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Optimal Lipschitz estimates for the ~ equation
on a class of convex domains(*)

VIÊT ANH NGUYÊN (1) AND EL HASSAN YOUSSFI (2)

RÉSUMÉ. - Dans ce travail, nous considérons l’équation de Cauchy-
Riemann 8u = f dans une nouvelle classe de domaines convexes de Cn.
Nous prouvons que si la donnée f est dans l’espace LP, alors il existe une
solution u dans un espace de Lipschitz AQ, où le nombre cx &#x3E; 0 donné

explicitement en fonction de p est optimal.

ABSTRACT. - In this paper, we consider the Cauchy-Riemann equation
au = f in a new class of convex domains in Cn. We prove that under LP
data, we can choose a solution in the Lipschitz space 039B03B1, where a is an
optimal positive number given explicitly in terms of p.
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1. Introduction and statement of the main results

For every m-uplet of positive integers N := (n1,...,nm), we consider
the following domain:

where z 2022 w := 03A3 zjwj and 1 z := 0, for all elements z := (z1,..., Zk)

and w := (w1,...,wk) of rk.

The euclidean ball of radius v"2 in cC"2 and the minimal ball in Cn1

correspond respectively to the cases n1 = ··· = nm = 1 and m = 1. The
domains ON were introduced by the second author in [?] where he com-
puted their Bergman and SzegÕ kernels. We should point out that these
domains are convex but they are neither strictly pseudoconvex nor piece-
wisely smooth except for the case of the euclidean balls.

Optimal estimates for the ~-equation were considered for the category
of smooth domains by several authors. In [?], Krantz obtained the opti-
mal Lipschitz and LP estimates for smooth strongly pseudoconvex domains.
Later in [?], Chen, Krantz and Ma established that this kind of regularity
holds for smooth complex ellipsoids. The general case of smooth convex do-
mains of finite type was considered only recently in the works of Cumenge
([?],[?]), Diederich-Fischer-Fornaess [?], Fischer [?] and Hefer [?]. The aim
of the present paper is to study the optimal Lipschitz regularity for the
~-equation in the class of convex domains ON.
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To state the main results, we fix some notations and suppose without
loss of generality that n1  ...  nm. Since the case of the euclidean balls
is well-known, we shall assume that N ~ (1,...,1) and let 1 denote the

m

smallest nonnegative integer such that ni+, &#x3E; 1. We set INI := E nj.
j=l

The Lipschitz spaces we use herein are the classical ones and those given
for 0  03B1  1, by

The first main result is the following. It generalizes our previous result
[?]:

THEOREM 1.1. - Suppose that N := (ni, .... nm) is as above and the
domain ON is given by (1.1). Let

Then for every a-closed (0,1)-form f with coefficients in LP(ç2N), there
exists a function u defined on QN that satisfies au = f (in the distribution
sense) and the estimate

The following result asserts that the regularity in Theorem 1.1 is sharp.

THEOREM 1.2. 2013 Let N, ON, p, and a := a(N, p) be as in the statement
of Theorem 1.1. Then there exists a 8-closed (0, 1)-form f with coefficients
in C’ (Ç2N) that satisfies

and if u is a function satisfying au = f, then u ~ 039B03B1+~ (03A9N), bE &#x3E; 0.

These results have been announced in [ ?].
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Theorem 1.2 implies that if N ~ (2, ... , 2) and p  2(|N| + m - l + 1)
or if N = (2,..., 2) and p  6rrt, then we can not solve the 8-equations on
ON under LP data with the Lipschitz regularity given above.

We observe that for N = (2), the domain 03A9(2) is linearly biholomorphic
to the Reinhardt triangle {(z1,z2) E (C2 : |z1| + |z2|  1}. The reduction of
our Theorems 1.1 and 1.2 to this case, compared with the results obtained
for domains of finite type ([?], [?], [?], [?], ,[?],[?]), shows that domain 03A9(2) has
the same gain of smoothness for the ~-equation as strictly pseudoconvex
smooth domains in (C2 . Our results show also that there exist smooth do-
mains of finite type for which the gain of smoothness for the 8-equation is
worse than that of the singular domains ON.

The paper is organised as follows.

In Section 2 we introduce the main tools and prove preliminary results.
The objects used are a complex manifold HN, its intersection MN with the
euclidean unit ball and a proper holomorphic mapping FN relating the a-
equation on MN to that on ON. We establish in this section Proposition 2.2
which gives an integral representation formula of Berndtsson type for the
complex manifold MN. From this result we derive in Section 3 a formula
of Martinelli-Bochner type (Theorem 3.1) and two formulas of Cauchy type
(Theorems 3.2 and 3.3) for the complex manifold MN. These integral repre-
sentations play a peculiar role in the construction of the 8-solving operators
on MN and ON.

In Section 4 we give appropriate local coordinates on the complex man-
ifold IHIN which permit us to prove Theorem 5.1 in Section 5. The latter
result will be called Theorem of reduction of estimates since from broad

outlines, it reduces certain integral estimates on MN to analogous integrals,
but simpler, which are taken on some balls of C|N|. This result, combined
with Section 6, allows us to establish integral estimates in Section 7.

An operator solution Ti of the ~-equation on MN is constructed in Sec-
tion 8 and related Lipschitz estimates are established there. The formula
for Tl is explicit and contains an integral term taken over the boundary
aMN of MN . In order to handle this term, we prove a sort of Stokes theo-
rem in Section 9 which allows us to transform these integral estimates into
analogous ones taken over MN and then apply the Theorem of reduction of
estimates.

Theorem 1.1 is proved in Section 10. By means of the operator Tl and the

proper holomorphic mapping FN, we define an operator T, solution of the
~-equation on the domain ON and transfer the Lipschitz regularity for Tl
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to that of the operator T. Finally, we prove Theorem 1.2 by giving concrete
examples to show the sharpness of the results of Theorem 1.1. Then we
conclude the paper by some remarks and open questions.

Throughout the paper, the letter C denotes a finite constant that is

not necessarily the same at each occurence and that depends on N and
eventually other parameters.

2. The complex manifolds HN and MN

In this section we fix the notations and prove some preliminary results.
For the simplicity of calculations we only consider, without loss of generality,
the case of the domain ON with N = (1, ... ,1, n, m), where l, m, n are

positive integers and n, m &#x3E; 1. In this case we have IN I = 1 + n + m and

ON can be written in the form

Consider the complex manifold IHIN given by

Let BN be the euclidean open unit ball in C|N|+2 and ~BN its boundary.
We set MN := HN ~ BN and ~MN := IHIN n 8JaN. We first point out that
IHIN and ~BN are transverse while the variety {Z = (x, z, w) E Cl x Cn+1 x
Cm+1 : z. z = w e w = 01 does not meet ~BN transversally. Denote by
dV, dVl, dVn and dvm the respective canonical measures on the complex
manifolds HN, Cl, IHIn and IHh.,.t . These measures are related by the following

PROPOSITION 2.1. - For all compactly supported continuous functions
f on HN, we have

Proof. - Observe that
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In this formula the constant C is equal to 1 (l+n+m)! (i 2)l+n+m. Therefore,
a direct computing shows that

This completes the proof.

Let IE := {t = (t1, t2, t3) ~]0, 1[3: t21 + t22 + t23  1} and 8JE := (t E
]0, 1 [3: t21 + t2 + t23 = 1} its boundary. Then the mapping F : IE x ~Bl x
8Mn x ~Mm ~ MN given by F(t, x, z, w) := tZ = (t1x, t2z, t3w), where
t = (tl, t2, t3) and Z = (x, z, w), is a diffeomorphism. Moreover, it maps
8JE x ~Bl x 8Mn x ~Mm onto 8MN.

