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Lévy Processes, Pseudo-differential Operators
and Dirichlet Forms in the Heisenberg Group (*)

DAVID APPLEBAUM (1), SERGE COHEN (2)

ABSTRACT. - N. Jacob and his colleagues have recently made many in-
teresting investigations of Markov processes in Euclidean space where the
infinitesimal generator of the associated semigroup is a pseudo-differential
operator in the Kohn-Nirenberg sense. We wish to extend this programme
to the Heisenberg group where we can utilise the Weyl calculus to build
pseudo-differential operators and we begin by considering Levy processes.
We obtain the general form of symbol for infinitesimal generators. We
then investigate a natural sub-class of group-valued processes whose com-
ponents are a Lévy process in phase space and the associated Lévy area
process on the real line. These are applied to clarify Gaveau’s probabilistic
proof for Mehler’s formula.

In the second part of the paper, we describe some properties of the
generator in its Schrôdinger representation. In particular, when this oper-
ator is positive and symmetric, we show that it does not always give rise
to a Dirichlet form and we obtain a Beurling-Deny type formula in which
the jump measure may take negative values. When a bona fide Dirichlet
form is induced, we give conditions under which there is an explicit de-
scription of the associated Hunt process which lives in extended Euclidean
space.

RÉSUMÉ. - N. Jacob et ses collaborateurs ont récemment étudié des

processus de Markov à valeurs dans des espaces préhilbertiens dont le
générateur infinitésimal est un opérateur pseudo-différentiel au sens de
Kohn Nirenberg. Nous souhaitons généraliser cette étude au groupe de
Heisenberg quand on utilise le calcul de Weyl pour construire les opérateurs
pseudo-différentiels. Nous commençons par le cas des processus de Lévy,
et obtenons une forme générale pour le symbole de leur générateur in-
finitésimal. Ensuite nous considérons des processus dont les coordonnées
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dans l’espace de phase sont des processus de Lévy, et dont la partie réelle
est l’aire de Lévy associée. Ceci permet de clarifier une preuve probabiliste
de la formule de Mehler, dûe à Gaveau.

Dans une deuxième partie, nous décrivons quelques propriétés du
générateur de la représentation de Schrôdinger. Dans le cas où ces opéra-
teurs sont symétriques, positifs, nous montrons qu’ils ne correspondent
pas toujours à une forme de Dirichlet. Cependant dans le cas où ils corre-
spondent à une forme de Dirichlet, on donne une description du processus
de Hunt associé sous certaines conditions qui sont précisées.

1. Introduction

Let X = (X(t), t  0) be a time-homogeneous Markov process whose
state space is a Lie group G, then we obtain a Markov semigroup (T(t),
t  0) on the Banach space Cb (G) of bounded, continuous functions on G,
through the prescription

(T(t)f)(03C3) = E(f(X(t))|X(0) = 03C3),

for each f E Cb (G), 03C3 E G, i. e. (T (t), t  0) is a strongly continuous one-
parameter contraction semigroup which is positivity preserving and conser-
vative, i. e. each T(t)1 = 1. In the case where G is Rn, there has recently
been much interesting work by N. Jacob and his collaborators in construct-
ing and investigating such processes where the infinitesimal generator A
of the semigroup is a pseudo-differential operator (in the Kohn-Nirenberg
sensé). More specifically we have, for sufficiently regular functions f in the
domain of A, and for each x E Rn,

(Af)(x) = (203C0)-n 2  eix.03BEq(x,03BE)(03BE)d03BE, (1.1)
Rn

where / is the Fourier transform. In a classical paper by Courrège [8], it was
shown that a generator of a Feller process has such a representation when-

