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Complex a priori bounds revisited 

MICHAEL YAMPOLSKY (1)

ABSTRACT. - We revisit the question of the existence of complex a priori
bounds for renormalizations of real quadratic polynomials. We give a new
proof of our joint result with Lyubich for the quadratics of essentially
bounded type with an argument based on the study of the geometry of
parabolic Julia sets.

RÉSUMÉ. - Nous revisitons l’existence de bornes complexes pour la
renormalisation des polynômes quadratiques réels. Nous donnons une nou-
velle preuve de notre résultat avec Lyubich pour les polynômes quadra-
tiques de type essentiellement borné à l’aide d’un argument fondé sur
l’étude de la géométrie des ensembles de Julia paraboliques.
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Pl

1. Introduction

This paper addresses the well-studied problem of the existence of com-
plex a priori bounds in the dynamics of quadratic polynomials. By defini-
tion, an infinitely renormalizable quadratic map f has such bounds if there
exists a lower bound y &#x3E; 0 such that for every n E N the renormalization

Rn f has a quadratic-like extension U ~ V whose fundamental annulus
V B U has modulus at least J1. The purpose of establishing such bounds is
two-fold: they were originally introduced by Sullivan [Sull, Sul2, MvS] as a
compactness condition for the one-dimensional renormalization theory; on
the other hand the geometric control they give leads to rigidity results, such
as JLC, and MLC (see e.g. [Lyu4]). The problem of existence of complex a
priori bounds for real infinitely renormalizable quadratics was completely

(*) Reçu le 15 avril 2003, accepté le 3 novembre 2003
(1) Department of Mathematics, University of Toronto, M5S3G3, Toronto, Canada.

E-mail: yampol@math.toronto.edu
The author gratefully acknowledges the support of NSERC and the Connaught Founda-
tion.



- 534 -

settled following Sullivan’s original result for quadratics of bounded type
[Sul2, MvS], in the works [Lyu3, LvS, LY, GS]:

THEOREM 1.1. - There exists f.1 &#x3E; 0 such that for every infinitely renor-
malizable real quadratic polynomial f and every n E N the renormalization
7Zn f has a quadratic-like extension with modulus at least f.1.

In §2 we discuss the history of the proof in some detail, and, in particular,
introduce the combinatorial condition of essentially bounded type, which
was the subject of study in [LY]. In this paper we give a new treatment
to polynomials satisfying this condition. Our approach is to consider them
as small perturbations of parabolic maps, and use the rigidity properties of
such maps to pass from real a priori bounds to complex ones. A particularly
simple proof of complex bounds for parabolic maps is due to Petersen in
the case of critical circle maps (see [EY]). Slightly more work has to be
done to get bounds for quadratics (partly because the combinatorics is more
complex) - however, the resulting argument is "soft", as opposed to a "hard"
analytic proof given in [LY]. We note, that our proof accomplishes less than
that of [LY], yet enough to replace the result of that paper.

Having such a geometric proof is interesting in itself, and draws an in-
structive parallel with the critical circle maps case. The study of geometric
limits of renormalizations of quadratic-like maps with essentially bounded
type was carried out by Hinkle [Hin], based on the a priori bounds of [LY].
Such limits are represented by towers of quadratic-like maps, similar to Mc-
Mullen towers [McM2], but with parabolic elements. It is worth noting, that
using our argument, we can replace the study of these towers by the anal-
ysis of the appropriate bi-infinite Epstein towers [Ep], similarly to the way
the analysis in [EY] replaces [Ya]. It is also our hope that this approach
will prove useful in other situations where the existence of complex a priori
bounds is not yet known: such, for example, as non-real quadratics whose
renormalizations are small perturbations of parabolics.

Acknowledgement. - 1 would like to thank Xavier Buff for his valuable
comments on the paper, which helped to greatly streamline the argument.