Let dan be the unique probability measure, SO(n + 1, :rae)-invariant on
8Mn. Similarly, let dam be the unique probability measure, SO(m + 1?R)-
invariant on ~Em. Finally, let do be the surface measure on ~Bl. Combining
Proposition 2.1 of [?] and Lemma 2.1 of [ ?], we obtain

COROLLARY 2.2. 2013 For all compactly supported continuous functions f
on Hn, we have

There are obviously analogous integral formulas in polar coordinates
with Mm and Bl in place of Hn. We now define a natural measure d03C3 on

8hE N by setting d03C3 := (F* ) (do 039B dai 039B dan A dam) , where do is the surface
measure of the unit sphere alE. Using this, Corollary 2.2 and integration in
polar coordinates, one can establish the following

LEMMA 2.3. - For all compactly supported continuous functions f on
IHIN, we have

In what follows we shall establish some integral formulas on MN. To
do so, we shall approximate MN by appropriate regular varieties which are
complete intersections. Then we apply to each of these varieties the results
of Berndtsson in [?].
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For 0  r  1, let Dr be the domain of CINI+2 defined by

Note that the boundary of Dr is piecewisely smooth. We put My. := HN ~Dr.
Let

be a C1 function that satisfies

uniformly for O E Dr and for Z in any compact subset of Dr. We shall use
the same symbol s and set

In the sequel, we shall use simultaneously the following notations for 8 G
C|N|+2:

We next set

For every E &#x3E; 0, consider the differential form of bidegree (|N|+2,|N|+1)

where QE is the differential form of bidegree (l, 0) given by

Denote by d0 the canonical holomorphic form of C|N|+2 given by
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LEMMA 2.4. - Suppose that 0  r  1.

1) If u E C1(Dr) and Z E Mr, then

2) If u E C(Dr), then

3) If U E C(~BN) and (..V is the canonical volume form of 8JBN, then

Proof. - Part 1) follows from formulas (23) and (26) in the proof of
Theorem 1 in [ ?]. Also, part 2) is an immediate consequence of identity (25)
in [?].

To prove part 3), we may assume without loss of generality that the
support of u is contained in a sufficiently small open neighborhood u C
C|N|+2 of a point Oo E ~MN. Using local coordinates and Lelong theory
[?], we see that there exists a smooth (2|N| - 1)-volume form d03BC defined on
Ll n 8hE N such that

for all u E C0(03BC). Therefore, part 3) is equivalent to the identity dp = Cda.

Let 03C8 be a function of class C~0([0, 1]) supported in 2 1] such that
i

03C122|N|-103C8(03C1)=1. Consider the Cô extension of u given by
o

On the one hand, using (2.4), we have that



- 187 -

On the other hand, by part 2) and Lemma 2.3, we see that

Thus dp = C(N)du and thereby completes the proof.

Next, set

In view of (2.2), (2.3) and the equality which precedes Lemma 4 in [?], we
see that Ks satisfies the identity

For every 1  k  |N| + 2, denote by wk(0398) the (0, N + l)-form

We can write Ks in the form

where hk are the component functions of Ks with respect to the forms

WI (8) n d0, ... , WINI+2(8) A d0.

Let MN be the closure of MN in EN and denote by Ck(MN), k ~ N,
the space of all Ck functions defined in a neighborhood of MN in B N. If
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f := E fjd8j is a (0, l)-form with coefficients in C(MN), let f|MN denote
j=l

the pull-back of f under the canonical injection of MN in this neighborhood.
Set

Let 9m, be the a-operator on MN. We end this section by the following

PROPOSITION 2.5. - Consider a section s satisfying (2. 1), a function

u E Ci (MN) and a (0, 1)-form f := L fkd8k with coefficients in C(MN)

that satisfy ~MN u = FIMN on MN. Let hk be the functions defined in (2.7).
Then for Z E MN,

Proof . - For every r ~]0, 1[ such that Z E Mr, consider a CI extension
of UIMN (which is also denoted by u) on Dr that satisfies au = f on Mr.
Suppose without loss of generality that f = au on Dr. Parts 1) and 2) of
Lemma 2.4, combined with (2.6) and (2.7), imply that u(z) = CI1r + CI2,
where

The proof is a consequence of the following two equalities
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In order to prove these, fix a point Z E MN. By (2.1), (2.5) and (2.7),
there is a constant C such that

We deduce easily from (2.11) and the hypothesis ~f~MN,~  oo that

where the equality follows from Corollary 2.2. This proves (2.9).

Next, we prove (2.10). Appealing to Corollary 2.2, Lemma 2.3, (2.11)
and the fact that the function u is bounded, we see that

This, combined with part 3) of Lemma 2.4, implies that

from which it follows that (2.10) is a consequent of

Next, we prove equality (2.13). We first make use of the following remark
related to homogeneity properties of certain differential forms. Indeed, let
03B1, 03B2 &#x3E; 0 and write the complex manifold MN as a complete intersection of
BN and the two varieties given by the equations 03B1203B6202203B6 = 0 and 03B22~2022~ = 0.
Applying Berndtsson’s formulas to these two equations and observing that
(2.13) corresponds to the particular case a = /3 = 1, then we obtain
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for all 0  r  1.

We write,9D, B 8Ja N as a union of the two smooth manifolds

Let du,j be the canonical volume form on the manifold Mrj, j = 1, 2.
Applying equality (3) in Proposition 16.4.4 of Rudin [?] yields that on MJ’,

Choosing a function u and a section s appropriately and applying Lelong
theory as in the proof of (2.4), it follows from (2.14) and (2.15) that on MJB
0  r  1, j ~ {1,2}, we have

in the distribution sense, where dprj is a C°° differential form of maximal
degree on the manifold Mrj n IHIN . In view of (2.11) and (2.16), equality
(2.13) will follow from the following equalities

We prove (2.17) for j = 1 which suffices to complete the proof. To do so,
consider, for every 03B1, 03B2 &#x3E; 0, the mapping Fa,/3 given by:
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We remark immediately that we have the following property of homogene-
ity :

for 0  r, s 1 2 and 0 = (ç, (, 1J) E Cl x 8Mn x Mm. This, combined with
equality (2.16), implies that

Take ro := 1 2. Since the differential form d03BCro,1 is in C~(Mro1), we see that

Using (2.18) and (2.19), it is easy to show that

This implies (2.17) and thus completes the proof. D

3. Integral formulas on the manifold MN

In this section we establish integral formulas of Martinelli-Bochner type
(Theorem 3.1) and those of Cauchy type (Theorems 3.3 and 3.6). These
formulas will allow us to construct the 8-solving operators.

THEOREM 3.1. 2013 Suppose that u E C1(MN) and f:= L fkd8k is a

(0, 1) -form with coefficients in C(MN) such that 8MNU = f|MN. Then for
every Z E MN,
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where

and Bk are polynomials given by the following formulas:

Proof. - Consider the Martinelli-Bochner section Sb(Z, 8) := 8 - Z.
In order to prove the theorem, we apply Proposition 2.5 to the section sb .
Using formulas (2.5), (2.7) and arguing as in the proof of Theorem 2.4 of
[?], we compute explicitly the functions hk associated to sb and obtain the
desired formula. D

Remark 3.2. - If u e C1(MN) is bounded, then Proposition 2.5 and
Theorem 3.1 hold for the dilated functions ur(Z) := u(rZ), 0  r  1. This

shows that Theorem 3.1 remains true if we only assume that u E C1(MN)
is bounded and

Following Charpentier [?] let

In what follows, gradz f denotes the gradient of a differentiable function f
at a point Z.
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THEOREM 3.3. - There exist polynomials R(8, Z) and Pk(0398, Z),
Qk(8, Z) for 1  k  |N| -f- 2, that satisfy the following properties:

Proof . From the proof of Proposition 2.5 we may assume without
loss of generality that there is a C 1 extension of u|MN, denoted again by u,
such that 8u = f on BN. Let Ko be the kernel associated to the section
so by formula (2.5). By virtue of (2.6), when we integrate uKi over ~BN,
all terms which contain ~|0398|2 vanish. In addition we have 1 - 1812 = 0 and
D(8, Z) = |1 - Z 2022 0398|2 so that
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INI+2 
_

Rewriting the differential form in braces in the form E hk(0398, Z)Wk(e) 1B
de and applying part 3) of Lemma 2.4, we obtain

A straightforward calculation of the functions hk(0398), Z) shows that

satisfies assertion (i) of the theorem.