’ 

ever the test functions are in its domain. The function q is the symbol of
the operator A and a key feature of this approach is to extract information
about the probabilistic behaviour of X from the properties of q. The proto-
type for such studies is the case where X is a Lévy process ( i. e. a process
with stationary and independent increments). In this case, q is a function
of 03BE alone, and is precisely the characteristic exponent of the process as
determined by the celebrated Lévy-Khintchine formula. We refer readers to
the monograph [19] and the recent survey article [18] for more details.
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In this paper, we are motivated by the prospect of extending this analy-
sis to more general Lie groups. Of course, a major obstacle here is the lack
of a suitable Fourier transform, so we need to restrict our endeavours to
a context where such objects exist. One possibility is to take the group to
be semisimple with finite centre. Here we can employ the spherical trans-
form based on Harish-Chandra’s theory of spherical functions. For recent
investigations of Lévy processes in this context - see [4]. We take a differ-
ent approach in this article and consider the case where G is the Heisenberg
group Hn . This is interesting for a number of reasons. Its manifold structure
is that of a (2n + 1)-dimensional Euclidean space, and from a physical point
of view it is useful to think of this as an extension of an even-dimensional

phase space comprising rt position and n momentum co-ordinates. In par-
ticular, the ordinary Fourier transform can now be utilised. As a group it
is step 2 nilpotent and so noncommutativity enters quite mildly. Through
the Schrôdinger representation, this group plays a leading role in quantum
mechanics, but it also figures prominently in a number of other branches of
mathematics, particularly harmonic analysis (see [15]).

There is a rich theory of pseudo-differential operators in the Heisenberg
group based on the so-called the Weyl functional calculus and by analogy
with (1.1) we might aim to study Markov processes whose generators can
be so represented as

(A03C0f)(x) = (203C0)-n R2n 03C3(1 2(x + y), 03BE)ei(x-y).03BEf(y)dyd03BE. (1.2)

We should emphasise that this calculus works through the Schrôdinger
representation 7r and so we deal not with the original semigroup generator
,A, but its image A7r which can be thought of as its "quantisation". Indeed,
operators of the form (1.2) were originally introduced by Hermann Weyl as a
means of associating quantum mechanical observables to phase space func-
tions q (see [30], Chapter 4, section D.14). For a more recent and extensive
mathematical account of these operators see Chapter 2 of [9].

Our main focus in this paper is on the operators A7r, and we seek to un-
derstand these from both an analytic and probabilistic viewpoint within the
context of Lévy processes in Hn. Indeed, these processes are more compli-
cated than their counterparts in Euclidean space and it is clearly important
to learn as much as possible about them before progressing to greater gen-
erality. The paper is organised as follows. In section 1, we briefly review the
relationship between the Lévy-Khintchine formula and infinitesimal gen-
erators in Euclidean space. Section 2 summarises results we need about
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Lévy processes in Lie groups, while section 3 is a primer on the Heisenberg
group. Our main results can be found in sections 4 and 5. In section 4, we
give the Weyl symbol for operators A03C0 associated to general Lévy processes
in Hn. We then introduce a class of such processes which are called phase-
dominated as 4, only acts non-trivially on phase-space co-ordinates. We
show that any such process can be written in the form 03C1 = (A, XQ, Xp)
where X = (XQ,XP) is a Lévy process in R2n and A is the associated
stochastic area process. In the case where X is a standard Brownian mo-

tion, we gain a new perspective on Gaveau’s probabilistic proof of Mehler’s
formula for the symbol of the semigroup generated by A03C0 ([11]).

In section 5, we investigate analytic properties of the operator A03C0. In
particular, we show that the smooth functions of compact support form a
core for this operator. We find conditions under which -A7r is positive and
symmetric and also, when it preserves the subspace of real-valued functions.
At this stage, we would expect to obtain a symmetric Dirichlet form, and
thus show that A03C0 also generates a sub-Markov semigroup in the L2-space.
In fact, this is not always the case. We find that the Beurling-Deny formula
appears with a signed jump measure J which is not necessarily positive
(although we can provide some classes of examples where it always is).
This seems to be a new phenomenon which will, we hope, be more fully
understood in the future.

In the case where we obtain a legitimate Dirichlet form, this induces a
Hunt process on Rn~{0394}, where A is the cemetery. An interesting feature is
that both the diffusion and jump characteristics of the original Lévy process
in G contribute to killing of the Dirichlet form (when it exists) and hence
of the associated Hunt process. In proposition 8, we give conditions under
which this induced process is nothing but translation through Xp, killed at
a stopping time determined by XQ.