2. Preliminaries

2.1. Generalities

The knowledge of the theory of parabolic bifurcation in one dimension
will be assumed throughout this paper. As a general reference, we recom-
mend the paper [Sh]; all the relevant facts may be found there. In addition,



- 535 -

a detailed study of the properties of Écalle-Voronin maps was carried out in
the dissertation [Ep], which may also be of interest to a reader of this work.
.We will also assume that the reader is familiar with the subject of renor-
malization of unimodal and quadratic-like maps. We will generally follow
the notation of [LY, Lyu6, Hin]. In particular, we will denote E the Epstein
class, and Ss an Epstein class with a geometric bound s; Rf the renormaliza-
tion of a renormalizable unimodal map f, and pRf its pre-renormalization,
that is, the non-rescaled first return map. A parabolic renormalization of a
quadratic-like map in E will be denoted P03B8f,03B8 E T, and pP03B8f will again
stand for the pre-renormalization. As usual, Cj will denote the complex
plane with two slits on the sides of the interval J:

A map f E E is a double covering of a domain Ç2F C CI over Cj, where
I C J, branched at 0. The combinatorial type of a renormalizable uni-
modal map f will be denoted 03C8(f); ~(f) will denote the straightening of
a quadratic-like map f with a connected Julia set. We assume the real a
priori bounds; the reader can find the proof in e.g. [MVS].

2.2. Essentially bounded combinatorics

Définition of the essential period

A detailed discussion of the combinatorics of the puzzle of a unimodal
map goes beyond the scope of this paper. We will assume that the reader
is broadly familiar with the subject and will recall only briefly the main
concepts as we encounter them. For a more detailed introduction we par-
ticularly recommend to the reader the recent paper of Lyubich [Lyu6]. In
this chapter we will briefly recall the definition of the essential period of
a renormalizable unimodal map, and discuss an example of an infinitely
renormalizable unimodal map with essentially bounded combinatorics. We
will follow the above mentioned work of Lyubich, and a detailed paper of
Hinkle [Hin].

Let f be a renormalizable unimodal map, which for simplicity will be
assumed to be even. The principal nest of f is the sequence of intervals

where 03B1(f) is the dividing fixed point of f, and Im ~ 0 is the. central
component of the first return map of Im-1,
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A level m &#x3E; 0 is non-central, if gm(0) E Im-1 B Im. If m is non-central,
then gm+ 1 |Im+1 is not merely a restriction of the central branch of gm, but
a different iterate of f. Set m(o) = 0, and let

be the sequence of non-central levels. The map

For 0  k  k the nested intervals

form a central cascade, whose length is m(k + 1) - m(k). Lyubich called a
cascade saddle-node if 0 e 9m(k)+1 (Im(k)+1), otherwise he called it Ulam-
von Neumann. The reason for this terminology is that if the length of a
saddle-node cascade is large, then gm(k)+1|Im(k)+1 is combinatorially close
to the saddle-node quadratic map x ~ x2 +1/4; in the Ulam-von Neumann
case the map is close to the Ulam-von Neumann map x ~ x2 - 2.

Let x E P( f ) n (Im(k) B Im(k)+1) and set dk(x) = min{j - m(k),
m(k+1)-j}, where 9m(k)+1 (x) E IjBIj+1. This number shows how deep the
image of x lands inside the cascade. Let us now define dk as the maximum of
dk(x) over all points x E P( f ) n (Im(k)BIm(k)+1). For a saddle-node cascade
the levels 1 such that m(k) + dk  1  m(k+1)-dk are neglectable. Now we
define the essential period of f as follows. Set J = Im(k)+1, and let p be its
period, that is the smallest positive integer for which fP(J) 9 0. Consider
the orbit Jo - J, Ji = fi(J0), i  p - 1. Suppose that Jk lands at a ne-
glectable level of a central cascade generated by the branch of 9m 1 lm ~ flm.
In that case we will call the iterates Jk, Jk+1,... Jk+lm-1, which consti-
tute one iterate by the cascade, neglectable. The number of non-neglectable
intervals in the orbit {Ji}p-1i=0 is the essential period, pe(f). Recall that an
infinitely renormalizable map f has a bounded combinatorial type if there
is a finite upper bound on the periods of its renormalizations. Similarly, f is
said to have an essentially bounded cornbinatorial type if sUPk Pe (Rk f )  00.