Write the kernel Ko in the form (2.7) as Ko = E hk(0398, Z)03C9k(0398)039Bd0398.
k=l

Then we have

To finish the proof of the theorem, it suffices to prove the following lemma:

LEMMA 3.4. - The functions hk in the formula (3.2) can be rewritten
in the form

where Pk and Qk are some polynomials that satisfy assertion (ii) of the
theorem.
End of the proof of Theorem 3.3.- Suppose that the lemma above is
proved. Applying Proposition 2.5 and using (3.1)-(3.3), the theorem
follows. ~

Proof of Lemma 3.4 . .2013 By virtue of (2.5) and (3.2), we can write I =
Il + 12, where
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and

A straightforward computation shows that

Hence the functions hk associated with I1 are of the form (3.3).

To simplify notations we set

and we set for every form w and every positive integer k,
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Then a simple calculation gives that

To conclude the proof of Lemma 3.4, it suffices to prove the following
lemma :

LEMMA 3.5. - For every 1  k  6, the differential form

can be expressed as the product of the canonical volume form de A de and
a function of the form

where Pj, Qj are some polynomials satisfying assertion (ii) of Theorem 3.3.

End of the proof of Lemma 3.4 . 2013 Suppose that Lemma 3.5 is proved. We
deduce from the definition of 12, 12k and (3.5) that

Therefore Lemma 3.4 follows from Lemma 3.5. D

Proof of Lemma 3.5 . .2013 We break the proof into 6 cases according to
the integer k, 1  k  6.
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Case 1: JI = 03C91-203BE 039B 03C9n03B6 039B 03C9m~ . In this case a direct computation shows that

Since

we see easily that 121 satisfies the conclusion of the lemma.
Case 2: J2 = 03C9l03BE 039Bn n-2 039B 03C9m~. In this case we can rewrite 122 in the form

In view of the proof of Lemma 2.7 in [?], the differential form in braces can
be expressed as the product of d03B6 n e and a function of the form

where Sj, Tj are some polynomials such that
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Combining what we have proved so far, we obtain that 122 satisfies the
conclusion of the lemma.

Case 3: J3 = 03C9l03BE 039B 03C9n03B6 A 03C9m-2~. This case can be treated in the same way as
the previous case.

Case 4: J4 = 03C9l-103BE A 03C9n-103B6 A 03C9m~. Then we have

By splitting E fjd0398j into a sum of the two parts E fj dgj and E fk+ld03B6k,

we also split 124 into two corresponding parts as 124 = I241 + 1242. A little
calculation gives that

_ 

1 
_

Similarly, since 81çl2 = E çsdçs, we obtain
s=1
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It can be checked that I241, I242 and 124 satisfy the conclusion of the lemma.

Case 5: J5 = 03C9l03BE 039B n- 1 1B 03C9m-1~. Observe that

Rewriting 7 fjd8j as the sum of two differential forms E fk+ld03B6k and

03A3 fj+l+n+1d~j, we thus divide 125 into two corresponding terms: 125 =

1251 + I252. A straightforward computation shows that
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We obtain in exactly the same way an explicit expression for 1252. Finally, we
deduce from these expressions that I251, 1252 and I25 satisfy the conclusion
of the lemma.

Case 6: J6 = 03C9l-103BE 039B 03C9n03B6 039B 03C9m-1~. This last case can be treated in the same
way as Case 4. The proof of Lemma 3.5 is therefore complete. D

We end this section with the study of the particular case N = (2,2). In
this case we write for Z, O E BN :

To establish optimal Lipschitz estimates for the domain SZ(2,2), we need
a more precise formulation of the Cauchy type formula given in Theorem
3.3.

THEOREM 3.6. - Let N := (2, 2). There are polynomials R(8, Z) and
Pjk(8, Z), Qjk(8, Z), 1  j  2, 1  k  4, that satisfy the following
properties: 
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(iii) Let u E C1(MN) and f := f1d03B61 + f2dÇ,2 + f3df~1 + f4dfj2 is a (0,1)-
form with coefficients in C(MN) that satisfy ~MNu = f|MN, then for every
Z E MN,

Proof. - We return to the arguments used in the proof of Theorem
3.3. By the hypothesis on f and (3.2), we have that

I := au A Ko = (f1H1 + f2H2 + f3H3 + f4H4)d0398 A d0398), (3.7)
with Hl := hl, H2 := h2, H3 := h4 and H4 := h5. To complete the proof, it
suffices to prove the following

LEMMA 3.7. - The functions Hk in formula (3.7) can be expressed in
the form

where Pjk and Qjk are some polynomials satisfying assertion (ii) of the
theorem.

End of the proof of Theorem 3.6. - Suppose that the lemma is proved.
Using the arguments that precede Lemma 3.4 in the proof of Theorem 3.3
and applying Proposition 2.5, the theorem follows. D

Proof of Lemma 3.7. - Following the proof of Lemma 3.4, we write
i = il + 12. By virtue of (3.4), the functions Hk associated to I1 (similarly
to those associated to I in (3.7)) are in the form (3.8) with j = 2.

Since l = 0 and we = 0, formula (3.5) becomes
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Therefore, to conclude the proof of Lemma 3.7, it suffices to prove the

following

LEMMA 3.8. - For every 1  k  3, the differential form

can be expressed as the product of the canonical volume form de 039B de and
a function of the form

where Plt, Qlt are some polynomials satisfying assertion (ii) of the theorem.

End of the proof of Lemma 3.7. 2013 Suppose that Lemma 3.8 is proved.
In view of (3.9) and the expression of 12 given at the beginning of the proof
of Lemma 3.4, we see that

Therefore, Lemma 3.7 follows from Lemma 3.8. ~

Proof of Lemma 3.8 . 2013 We first remark that the case k = 1 corresponds
to the case 5 in the proof of Lemma 3.5. Hence, by virtue of identity (3.6),
I21 satisfies the conclusion of the lemma. Consider the case k = 2 which
corresponds to case 2 in the proof of Lemma 3.5. Then we have
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A simple calculation gives that

where the sum is taken over all permutations (r, s, t) of {1,2,3} such that
r  s and where e(r, s, t) is the sign of such permutations. It follows from
this that 122 satisfies the conclusion of the lemma. Similarly, we have the
same conclusion for 123, which completes the proof. D

4. Local coordinate systems
on the complex manifolds Hn and Hm

In the next theorem, we construct an open neighborhood Un of Hn in
Cn+1, and for every z E Un, a coordinate chart 03A6z defined on a coordinate

patch u(z) of Hn that possess some interesting properties of homogeneity.
The same construction will be applied to the complex manifold JHIm. These
local coordinate systems will allow us in the next section to reduce certain
types of integral estimates over MN to simpler integral estimates over CINI.

THEOREM 4.1. There are an open neighborhood Un of JHIn in Cn+1
and constants Ci, C2, C3 &#x3E; 1 that satisfy the following properties :

1) If z E Cn+1/un then dist(z, Hn) &#x3E; Ci with the understanding that
dist(., .) is the euclidean distance. 

2) If Z E Un and if the open set u(z) := {03B6 E Hn : |03B6 - z|  |z| C1} is non-

empty, then there exists a diffeomorphism 03A6z mapping u(z) into the open
neighborhood U(z) := { ~ Cn : |-|  || C2} of a point z E en which is
exactly 03A6z(z) in case z E lliIn such that
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where d Vn() denotes the Lebesgue measure on cn and 03A6z*f is the pushfor-
ward of f under the diffeomorphism 03A6z.

Remark 4.2. - We construct in the same way an open neighborhood
Um of £Ilm in Cm+1, and for every w E um, a coordinate chart 03A6w defined on
a coordinate patch Ll (w) of Hm that possess the same properties as Un, 03A6z
and U(z).

