section 6.4.4] that
the radial derivative (RU) of U is given by
(RU)(Z) =
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/

(CIEP + CI¢1> + Cnl?) ((Inf? + w e m)z @ C + (I¢]? + z @ Hw o 7j)

OM N ( —Ze @)INI
N (ClEP + CI¢I2+Clnl?) (S + ze )(Inl* + weT)Z e © do(®)
’ (1-Ze®)"H ] O e

Using this and arguing as in the proof of Theorem 6.4.9 of [?], it can be
shown that

(RO < Clulsoran [ T .%“N,H_A (1+ED)(1+ 2 oo,
M N

Therefore, by Proposition 9.3,

A-1
[(RU)(Z)| < Cllulla,omyy 1 =127, for all Z € By

so that by Theorem 6.4.10 of [?], inequality (10.3) follows and the proof is
now complete. a

THEOREM 10.3.— For every (0,1)-form f and real numbers p, a satis-
fying the hypothesis of Theorem 8.2, we have

T1f € Ta2a(Mny) and |T1flIr, .oMy) < CllfliMy, if P < oo,
Tif €Ty 1(My) and [T1fliry ;i) < Clifllvyo, i 2= o0,

where the constant C := C(N,p).
Proof.— Let 5 <7 <1 and set
rMy ={ZeMy: |Z|<r} and rOMy :={rZ, Z € OMy}.

Now we define the norm || f|,m, , in the same way as || f|lm,, given in
(8.1) by substituting the domain of integration My by rMy. It is obvious

that || fll;my, < IflMy,,-

Applying Theorem 8.2 to the complex manifold rMpy gives an integral
operator T, that satisfies the following properties:

Omy (Tf)=f onrMy, (10.4)
and
(TrF)lroviy € La2a(rdMy) and |[(T; f)lromy lIra 2o roMy) < Cll My, -
(10.5)
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Setting
w(Z) = () (Z) - (T-1)(2), for all Z € My, (10.6)

Theorem 8.2 and (10.4) imply that u is holomorphic on 7M. On the
other hand, by Theorem 8.2(ii) and (10.5), (10.6), we get

lulromy las rominy < (T H)lromiy laa romn) + 1(T15)lroMin | Aa (roMin)
<

Cllf lIny,, -
Applying Theorem 10.2 to this estimate yields

||u|7‘aMN”Fa,2°((1'3MN) < C”f”MN,pa
so that by (10.5), we get T1f = u+ T,.f € [y 24(r0My) and
“(Tlf)l'raMN“I"a,za(raMN) < C"f”MN,p‘

Since all admissible curves v € C?(Bx) such that v C My lie on some
manifold 7OMy, the proof of the theorem is now complete. O

Proof of Theorem 1.1.— Consider first the case where f is a O-closed
(0,1)-form of class C! defined in a neighborhood of Qy. The general case
will be treated later.

In view of (8.1) and (10.1), it can be checked that

1 fllean) = C(N, D)IFN flimy,,- (10.7)
By Proposition 10.1, we can define the d-solving operator T on Qy as
(Tf)(Z) = (Tu(F§ 1)) (2), (10.8)

for every Z € Qy and Z € My such that Fy(Z) = Z.

Combining Proposition 10.1, Theorem 10.3 and equalities (10.7) and
(10.8), we see that the operator T satisfies

A(Tf) f  on Qu; (10.9)
IFN (Tl oy < Cllfllzen)- (10.10)

Let Z = (z,%z,w) and 7 = (5’,?,{5’) be two elements of Qn. We shall
show that there exists a constant C' := C(N,p) such that

(TF)Z) - (THZ)| < Clf el Z - 2| (10.11)
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Using the remark made at the beginning of the proof of Lemma 8.1, we
only need prove (10.11) in one of the following three cases:

~ o~

’

Ni=a,7=2; Ni=a,F=uw; NF=2 =,
Consider for example the case 7 = z , W = w'. In this case, estimate
(10.11) becomes

(TG, 7 @) — (T, 2, B)| < Cllfllzem|Z — 7%

which can be proved by using (10.10) and arguing as in the proof of case 2
in Section 5 of [?].

It remains to treat the general case. If merely f € LP(Qy), we can reg-
ularize f by convolution with a C§® function of sufficiently small support.
Then the same limiting argument as in [?, p. 361-362] shows that the con-
clusion of the theorem holds also for such f. This completes the proof of
the theorem. ]

Proof of Theorem 1.2 .— First suppose that p < co. We break the proof
into four cases. In the course of the proof, we shall see that the general case
can be reduced to one of these four cases. In the sequel, we write for every
ZeCW, Z=(z,z,w) € C' xC"* x C™.

Case 1: n>2and m > 2.

For every real number Ay such that % < Ao %, consider two real
1

<
numbers A, 1 > 0 related by 2u% = 1 (3 — A) = 3 — Ao. Let ¢ € C such that
le| €1, and consider the following elements of Qy :

1

Zrne = |0,...,0,\ 4\ puc,0,...,0,=,%,0,...,0 | ;

’ N — ~—— 27 27

l n—3 m—2
. 14

Z)\Oc = 0,...,0,/\0,2/\0,/10,0,...,0,—,-—,0,.. ,0
’ N e’ S’ 27 2 N e

l n—3 m=—2

Now we put f := dug, where the function v is given by

|23)?