An example of a map with essentially bounded combinatorics

The definiton given above is rather delicate. It is useful therefore to pro-
vide the reader with a simple yet archetypical example of an infinitely renor-
malizable map of unbounded but essentially bounded combinatorial type (cf.
[Hin]). This map is constructed in such a way that its every renormalization
is a small perturbation of a unimodal map with a period 3 parabolic orbit.
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Closeness to a parabolic will ensure that the renormalization periods are
high, but the essential periods will all be bounded.

Figure 1. - Construction of an example: The map z - z2 - 1.75,
and its small perturbation, with the domain of g indicated.

Before constructing the example, let us consider the dynamics of the
quadratic map f : z H z2 - 1.75. This polynomial has a parabolic orbit of
period 3 on the real line, let us denote p the element of this orbit which is
nearest to 0. Recall that I’ = [03B1(f), -03B1(f)], and I1 is the central compo-
nent of the domain of the first return map g : I° - IO. For this map we
have glIl ~ f3, p e IO, and f3n(0) ~ p. The map g has two non-central
components; denoting I’ the one whose boundary contains a ( f ), we have
g = f2 : Ii ~ I°. For a small e &#x3E; 0 let us set f~(z) = z2 - 1.75 +,E. The
orbit of 0 under f, eventually escapes IO. Let us define en as the parameter
value for which f3i~n (0) E Il, i  n-1, f:::(O) E 11, and f:::+2(0) = 0. These
maps correspond to the centers of a sequence of small copies M(3)n of the
Mandelbrot set. converging to he cusp c = -1.75 of the real period 3 copy
M(3).

For each f~n, and every x e Il B I2, the depth d1(x) = 0. Therefore, all
of the levels of the central cascade of fEn are neglectable. Denote J = Im(2)
the renormalization interval of f~n; its period is p = p(f~n), which is some
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Figure 2. = An airplane inside of an airplane:
consecutive blow-ups of a Julia set of a’map with essentially bounded combinatorics,

and the corresponding blow-ups of the Mandelbrot set.

Figure
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large number if 1n is small. To calculate the essential period of the orbit
Ji  we have to ignore all of the iterates, but five: Jo, Jl,
J2, and Jp-2, Jp-1. These comprise the first iterate of the orbit of J by the
cascade generated by the central branch of g|I1 ~ f3, and the one iterate by
the non-central branch 9111 1 ~ f 2, which, after the interval has run through
the whole cascade, maps it back over the critical point. Thus, the essential
period pe(f~n) = 5, on the other hand, obviously, p( fEn ) ~ oo.

Now consider an infinitely renormalizable unimodal map h such that
the combinatorial type 03C4(Rkh) = 03C4(f~nk), with nk ~ oo. This is the desired
example. We can, of course, select h in the real quadratic family, picking
an infinitely renormalizable parameter value c E M such that ~(Rk(fc)) ~
M(3)nk. This amounts to blowing up a small copy M3n1, finding its period
3 cusp, and the corresponding sequence of small copies converging to this
cusp, blowing up one of them, ad infinitum.

2.3. Complex a priori bounds

By real a priori bounds, there exists &#x3E; 0 such that the renormalizations
of any infinitely renormalizable map in E are eventually in Sa. Complex
a priori bounds were introduced by Sullivan, who (in collaboration with
de Melo) proved the following theorem:

THEOREM 2.1 ([SUL2, MvS]). - For every p ~ N there exists

N = N(p) E N, and p = p(p) &#x3E; 0, such that if f E 03B503C3 is at least N

times renormalizable, and

Subsequently, Lyubich has shown:

THEOREM 2.2. - There exists po E N, 03BC0 &#x3E; 0 such that if f E 03B503C3 is

renormalizable, and if

The gap between the two theorems was filled in [LY] where a univer-
sal complex a priori bound was obtained for maps with essential periods
bounded by po. In particular, [LY] contained a simple proof of Theorem 2.1
with a universal constant y. Independently, different proofs of universal a
priori bounds were given by Graczyk &#x26; Swiatek [GS], and Levin &#x26; van
Strien [LvS]. In this paper we again look at the old problem of the gap
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between Theorem 2.1 and Theorem 2.2, and give a different argument for
bridging the gap. Our argument is less general than that of [LY], since
it requires that while the essential periods of the renormalized maps are
bounded, the periods of renormalizations are sufficiently high, so the renor-
malizations are uniformly close to parabolics.

Let us define £ c Sa to be the set of all limit points of infinitely renor-
malizable quadratic-like maps. The theorem we prove is the following:

THEOREM 2.3. - For every n e N, k  3, there exists y = 03BC(k) &#x3E; 0

such that the following holds. Denote £k the set of maps g ~ £ with the
property, that there exists a sequence {fi}0i=-~ C £, with fo = g such that
every fi has a parabolic periodic orbit of period at most r,, and that for every
i there exists Oi such that the parabolic renormalization roi ( fi) = fi+1’

Then modg &#x3E; y for every g E £k.

Note that the parabolic cycle of fi is necessarily unique (cf. the argument
in [Ya], as well as Lemma 3.2).

3. The proof of bounds

Outline of the argument

Since £ C Eu, it follows, in particular, that every map f ELis an
analytic double covering, branched at the origin, of a domain Q = 03A9f C CIl
over CJf with I f C Jf.

Let us fix r, E N, as in Theorem 2.3. For a map f E £x denote p = p( f )
the period of its parabolic orbit. Let B f C Of be the parabolic basin of
f, and Bi the component of the immediate basin which contains the ori-
gin. We let xo E aB f be the element of the parabolic orbit of f contained
in the central component of the basin. Since f : 03A9f ~ CJf is a branched

covering, f : Bof ~ Bi is a proper map in CJf compactified by adding the
banks of the slits and the point at infinity. Further, .let ut, u f be a pair of
attracting and repelling petals of the parabolic point xo; 03A6A,f : U f c,
: URf ~ C the corresponding Fatou coordinates; and C - C/Z,
Cg ri C/Z the two Fatou cylinders. For each of the cylinders let 0, e de-
note their ends, correspondingly, the upper and the lower ones. The natural
projection
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dynamically extends to a branched covering map of the whole basin B f over
CAf, the other projection, 7rR, f is only well-defined locally. Let E f : CRf ~ C f
be the dynamical first entry map, which we will further refer to as the
Écalle- Voronin map of f. For ease of reference, let us summarize some of
the relevant properties of £ f as a proposition.

PROPOSITION 3.1 (Properties of Écalle’Voronin maps). - Under the
above assumptions on f we have the following:

(1) the interior of the domain of the map £f consists of the union of
two open neighborhoods U(~), U(e) of the ends of the cylinder (two
"polar caps"); and a countable set of topological disks Wi C CR, each
of which is a projection 1TR,f of a connected component Bi of B f,
intersecting UR;

(II) the map 03B5f restricted to each of the interior components of its domain
of definition is an infinite degree branched-covering with a single crit-
ical value v E CA (the projection 03C0A,f(fp(0))), and infinitely many
simple critical points.

Note that the restrictions of 03B5f to the two polar caps are the original
Ecalle-Voronin conjugacy invariants, hence our choice of name for 03B5f.

Now let us fix f = fo E and let f-1, f-2,... be its preimages under
the parabolic renormalization as in Theorem 2.3. Denote W 3 0 the central
component of the domain of 03B5f-1. If we set pP03B8-1 (f-1) = f (so f is a linear
rescaling of ), then the map f is conjugate via the projection 1TA,f-1 to the
composition

By Proposition 3.1 (II), the map h f is an infinite degree branched cov-
ering with a single critical value. We will demonstrate that this map has
a quadratic-like restriction with a definite modulus. To that end, we will
first employ the real a priori bounds to show that the shape of the basin

Bf-1 1 (and hence the domain W = 03C0R,f-1(Bof-1)) is geometrically bounded,
and enclose it with an annulus of a definite modulus. We will then find a
conformal preimage of this annulus inside a fundamental annulus for h f.