To prove Theorem 4.1, we need the following

LEMMA 4.3.2013 There exists a constant Co &#x3E; 0 such that

max |IM(zjzk)| &#x3E; Co, for all z := (zi, .... Zn+l) C ~Mn. Here Im03BB

denotes the imaginary part of A E C.

Proof. 2013 Since the function z ~ max |Im(zjzk)| is continuous on
the compact set ~Mn, it attains its minimum at a point z. Therefore it
suffices to prove that there exist 1  j  k  n + 1 such that Im(zjzk) ~ 0.
Suppose the contrary. Since |z| = 1, there is an k such that Zk =1= 0. Hence
for every 1  j  n + 1, we have zj = 03BBjzk with 03BBj E R, from which it

follows that 0 = (03A3 Àl z2k . Thus zk = 0 and we obtain a contradiction.
This completes the proof of the lemma. D

We now turn to the proof of Theorem 4.1.

Proof of Theorem 4.1 . - The construction of the open neighborhood
Un, the coordinate patches U(z) and the coordinate charts 03A6z: u(z) ~ (Cn
for every z E Un, will be done within two steps. First, by Lemma 4.3, we
divide ~Mn into n(n+1) 2 compact sets Ejk, j  k, where Ejk := tz’E 8Mn :
|Im(zjzk)|  Co}.

Fix a sufficiently small number ô &#x3E; 0. The exact value of 8 will be clear
in the course of the proof. Let z be a point of Cn+1.
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Step 1: dist(z, ~Mn)  6.

According to the discussion above, suppose without loss of generality
that there exist j  k and  E Ejk such that |z - |  6. Define the

diffeomorphism 03A6z as follows : 03A6z := (03A6z1 , ... , 03A6zn), where

We can choose the functions (l, l =1= j, as the n-local coordinate functions
of Hn at the point . Substituting 03B6j by i E (l in the expression of (Dz,

straightforward computations show that the real Jacobian of 03A6z at the point
03B6 corresponding to this local coordinate system is equal to .
This quantity is uniformly bounded from above and from below by some
positive constants as ( E Hn and z are very near to î e Ejk. Therefore,
when C2 is sufficiently large, there exists a sufficiently small ô so that for
every  E Ejk and every z such that Iz - 21  6, 03A6z is a diffeomorphism
from {03B6 E M. : |03B6 - zl  261 to { ~ Cn : K- 03A6z(z)|  1 2C2} ·

Taking Ci &#x3E; 2s and observing that |03A6z(z)| = |z| ~ 1, it follows from
the previous discussion that 03A6z is a diffeomorphism from u(z) onto an open
neighborhood u() of the point z := 03A6z(z) E Cn.

To finish part 2) of the theorem, it remains to prove assertions (i)-(iv).

Assertions (i) and (ii) can be checked direcly. In particular, the estimate
|03A6z|(03B6)|  1(1 follows from the Cauchy-Schwarz inequality.

We prove now assertion (iii). Consider two cases according to k:
Case k  n + 1. In this case, in view of the definition of 03A6z, we have
03B6n+1 = 03A6zn(03B6). This, combined with (ii), implies assertion (iii).
Case k = n + 1. If 03B6 ~ U(z), then when C1 is sufficiently large, we have
1 &#x3E; |03B6n+1| ~ |n+1|  Co. Hence assertion (iii) is almost obvious.

It now remains to prove assertion (iv). By Proposition 2.1 in [?], for
03B6 ~ u(z) we have the following identity:

Since 2 &#x3E; |03B6| &#x3E; |03B6j| ~ |j|  Co, it follows that dVn(03B6) ~ (03A6z)* (dVn())
for ( = 03A6z «) . This implies assertion (iv).
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Step 2: General case.

Set Un := trz : r &#x3E; 0 and dist (z, ~Mn)  03B4}.

If z e Lln, then according to the definition above, there exist î e 8hSn
and r &#x3E; 0 such that |rz - |  03B4. Therefore, the construction given in Step
1 can then be applied to the point rz. Hence, we can define

Using the homogeneous invariance of the complex manifold IHIn with respect
to the dilations, we conclude that for every z E un, the function 03A6z just
defined satisfies part 2) of the theorem. To finish the proof of the theorem, it
only remains to check part 1). Let z e un. Then there exists a point 2 E Hn
such that Iz - 21 = dist(z,Hn). Since z e Lln, we deduce that |z - |  03B4||.
Hence 

- 

Thus, if we choose Ci &#x3E; 1 03B4 + 1, then part 1) is satisfied. This completes the
proof of the theorem. ~

5. Reduction of estimates from MN to BIN,

This section proves the Theorem of reduction of estimates. We use the
notations and the constants introduced in the previous section. In order to
state this theorem, we need some more notations and definitions.

We denote by B|N| the euclidean unit ball of CINI. We often use the
following notations for O, Z E C|N|:

Let dV(8) be the Lebesgue measure on C|N|. For every i ~ {1)2}, note
Bi,|N| the euclidean ball of C|N| centered at the origin with radius i. Thus
JaINI = B1,|N|.

We shall define various notions of comparability.

DEFINITION 5.1.2013 Consider two points Z - (x, z, w) E BN and Z -
(x, , w) E C|N|. Z is said to be comparable with Z if the following conditions
are true:



- 207 -

Remark 5.2. - It should be noted that by this definition and Theorem
4.1 (ii), we have Ixl = Ixl, Izl = lîl, lwl = ||. Hence Z E BINI.

DEFINITION 5.3. - Let i E {1, 2} and fix two comparable points Z -
(x, z, w) ~ BN and Z - (x, z, w) E CINI.

We say that 03B6 E Cl is i-comparable with 03BE E Cl if 03BE = 03BE.

We say that ( E Hn is i-comparable with ( E en if the following condi-
tions are true :

if moreover i = 1, then we have  |1|.

We can define in the same way the notion of i-comparability between
~ E Hm and  E cm upon substituting n by m and 03A6z by 03A603C9.

Finally, two points 0398 ~ (03BE, 03B6, ~) Mv and 0398 ~ (, , ) E C|N| are

said to be i-comparable if g (resp. ( andq) is i-comparable with g (resp. 03B6
and ).

Remark 5.4. - We deduce easily from this definition and Theorem 4.1
(ii) that if 8 E MN is i-comparable with e ~ C|N|, then 0398 ~ Bi,|N|.

DEFINITION 5.5. - Let i E {1, 21 and fix two comparable points Z E BN
and Z E B|N|. Consider two non-negative measurable functions K, K defined
respectively on MN and Bi,|N|.

2022 We write K  GR (respectively, k  CK ) at (Z, Z) for a positive
constant C if for all points E) E MN i-comparable with E) E ii,INI’

e We write K ~ K at (Z, Z) if there exists C &#x3E; 0 such that K  C 
C2 K.
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Now we are in a position to state the main theorem of this section.

THEOREM 5.6. - Let i ~ {1,2} and fix two comparable points Z E
JBN and Z E JBINI. Let C be a positive constant. Consider non-negative
measurable functions K, L defined on MN and K, L defined on Bi|N| such
that 

For every a := (al, a2, a3, a4) such that 0  ai  2n, 0  a2  2m and

0  a3, a4  2, we set

Then there exists a constant C4 that depends only on N, et and C, Ci, C2, C3,
(in particular this constant is independant of Z and Z), such that
1)

2) for ô &#x3E; 0,

Proof . - We shall only prove part 3). The two other assertions can be
shown in exactly the same way. Firstly, we extend the domain of definition
of the functions K, L, K, L by setting
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By the hypothesis on L and L, for every 8 E MN such that 03B41  L(0398)  62
and for every à E Bi,|N| i-comparable with 8, we have

For every 03BE,  E Bi and ~,  E Hm, consider the following integrals

’ where dvn (Ç) denotes the Lebesgue measure on en.