(-3 +5 -+

for all Z € Qn.

uO(Z) = %+|Np+3,
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Then we have

23dZ3
f(2):= - . y — T
Z 3 )
(=% +% -3+

Suppose that u is a solution of the equation du = f on Q. Since u — ug is
holomorphic on Qxn and uo(Zx,0) = uo(Zx,,0) = 0, by Cauchy formula we
have

2m
1 _ |ul?
7 /u(ZA’em)dO —u(Zxp) = (_l__)\)—%"'_NF,
0 3
2w
1 _ |ul?
2 [ W)= ullsn) = B
0 2 0

If u € Ap+e(2N) for some € > 0, then the difference between the two left
hand sides is O(JA — Ag|**¢). On the other hand, the difference between the
two right sides is greater than C|A — Ag|®. Letting ¢ tend to %, we reach a
contradiction. Hence u & Aq+tc(QnN)-

It now remains to check that f € LP~<(Qy) for all ¢ > 0. Applying
(10.7) and using the local coordinates ®* and ®* of Theorem 4.1 with
z = (%, £,0,...,0) € H, and w := (%, %,0,...,0) € Hp, it follows that for
N—— N’
n—1 m—1
every € 2 0,

” . N |22|P~¢|23]?|24]?
f ppfe :C'F f p—e ~ / dV(Z,
WA @) = IR S, e

un]B|N|

where U is a sufficiently small neighborhood of the point (1,0,...,0) €
CI¥l and dV(Z) is the Lebesgue measure of C/V!. We now explain briefly
how the estimate = in the latter line could be obtained. Indeed, using the
local coordinates % and ®%, the function |(,+1| (vesp. |7m+1]) appearing
in the || - ||My p norm in (8.1) becomes the function |z3| (resp. |z4|) defined
in CIVI.

By integration in polar coordinates, it is easy to reduce the estimate of
the latter integral to that of the following one

dzNdZ
Il _ Z|2_e1 Np|+3 *

2z€C:|1—z|<1

From this integral, we see that f € LP~¢(Qy) for all € > 0. This completes
the proof in the first case. Furthermore, we remark that the method pre-
sented here can be applied to all domains Qn where N = (n1,...,nm,)
satisfies the condition n,, > 2.
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Case 2: 1 >1and n,m > 2.

Choose Ag, A and u as in case 1. Let ¢ € C such that |¢| < 1 and consider
the following points of Qp:

. 1 ¢
Zye = ue, 0,...,0,,¢A,0,...,0,=,=,0,...,0 | ;
e —’ e 27 2
-1 n—2 m—2
. 1 2
Z)\O’c = ,LLC,O,...,0,)\0,2/\0,0,...,0,—,—,0,.. ,0
N e’ et 27 2 et
-1 n—2 m—2

We set f := Oug, where the function ug is given by

|z |2

ug(Z) := for all Z € Qn.

N[+3 )
P

: 141

(1-3+5%-%+4%)

N=

The rest of the proof follows along the same lines as that of case 1.
Finally, we remark that the method used in this second case works also for
all domains Qn where N := (ni,...,n,,) satisfies the condition 7; =1 and
nm > 1.

Case 3: [=0andn=m=2.

For every Ao such that ;1/5 <A < %, let A and p be two positive real
numbers satisfying u? = % (715 — )\) = % —Xo- Let ¢ € C such that || < 1
and consider the following elements of Qx

Zxc = (pc,0,A,4X), and Zx,c = (uc, 0, X, o) .
We set f := Qug, where the function uo is defined by

u(Z) = 2l

, for all Z = (21, 22, w1, w2) € QN

=

+

s

( _wy o dwg
2

%)

Proceeding as in the proof of case 1, it can be checked that if a function
u satisfies Ou = f then u € Ap1(Qy), Ve > 0. It now remains to establish
that f € LP~¢(Qy) for all € > 0.

We first apply (10.7), then use the local coordinates ®* in Theorem 4.1

with w = ( =, %, 0) € H, and conclude that for every € > 0,

S
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|22|P~¢ |23
6

11— 2| =(3+3)

190 = CIER T, ~ [ dva(2).

UNB,4

Here U is a sufficiently small neighborhood of the point (1,0, 0,0) in C* and
B4 (resp. dV4(Z)) is the euclidean unit ball (resp. the Lebesgue measure) of
C4.

By integration in polar coordinates, the estimate of the latter integral is
reduced to that of the integral

dz NdZ

[
z€C:|1—z|<1

From this integral we conclude that f € LP~¢(Qy). The proof of the theo-
rem is complete in this third case. It should be noted that this method is

applicable to all domains Qn where N := (ny,...,n,,) satisfies the condi-
tionny =---=n, =2.

Case4:l=m=0and n=2.

In this case a(NV,p) = % — %. Let z be a strongly convex point of the

boundary dQy. It then follows from the work of Krantz in [?, Section 6]
that there exists a (0,1)-form f € C*(U) that satisfies the conclusion of
the theorem if Qp is replaced by U. Here U/ is an open strongly convex
neighborhood of z in Qx U {z}. In view of [?], we see easily that the form f
can be extended to a form of class C*°(Qy) satisfying the conclusion of the
theorem. The proof is thus complete in this last case.

This argument also shows that the Lipschitz (3 + €)-estimates (e > 0)
do not hold for the case p = co. This completes the proof of Theorem 1.2. []

Finally, we conclude this paper by some remarks and open problems.

1. It seems to 1_)_e of some interest to establish the (L?, L) type optimal
regularity for the J-equation on Q.

2. We conjecture that the Lipschitz %—regularity corresponding to the
case p = oo in Theorem 1.1 is optimal. More precisely, this regularity can
not be improved to Lipschitz %

3. Does there exist a natural way to define the Nevanlinna class on the
non-smooth domains Qx and find a related Blaschke type condition that
characterizes the zeroes of the functions of this class?
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