The restriction on the period of parabolics in Lfî- implies that h belongs
to one of finitely many topological classes. We are actually able to show that
it belongs to one of finitely many K-quasiconformal classes with a certain
universal constant K &#x3E; 1 (which is, obviously, a stronger statement than
the existence of a quadratic-like restriction with a definite modulus). To do
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this, we apply a modified pull-back argument, along the lines of [EY], to
quasiconformally conjugate our map to a fixed Ecalle-Voronin map.

Figure 4. - A sketch of the Julia set of f-1 and the domain of the map h f .
A quadratic-like restriction of h f and its Julia set are also indicated.

Bounding the shape of the parabolic basin of f-1

LEMMA 3.2. - There exists m = m(r,) &#x3E; 0 such that the following holds.
Let g E £k, then 

Proof. - By compactness of Sa it suffices to show that mg is always a
positive number. We will argue by way of contradiction. If mg = 0, then the
boundary of the basin component Bg contains a point zo E UR n R. Recall
that 9P is the iterate fixing Bog. Denote I C [-03B2g,03B2g] the maximal interval
of the unimodal branch of gP, fixing Bog. Given the invariance of ~B9g, the
points zn = gpn(z0) C I converge to a point ~ E R which is fixed under
the iterate gP. Since g is a limit of a sequence of infinitely renormalizable
quadratics without any attracting fixed points, ( is necessarily parabolic.
Since g E S, the iterate gp has a univalent inverse branch in the upper half
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plane 03C8 : H ~ H, fixing xo . By real symmetry, there are points in H whose
orbits under 1/J converge to (. On the other hand, the point xo attracts some
of the orbits in Bog. This contradicts the uniqueness part of the Denjoy-Wolff
Theorem as applied to 03C8. Il

LEMMA 3.3. - There exists a constant C = C(fB¡) &#x3E; 0 such that for
every g E £k

Proof. - Again, compactness of Sa means that it is enough to show
diam(Bog)  oo. We argue using the fact that g is a parabolic renormaliza-
tion g = P8g-1 of a map g-1 E f-,. Let hg : W ~ C/Z, and g be as above
(3.1). This map itself has a parabolic orbit in R/Z (which is the projection
of the parabolic orbit of g). Denoting B D 0 the central component of the
parabolic basin of hg we have

Let us first observe that

implies that ~B, and hence 8W as well, separates the cylinder. In view of
the Maximum Modulus Principle the latter is equivalent to the existence of
an equatorial continuum X C ~B n ~W.

Assuming that there is no such equatorial continuum we observe that
there exists a vertical strip

such that there is a lift B of the basin B entirely contained in
On the other hand, since the two polar caps dc

not intersect W, the height of B is bounded, and hence

for some M &#x3E; 0. Therefore, the conformal map  ~ I!Z can be extended
to an open neighborhood, and hence the latter set has a finite diameter.

Let us now rule out the existence of a separating continuum X as above.
Indeed, it would imply that there exists a bounded component S of C/ZBclB
whose boundary contains the first preimage of the parabolic point x ~ ~8
under hpg(g). The invariance of 88 under hpg(g) implies that the image
hpg(g)(X) intersects with R/Z in the repelling petal of B. This, of course,
means that mg = 0, in contradiction with the previous lemma. ~
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Projecting to the Fatou cylinders, we have an immediate corollary:

Figure 5

COROLLARY 3.4. - There exists fJ- = 03BC(k) &#x3E; 0 such that for every
g E LK the following holds. Let W be the domain of hg as in (3.1). Then
there exists an annulus A C CfA1enclosing W and such that