Next, consider the following integrals

where dVm() is the Lebesgue measure on Cm.

We outline the main ideas of the proof. Suppose that 03BE (resp. q) is i-

comparable with e (resp. ffl. Using the hypothesis that K  CK, we shall
prove that

Next, we shall establish in the same way as in the proof of (5.2) the following
estimate : (note that 03BE = )
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Finally, an application of Fubini’s theorem gives that

and

Part 3) now follows by combining (5.3) with the latter two estimates. It now
remains to prove inequality (5.2).

To do so, divide the domain of integration {03B6 E Hn : 03B41 C  L(03BE, (, q) 
C621 of R(03BE, ~) into the three subsets :

Also, divide the domain of integration { E Cn : 03B41 C  L (, , )  Cô2 )
of i(, if) into three corresponding subsets :

Estimate (5.2) will follow by combining three integral estimates of the form
J fi C4 j with some appropriate integrands and j = 1, 2, 3. Therefore,

we may assume without loss of generality that Ej ~ 0, j = 1, 2, 3.

Combining Theorem 4.1, definition 5.3 and estimate (5.1), we see that

(03BE, 03B6, q) is i-comparable with (Î, 03A6z(03B6) ) ~ E1, for every 03B6 ~ El. Hence, the
hypothesis K  CK implies that K (03BE, (, ~)  Ck (î, 03A6z(03B6),  . Moreover,
the fact that 03B6 E El gives that |03B6| &#x3E; 1 - 1 C1) 14 Therefore, applying
Theorem 4.1 (iii)-(iv) gives that



- 211 -

Next, we prove the estimate of the form  C4  . Set I := {|03B6| : 03B6 ~ E2}.
E2 Î2

We remark that tct I  1 2 for every 03B6 E E2. Therefore, by integration in
polar coordinates (Corollary 2.2), we obtain

where the latter inequality holds by an application of Lemma 4.1 in [?] with
a3  2.

On account of definition 5.3 and estimate (5.1), (03BE, (, q) is i-comparable
with (, , ) E E2 , for every ( E E2 and  C Ê2 such that !(! = |03B6|. This,
combined with the hypothesis K  CK, implies that

The right side of the latter estimate is majorized by C4 J’ K (f. Ç, if) dVn().
E2

In summary, we have that

It now remains to prove the estimate of the form   C4 f . Consider
E3 Es

two cases according to the value of i:
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Case i = 1. We set R := sup03B6~E3 1(1. In view of definition 5.3, Remark 5.2
and estimate (5.1), we see that (, 03B6, ~) is 1-comparable with (f. , ) E E3
for every ( E E3 and  ~ Cn such that | - |  z C2 and ||  |03B6|. Therefore,
using integration in polar coordinates, we obtain

where on the third line, dan () is the surface measure of the euclidean unit
sphere 8Bn of Cn.

Case i = 2. We see easily that

Moreover, (03BE, 03B6, ~) is 2-comparable with (, (, 17) for every ( E E3 and

 E E3. On the other hand, by Remark 5.2, we have 1 z | = 1 z-]. Thus,
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Now estimate (5.2) follows from (5.4)-(5.7). This completes the proof of
part 3). D

To conclude this section, we give without proof some properties of the
relations "  " and " " -

PROPOSITION 5.7. - Let Z, Z and K, L, K, L be as in the statement of
Theorems 5.6. Suppose that K  K and L  L at (Z, Z). Then K+L 
 + L and Ka L/3 ;S Ka L(3, for every a, 03B2  0.

_ If in addition  ~ K and L ~ L then K + L ~ K + L and K03B1L03B2 ~
Ka L/3, for every a, j3 E R.

6. Integral kernels

The pairs of integral kernels K, K satisfying the condition K ~ K that
we shall use are studied here. Recall the function D introduced by Charp-
entier [?] :

D(8, Z) := !l - 8. 712 _ (1 - |0398|2)(1 - IZI2), forall e, Z E Ck and k ~ N.

THEOREM 6.1. - Let i ~ {1,2} and fix two comparable points Z E BN
and Z ~ B|N|. Consider two functions K, K defined respectively on MN and
Bi,|N| that correspond to one of the following three cases :

Then K ~  at (Z,,2).

Proof . - Using the definitions 5.1, 5.3 and 5.5, it can be easily checked
that 

Applying Proposition 5.7 to the latter two relations, assertion (1) follows.

To prove assertions (2) and (3), we need the following estimates of
Bonami-Charpentier [?, p. 67] :
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and

for every O, Z E Bk, where Bk is as usual the euclidean ball of Ck.

Write Z == (x, z, w) E BN and Z - (x, z, w) E B|N|. Let 8 == (03BE, 03B6, ~) E

MN be 1-comparable with O - (, , ) ~ JBINI. We break the proof into
four cases.

Case 1:  = 03A6z(z) , = 03A6z(03B6) and  = 03A603C9(w), =03A6w(~).
In this case by Theorem 4.1 (i)-(ii), we have that

We deduce easily from the first two equalities of (6.3) that |1 - 8 . 71 =

| 1 - 0398 2022 Z| , which proves assertion (2).

On the other hand, we have the following identity:

By assertion (1), we have |0398 - Z|2 ~ | - Zp. This, combined with (6.3),
implies that D(8, Z) ~ D (, z) , which completes the proof of assertion
(3).

Case 2:  = 03A6z(z), 03B6 = 03A6z(03B6) and |03C9 -~|  Ci C2.
In this case it is easy to check that

Now we set

Combining (6.1),(6.3) and (6.4), we obtain
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On the one hand, we have |~-03C9|2~|-|2. On the other hand, proceeding
as in the first case, we get |1 - 0398’ 2022 Z’ = |1 2013 O’ · Î; 1. This, combined with
(6.5), shows that |1 - 0398 2022 | ~ |1 -  2022 |, which completes the proof of
assertion (2).

We now come to the proof of assertion (3). Applying (6.2),(6.3) and
(6.4), we see easily that

obtain

On the one hand, we have |~-03C9|2 ~ |-|2 and 1-|Z’|2 = 1-|’|2. On the
other hand, proceeding as in the first case, we can show that D( e’ , Z’ ) ~
D (’, ’) . This, combined with (6.6), shows that D(8, Z) ~ D (, )
and the proof of assertion (3) is thereby completed.
Case 3: W = 03A603C9(03C9),  = 03A603C9(~) and Ci | - 03B6|  C2

This case can be treated analogously as the previous case.
Case 4: |z - 03B6|  |z| C1, | - 03B6|  |z| C2 and |03C9 - ~|  ci  C2. 

We repeat the arguments used in the proof of the second case. More
precisely, proceeding as in the proof of (6.5) and (6.6), one can show that

On the other hand, it is clear that Il - ç. xl = |1 -  2022 | and D(03BE, x) =
D(, ).

These equalities, combined with (6.5), (6.6) and (6.7), imply that il -
03982022Z| ~ 11 - e. Z and D (e, Z) ~ D (ê, Î) . The proof of the theorem is
complete in this last case. D
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7. Intégral estimates

In this section, we prove, with the help of Theorem 5.6, two important
integral estimates that will be used repeatedly throughout the paper.

For every À &#x3E; 0 and Z E JB N, consider the function

The first result of this section is the following

THEOREM 7.1.2013 For every a := (ai, a2, a3, a4) E :rae4 such that 0 
a3, a4  2 and 0  al + a3  2n, 0  a2 + a4  2m, there exists a constant
C independant of Z E BN such that

In order to state the second result of this section, we introduce some
more notations. Let e := (03BE, (, 77), Z := (x, z, w) and Z/ := (x’, z’, w’) be
three points of MN. Define

where Bj(0398, Z) are the polynomials given in the statement of Theorem 3.1.

THEOREM 7.2. - Let q be a real number such that 1  q  2|N| +4 2|N|+3.
Then we have the estimate

To prove these theorems, we need some preparatory lemmas.
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LEMMA 7.3. - Given 0  R1  R2, a  1 and 0  /3, -y, then

LEMMA 7.4. Consider cx := (al,a2,a3,a4,a5) E R5 such that

0:(a4, a5  2, and a2  2n, a3  2rrz. For a := (a,, a2) E C2, we set

Then

Proof. - Consider the case a = (o, 0). We use integration in polar
coordinates and then apply Lemma 7.3 four times to obtain

which is the first estimate in the lemma. The second estimate can be proved
in the same way. Now we consider the général case a E C2. We write 6 =

(’, m) and observe that if le, (  J and 11lm - a2|  |22| 2, then we have

|(’,t)|  303B4, for every t ~ C such that It - a2 |  |a2| 2. In addition, it is
clear that

On the other hand, if |m - a2|  |a2| 2 , then |m|  3|m - a2j . It follows
from these considerations that
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The same reasoning, applied to the variables ( and (n, shows that

The proof of the first estimate is now complete. The second estimate can
be established in a similar way. D

Proof of Theorem 7.1 . 2013 Let Z - (x, z, w) be a point of Bj Nj which is
comparable with Z. Consider the function

By Theorem 6.1(2) we have KA, z xr K).,z. By Remark 5.2 we obtain |Z| =
|Z|. Therefore, in view of Theorem 5.6 we see that Theorem 7.1 will follow
from the estimate

Now we go back to the proof of Lemma 1.5 in the work of Bonami-Charpentier
[?, p. 68-69]. We may assume without loss of generality that |1|  1
and set

As in [?, p. 68], observe that

form a system of coordinates whose jacobian is bounded from above and
from below by positive constants uniformly in Z E B|N| and that satisfies
|Z - 0398|  1 4 N . Using the following estimate (see [?, p. 68]) :

we see that in order to prove (7.1), it suffices to establish
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To finish the proof we only need show that the last two integrals in the
last line are finite. But this will follow from the following

LEMMA 7.5. - For every real numbers a, 03B2, -y such that 0  -y, 0  0  2

and 0  cx + 03B2  2n, there is a constant C := C(n, a, /3, -y) such that

where dV is the Lebesgue measure of Cn.

Proof. - Dividing the domain of integration en of I into the three

subsets {|03B6|  |z| 2}, {|03B6| &#x3E; 2|z|} and {|z| 2  |03B6|  2|z|} , we thus divide I
into three corresponding terms h, 12 and 13. We now estimate each of these
terms. On the one hand, we have

where the second inequality holds by applying a variant of Lemma 7.4. On
the other hand,
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where the last inequality follows from applying twice a variant of Lemma
7.4. Finally,

where the last inequality holds by applying twice a variant of Lemma 7.4
and an obvious change of variable. The lemma is now proved. ~

In order to prove Theorem 7.2, we need the following

LEMMA 7.6. - There is a constant C = C(n) &#x3E; 1 such that for all
points z, z’ E Hn, there is a smooth curve 03B3 = 03B3z,z’ : [0,1] ~ IHIn satisfying

Proof. - Suppose without loss of generality that |z|  1 z’I. We set
2 := |z’| z |z|. Then a little geometric argument shows that |z’ - |  |z - z’|
and |z - |  |z - zI. Since the group SO(n + 1,R) acts transitively on
~Mn, there exists a curve 03B31 : [0, 1] ~ Hn satisfying

Define

It is easy to see that for every t ~ 1 2 , the curve 03B32(t) satisfies all the proper-
ties stated in the lemma. To conclude the proof, it suffices to approximate
in IHIn the curve -Y2 by a smooth curve -y. D

Proof of Theorem 7.2. - We only give the proof for the case q &#x3E; 1. For

every points Z, Z’ E IHIN, consider the smooth curve

where 03B3z,z’,03B3w,w’ are given by Lemma 7.6 and 03B3x,x’(t) := (1 - t)x + tx’.
Then it follows from Lemma 7.6 that there is a constant C := C(N) such
that
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where 8 == (e, (, 77) = "((t). Set

On the one hand, for e ri E, using the definition of A and Theorem 3.1, we
check easily that

To estimate 7n and I12, it suffices to apply part 2) of Theorem 5.6 with
i = 2 and Theorem 6.6 (1). This can be reduced to majorizing Ili and I12
by f Ia,a(8)dV(8), where

||C|Z-Z’|

An application of Lemma 7.4 shows that the latter integral is bounded from
above by clZ - Z’|2|N|+4-(2|N|+3)q. Hence

On the other hand, if e E E, then for every 0  t  1 and -y := ’Yz z’,
we have that |03B3(t) = 0398| ~ 18 - Z|. Therefore, using the explicit formula of
Bj (8, Z) and taking into account the properties of the curve ’Y stated at the
beginning of the proof, the Mean Value Theorem, applied to the functions
of variable Z : Bj(8,Z) shows that
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Proceeding exactly as in estimating 7n and I12, we get

Also,

Therefore, it follows from (7.3), (7.4) and (7.5) that

This, combined with estimate (7.2), completes the proof of the

theorem. D

8. Lipschitz estimâtes on the complex manifold MN

Let u be a function in C1(MN). For every Z E MN, define

where the supremum is taken over all smooth curves q : [0, 1] ~ MN such
that q(0) = Z and |03B3’(t)|  1.
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We begin this section with the following Hardy-Littlewood type lemma.

LEMMA 8.1. - For every 0  03B1  1, there exists a constant C =

C(N, a) with the following property: Suppose u E C1(MN) and K is some
finite constant such that

Proof . - First we make the following remark :

e If |X’ |  |X|, by noticing that 1 (X, Y)|  |Z|, then we write

a If |Y’|  IYI, by noticing that |(X, Y’)|  IZI, then we write

Let Z, Z’ be two points of lDiIfN such that 0  |Z’|  |Z|  1 and set

03B4 : = |Z - Z’|.
First assume that 6  1 - |Z|. Applying the previous remark three times,

we only need prove the lemma in one of the following three cases:

Suppose for example we are in the first case x = x’ , z = z’. In this case,
take the curve q = 03B3Z,Z’. According to the hypothesis of the lemma and
the properties of the curve 03B3 given in the proof of Theorem 7.2, we have

Therefore,
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The remaining cases 1 - |Z|  03B4  1 - |Z’| and 1 -IZ’I  03B4 can be checked
using the same argument as in Lemma 6.4.8 of [?]. D

In order to state the main result of this section, we consider, for 1  p  oo,
the space

If f := L fjde)j is a (0, l)-form defined in a neighborhood of MN in BN,
j=l

we set

Recall that the norm Il ~MN,~ was defined by formula (2.8).

We can say informally that 039303B1,03B2(X) is the trace of the non-isotropic Lipchitz
space 039303B1,03B2(BN) (see Definition 1.1 in Krantz [?]) on the manifold X.

THEOREM 8.2. 2013 Suppose that u E C1(MN) and consider a (0,1)-form

with coefficients in C(MN) such that 8MN u = f|MN on MN. Define Tif on
~MN as follows:
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2022 for N = (0, 2, 2),

where Pk, Qk and Pjk, Qjk are the polynomials given by Theorems 3.3 and
3. 6.

Then the definition of Tif can be extended to MN by setting

where

and the operator T1f satisfies
(i) 8MN(Tlf) = f|MN.

Moreover, for every p &#x3E; 0, we set (as in the statement of Theorem 1. 1) :

Then there exists a constant C:= C(N, p) such that

(ii)

Proof . - We only give the proof in the case N =1= (o, 2, 2) and p  oo.

The first remaining case N = (o, 2, 2) can be proved in exactly the same
way by applying Theorem 3.6 instead of Theorem 3.3. The second remaining
case p = oo follows essentially along the same lines as in our previous work
[?] basing on the work of Greiner-Stein [ ?].
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We first introduce two new integral operators T2 and T3 :

for all Z E BN.