We can now prove our main theorem:

Proof of Theorem 2.3. - Let A be as above, and denote V 3 0 the do-
main enclosed by the outer boundary of A. There exists a domain

W D U 3 0 which is a the two-fold preimage of V under hg. To visu-
alize this, lift the map hg to Hg :  ~ C. Then the preimages of R in
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W partition this domain into an infinite union of topological disks each of
which is mapped onto the upper or the lower half-plane (see Figure 5). By
construction, U C W, and hence modV B U &#x3E; 03BC. ~

Quasiconformal conjugacies

Below we will sketch the proof of the following stronger result:

THEOREM 3.5. - There exists K = K(k) &#x3E; 1 such that for every g E £k
the branched covering hg belongs to one of finitely many K-quasiconformal
types.

LEMMA 3.6. - There exists K = K(K) &#x3E; 1 such that the following
holds. Let g E £k and let p = p(g) E N as before denote the period of
B’. Then there exists a K-quasiconformal map of the plane which maps the
basin

conjugating the dynamics of gP and z2 + 1/4 on the respective basins.

Proof. - The previous two Lemmas allow us to construct a pinched
quadratic-like restriction of gp on a neighborhood Bog with universal quasi-
conformal bounds. We refer the reader to [EY] where the relevant definition
is given and a similar construction is carried out. The pull-back argument
of [EY] applied to the two pinched quadratic-like maps applies here mutatis
mutandis. n

Proof of Theorem 3. 5. Let f, f- 1 be as above. Let Yk denote the set
of real quadratic polynomials with a parabolic cycle of period at most r,; of
course, #Yk  oo. Let g-1 E Yx be the map having the same combinatorial
type as f-1, and let g = p03B8g-1 be the parabolic renormalization of g-1 hav-
ing the same combinatorial type as f. Then hg, h f are Ki -quasiconformally
conjugate with Ki depending on r, alone. Indeed, this follows from the pre-
vious lemma, and the standard pull-back argument applied to hg, h f. D

Conclusion 

Let us show that the existence of universal complex a priori bounds
stated in Theorem 1.1 follows from our Theorem 2.3 together with Sullivan’s
Theorem 2.1 and Lyubich’s Theorem 2.2. Indeed, let f be an infinitely
renormalizable real quadratic map. If pe(Rnf) &#x3E; po then
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by the result of Lyubich. By the Sullivan’s theorem, if f has sufficiently
many consecutive renormalizations with a bound on the period, the last of
them has a universal bound on the modulus. On the other hand, by real
a priori bounds, all renormalizations of f with large periods and bounded
essential periods are uniformly small perturbations of parabolics. Putting
this together, we see that there exist natural numbers pi, N, N such that the
following is true. If p(Rn+if)  pl for 1  i  N - 1, then the conditions
of Sullivan’s theorem hold for Rn+Nf. If there exists n  n + 1  n + N - 1
such that both for Rnf and IZn+if the periods p &#x3E; pi, but the essential

periods pe  po; and for all 0  j  i the periods p(Rn+jf)  pi, then

IZn+i+lf is a small perturbation of a map g e £x . Moreover, if we denote
U and V the domain and the range of the quadratic-like restriction of g
guaranteed by the Main Theorem (mod(V B U) &#x3E; p = 03BC(k)), then we have
the following. In the simplest case, when the renormalization R(Rn+if)
involves going through a long saddle-node cascade only once, then Rn+i+1f
has a quadratic-like restriction with the domains sufficiently close to U and
V, so that

Otherwise, the quadratic-like restriction g : U - V approximates a first
return map in the principal nest of Rn+if; in which case, IZn+i+ 1f has a
quadratic-like restriction with an even smaller domain (that is, the range of
this restriction is close to V, and the domain is close to a proper subdomain
of U). Again, we have

Therefore, at most every N levels, the sequence 7Zn f generates a definite
modulus. For the intermediate levels, the lower bound on the modulus fol-
lows from compactness of Sa . ~
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