Applying Theorem 3.3 to the function u gives that

Moreover, we note that

Arguing as in the proof of Lemma 3.5 in [?] and using Theorems 5.6, 6.1
and 7.1, one can show that

Therefore, in view of Remark 3.2, we can apply Theorem 3.1 to the function
T2f. Next observe that (8.2) is just the Martinelli-Bochner formula. Hence
by virtue of (8.3), the hypothesis and the fact that R(8, Z) is holomorphic
in the variable Z, we obtain

This completes the proof of assertion (i). In view of (8.4), assertion (ii) will
follow from the following lemma.

LEMMA 8.3.
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Proof . - Using the properties of the polynomials Pk(8, Z) and Qk(8, Z)
in Theorem 3.3(ii), we see that

Since le - Z|  2A|1 - 039820221|, this implies by Hôlder’s inequality that
|(grad T3f) (Z) is bounded from above by

where q verifies p + 1 q = 1. Now applying Theorem 7.1 yields

so that by the classical Hardy-Littlewood lemma for the euclidean ball BN
we see that

Therefore, choosing Z’ = 0, we obtain

For every u E C1(BN), set

By the proof Lemma 4.8 in [?], we see that (grad’l 1 - E) e Z|) (Z)  C|0398-Z|.
Therefore, a straightforward calculation shows that
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Hence, arguing as in the proof of (8.6), we see that

Combining (8.6), (8.7) and (8.8), the lemma follows from Lemma 4.7
in [?]. 

To prove assertion (iii), we need the following

LEMMA 8.4.

Proof. - Observe that the polynomial A(8, Z) satisfies

In addition, if we set u =- 1 in Theorem 3.1, then we see that

Setting Z := rZ1, Z/ E ~MN, this implies that
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Combining (8.4) and Lemma 8.3, we obtain

Hence,

We shall establish in Proposition 9.4 below that the latter three integrals
are dominated by C (1 - |Z|)-1 2- |N|+3 p Taking for granted Proposition 9.4,
it follows that

Finally, applying Lemma 8.1 to this gives the desired conclusion. D

We now complete the proof of Theorem 8.2. By Hôlder’s inequality and
Theorem 7.2, we have

This, combined with Lemma 8.4 gives that

Arguing as in the proof of (8.7), one can show that

This proves assertion (iii)
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9. A Stokes type theorem on the manifold MN and applications

The main result of this section is the following Stokes type theorem:

THEOREM 9.1. Consider for every function v E cI (MN) and every
real numbers À  2n - 1 and fi  2m - 1, the function u given by u(8) :=

,c:ï1f,;,i’ , for e E MN. Then there is a constant C := C(N) such that

1 uda
9MN

REMARK 9.2. - We do not know whether it is possible to establish a
theorem of reduction of estimates from 8MN to ~B|N|, similar to Theorem
5.6. To overcome this, we use Theorem 9.1 to estimate difficult integrals
taken over 8MN by simpler ones taken over MN and then apply Theorem
5.6. We have already encountered this type of integral estimates in the proof
of Lemma 8.4.

Proof. 2013 Set d03BE := d03BE1 A ... 039B d03BEl and

By Proposition 2.1 in [?] and Proposition 2.1 above, we see that

Next, put
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Finally, we define 03C9jk(03B6), jk(03BE) (1  j, k  n + 1) and 03C9pq(~), pq(~)
(1  p, q  m + 1) in just the same way as 03C9pj(z), jk(z) in [?, p. 507-
508].

Consider the mapping g :]0,+~[ C|N|+2 ~ C|N|+2 given by

Using (9.1) and proceeding as in the proof of Lemma 2.1 in [?], we see that

(g*dv) (t, e) = t2lNI-Idt A [Ie A dVn(03B6) 039B dVm(~) + le; A dVl(03BE) 039B dVm(~)

where

Now set

Since g is a diffeomorphism from ]0, +~ [ ~EN ~ IHIN, it follows from
(9.2) and (9.3) that

so that by Lemma 2.3, we obtain d03C3 = C03C9|~MN . Therefore, since by the
hypothesis À  2n - 1, 03BC  2m - 1, |u(0398)|  1 |03B6|03BB|~|03BC for all 8 E MN, the ho-
mogeneity properties of the differential form 03C9(0398) and the same arguments
as in the proof of (2.12), (2.13) and (2.17) of Proposition 2.5 imply that

Stokes theorem gives that
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We shall estimate f du 039B 03C9|. Let Z be a point of My.. Choose j and A- with
M,

1  j  n + 1, 1  k  m + 1 so that in a sufficiently small neighborhood
u := U (Z) in Mr, we have

By (9.3) and (9.5), we obtain

We shall estimate for example du A I03B6 039B dVl(03BE) A dVm(~). It should be
u

noted that the following identity is implicit in the proof of Lemma 2.1 of

[?] :

Therefore, I03B6 |Hn is equal to

Combining the identity an «) = (n + 1) (-1)p-1 03C9p(03B6), 1  p  n + 1, (see
formula (2.6) in [?]) and formula (9.1), a straightforward calculation gives
that
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By virtue of (9.6), we majorize easily the latter integral and obtain

Hence, in view of (9.7), it follows that

On the other hand, we can prove in just the same way that

These two estimates, combined with (9.4) and (9.5), complete the

proof. ~

We now present two applications of Theorem 9.1.

PROPOSITION 9.3. - Let À, QI, a2 be real numbers such that 0  À  1,
and 0  cxl  2n, 0  a2  2m. Then there exists a constant C :=

C(N, À, 03B11, cx2) such that for every Z E BN,
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Proof. - Applying Theorem 9.1 gives that

where the latter inequality follows from Theorem 7.1. D

The following proposition completes the missing point in the proof of
Lemma 8.4 on page 51.

PROPOSITION 9.4. - Suppose that 0  À  1. Then there is a constant
C := C(N, À) such that for every 0  r  1 and Z E 8MN,

Proof. - We only give the proof of the estimate for 12. Starting from
the elementary estimate 18 - rZ | ~ (1 - r) + 0 - Z| for all 8 E ~MN, we
see that
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where the last two estimates follow respectively from Theorem 9.1 and the

very elementary inequality 1 |03B6|  1 + |z||03B6|) 1|03B6+|. Hence, by part 3) of The-
orem 5.6, the latter integral is dominated by CI2, where

Dividing the domain of integration of 12 into two regions

and

we thus break 12 into two corresponding terms i2j and I22. We then apply
Lemma 7.4 to estimate each of these terms and obtain

In summary, we have

which completes the proof of the proposition. D

10. Proof of the main results

In this section we prove Theorems 1.1 and 1.2. For this purpose, we first

establish some preparatory results.

Consider the holomorphic mapping FN : MN ~ 03A9N {0} which maps
every Z == (x, z, w ) ~ (x1, ... , xl , z 1, ... , zn+1, w1, ... , wm+1), element of
MN to
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Recall that dV(8) is the canonical volume form of C|N|. It follows from
formula (5.2) in [?] and formula (9.1) that

PROPOSITION 10.1. 2013 Consider a ~-closed (0, 1) -form f of class C1 de-
fined in a neighborhood of ÎiN. Then the solution Tl (FÑf) given by Theorem
8.2 satisfies 

for all Z, Z’ E MN such that FN(Z) = FN(Z’).

Proof. 2013 Suppose that f E C10,1(r03A9N) for some r &#x3E; 1. Since rON is

pseudoconvex, there exists a function u E C1(03A9N) such that au = f in ON.
Therefore, it follows from (8.3) and (8.5) that for every Z E MN,

Using this and the explicit formula of R(8, Z), we see that the proof
follows. ~

THEOREM 10.2. For every 0  03BB  1 2 , there is a constant

C := C(N, À) such that ~u~039303BB,203BB(MN)  GlluIIAÀ(8MN)

for all functions u in C(MN) which are holomorphic in MN.

Proof . - Consider the holomorphic function U E H (BN) defined by

Applying Theorem 3.3 to the function u yields

This shows that the theorem will follow from the estimate

To prove this, observe by (10.2) and formula (2) in [?, Section 6.4.4] that
the radial derivative (RU) of U is given by
(RU)(Z) =
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Using this and arguing as in the proof of Theorem 6.4.9 of [?], it can be
shown that

Therefore, by Proposition 9.3,

so that by Theorem 6.4.10 of [?], inequality (10.3) follows and the proof is
now complete. D

THEOREM 10.3. - For every (0,1)-form f and real numbers p, cx satis-
fying the hypothesis of Theorem 8.2, we have

where the constant C := C(N, p) .

Now we define the norm ~f~rMN,p in the same way as ~f~MN,p given in
(8.1) by substituting the domain of intégration MN by rMN. It is obvious
that ~f~rMN,p  11flIMN,,’ 

Applying Theorem 8.2 to the complex manifold rMN gives an integral
operator Tr that satisfies the following properties:

and
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Setting

Theorem 8.2 and (10.4) imply that u is holomorphic on r~MN. On the
other hand, by Theorem 8.2(ii) and (10.5), (10.6), we get

Applying Theorem 10.2 to this estimate yields

so that by (10.5), we get T1 f = u + Tr f E r a,2a(rôMN) and

Since all admissible curves q E C21(BN) such that -y C MN lie on some
manifold r~MN, the proof of the theorem is now complete. D

Proof of Theorem 1.1 . 2013 Consider first the case where f is a 8-closed
(0, l)-form of class C 1 defined in a neighborhood of 03A9N. The general case
will be treated later.

In view of (8.1) and (10.1), it can be checked that

By Proposition 10.1, we can define the 8-solving operator T on ON as

for every Z E S2N and Z E MN such that FN (Z) = Z.

Combining Proposition 10.1, Theorem 10.3 and equalities (10.7) and
(10.8), we see that the operator T satisfies

Let Z - (, , ) and ’ ~ (’ , ’ , ’ ) be two elements of QN. We shall
show that there exists a constant C := C(N,p) such that
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Using the remark made at the beginning of the proof of Lemma 8.1, we
only need prove (10.11) in one of the following three cases:

Consider for example the case x = x’, w = w’. In this case, estimate
(10.11) becomes

which can be proved by using (10.10) and arguing as in the proof of case 2
in Section 5 of [ ?].

It remains to treat the general case. If merely f E Lp(03A9N), we can reg-
ularize f by convolution with a Co function of sufficiently small support.
Then the same limiting argument as in [?, p. 361-362] shows that the con-
clusion of the theorem holds also for such f. This completes the proof of
the theorem. D

Proof of Theorerra 1.2 . 2013 First suppose that p  oo. We break the proof
into four cases. In the course of the proof, we shall see that the general case
can be reduced to one of these four cases. In the sequel, we write for every
Z ~ C|N|, Z ~ (x, z, w) E el x en x cm.

Case 1: n&#x3E;2 and m  2.

For every real number 03BB0 such that -1  Ào  1 2 , consider two real
numbers A, y &#x3E; 0 related by 2y 2 = 1 2 (1 2 - 03BB) = 1 2 - 03BB0 . Let c ~ C such that
|c|  1, and consider the following elements of QN :

Now we put f := auo, where the function uo is given by
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Then we have

Suppose that u is a solution of the equation Du = f on ON. Since u - uo is
holomorphic on QN and u0(Z03BB,0) = u0(Z03BB0,0) = 0, by Cauchy formula we
have

If u E 039B03B1-~(03A9N) for some E &#x3E; 0, then the difference between the two left
hand sides is O(|03BB 2013 03BB0|03B1+~). On the other hand, the différence between the
two right sides is greater than G 1 À - Ào 1 a. Letting Ào tend to 1 2, we reach a
contradiction. Hence u ~ 039B03B1+~(03A9N).

It now remains to check that f E Lp-~(03A9N) for all e &#x3E; 0. Applying
(10.7) and using the local coordinates 03A6z and 03A6w of Theorem 4.1 with
z: = (1 2 , i 2 , 0, ... , 0) E Hn and w := (1 2 , i 2 , 0, ... , 0) E Hm , it follows that for

where is a sufficiently small neighborhood of the point (1, 0, ... , 0) e
C|N| and dV(Z) is the Lebesgue measure of C|N|. We now explain briefly
how the estimate ~ in the latter line could be obtained. Indeed, using the
local coordinates 03A6z and 03A6w, the function |03B6n+1| (resp. |~m+1|) appearing
in the ~ · - llm,,p norm in (8.1) becomes the function |z3| (resp. |z4|) defined
in CINI.

By integration in polar coordinates, it is easy to reduce the estimate of
the latter integral to that of the following one

From this integral, we see that f E Lp-~(03A9N) for all E &#x3E; 0. This completes
the proof in the first case. Furthermore, we remark that the method pre-
sented here can be applied to all domains ON where N := (nI,..., nm)
satisfies the condition nm &#x3E; 2.
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Case 2: 1  1 and n, m  2.

Choose Ào, À and y as in case 1. Let c ~ C such that Ici  1 and consider
the following points of Ç2N:

We set f := 8uo, where the function uo is given by

The rest of the proof follows along the same lines as that of case 1.

Finally, we remark that the method used in this second case works also for
all domains nN where N := (nl, ... , nm) satisfies the condition n1 = 1 and
nm &#x3E; 1.

Case 3: l = 0 and n = m = 2.

For every Ào such that 1 22  Ào  1 2, let À and 03BC be two positive real
numbers satisfying 03BC2 = 1 2 ( 1 2 - 03BB) = Let c ~ C such that |c|  1
and consider the following elements of 03A9N

and

We set f := 8uo, where the function uo is defined by

for all Z ~ (z1, z2, w1, w2) ~ QN-

Proceeding as in the proof of case 1, it can be checked that if a function
u satisfies Du = f then u ~ 039B03B1+~(03A9N), ~~ &#x3E; 0. It now remains to establish

that f E LP-E(ON) for all ~ &#x3E; 0.

We first apply (10.7), then use the local coordinates 03A603C9 in Theorem 4.1

with w := (Jz, i ~2 , 0) E IHI2, and conclude that for every ~  0,
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Here u is a sufficiently small neighborhood of the point (1, 0, 0, 0) in C4 and
84 (resp. dV4(Z)) is the euclidean unit ball (resp. the Lebesgue measure) of
C4.

By integration in polar coordinates, the estimate of the latter integral is
reduced to that of the integral

From this integral we conclude that f E Lp-~(03A9N). The proof of the theo-
rem is complete in this third case. It should be noted that this method is
applicable to all domains ON where N := (nl, ... , nm) satisfies the condi-
tion ni = ... = nm = 2.

Case 4: 1 =m=0 and n=2.

In this case 03B1(N, p) = 1 2 - 3 p . Let z be a strongly convex point of the
boundary BON. It then follows from the work of Krantz in [?, Section 6]
that there exists a (0,l)-form f E C~(u) that satisfies the conclusion of
the theorem if ON is replaced by U. Here Ll is an open strongly convex
neighborhood of z in ON U tzl. In view of [ ?], we see easily that the form f
can be extended to a form of class C~ (03A9N) satisfying the conclusion of the
theorem. The proof is thus complete in this last case.

This argument also shows that the Lipschitz 2 + ~)-estimates (e &#x3E; 0)
do not hold for the case p = oo. This completes the proof of Theorem 1.2. ~

Finally, we conclude this paper by some remarks and open problems.

1. It seems to be of some interest to establish the (LP, Lq) type optimal
regularity for the 8-equation on ON.

2. We conjecture that the Lipschitz 2-regularity corresponding to the
case p = oo in Theorem 1.1 is optimal. More precisely, this regularity can
not be improved to Lipschitz 1

3. Does there exist a natural way to define the Nevanlinna class on the

non-smooth domains Ç2N and find a related Blaschke type condition that
characterizes the zeroes of the functions of this class?
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