For related work to this, readers might consult the monograph [22] which
mainly studies limit theorems for Brownian motion in Hn, including the cen-
tral limit theorem and the law of the iterated logarithm. Stable processes in
Hn are investigated in [12], see also [20]. Pap [23] has studied Lévy processes
in general nilpotent Lie groups and has obtained a related result to that of
our theorem 3 below. In [24], he has made an extensive study of Gaussian
measures on H1. Hoh [14] has recently investigated Markov processes on
manifolds whose generators are pseudo-differential operators in the Kohn-
Nirenberg sense in local co-ordinates while Baldus [5, 6] has studied a very
general framework for Markov processes in manifolds, employing a calculus
of pseudo-differential operators due to Hôrmander.
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Notation. - We will use Einstein summation convention throughout
and will sometimes be quite cavalier about writing matrix entries c’i as cij.
We emphasise that no metric tensor is involved in this purely notational
raising and lowering of indices.

|.| will always denote the Euclidean norm in R d

We denote D = (D1,..., Dn) where each Dj = 1 i ~ ~xi. If a = (al, ... , an)
is a multi-index so each aj c N U {0}, we define

D03B1 = 1 i|03B1|~03B11 ~x103B11 ···~xn03B1n ~xn03B1n

where |03B1| = cxl +... + 03B1n. We call n the length of the multi-index, and note
that multi-indices of the same length can be added component-wise.

We will sometimes find it notationally convenient to write first order
partial derivatives ~ ~xj simply as ~j.

Throughout this paper all stochastic processes will be defined on a fixed
probability space (03A9, F, P).

All function spaces will consist of complex-valued functions unless
otherwise indicated. In particular, C~c(Rn) comprises the smooth func-
tions of compact support on Rn and S (Rn ) is the Schwartz space of rapidly
decreasing functions on Rn so that f E S(Rn) if f is smooth and

supx~Rn |x|03B2|D03B1 f(x)|  ~ for all j3 E N ~ {0}, and all multi-indices a.

2. Review of the Euclidean Case

Let Y = (Y(t), t  0) be a Lévy process in Rn then we have the Lévy-
Khintchine formula

E(eiu.Y(t) ) = et~(u),
for all u E Rn , t  0 where

~(u) = irrL.u - 1 2 u.au +Rn-{0} (eiu.y - 1 - i 
u.y 1 + |y|2 

v (dy). (2.1)



- 154 -

David Applebaum, Serge Cohen

Here m e Rn, a is a non-negative symmetric n x n matrix and v is a
Lévy measure on Rn - {0}, i. e. fRn-{0}(|y|2 ^ 1) v(dy)  oc (see e.g. [27]).

Let Co (Rn ) denote the Banach space (when equipped with the supre-
mum norm) of continuous functions on Rn which vanish at infinity. We
obtain a Feller semigroup (T(t), t  0) on Co (Rn ) by the prescription

(T(t)f)(x) = E(f(x + Y(t))),

for all f E C0(Rn), x E Rn, t  0. We denote the infinitesimal generator
of the semigroup as A. The following result is classical but we give a short
proof for completeness.

PROPOSITION 2.1. -

1. A is a pseudo-differential operator of the form

A = ~(D).

2. For all f E S(Rn), x E Rn,

A(f)(x) = i(m.D)f(x)-1 2aijDiDjf(x) +

+ Rn-{0} (f(x + y) - f(x) - i(y.D)f(x) 1 + |y|2) v(dy).

Proof. - If f E S(Rn) we denote its Fourier transform by , so that for
each u E Rn, (u) = (203C0)-n 2 Rn e-iu.xf(x)dx. We note that the mapping
f ~  is a continuous linear bijection from S (Rn ) to itself and Fourier
inversion yields

f(x) = (27r) Rn eiu.x(u)du.
By Fubini’s theorem and the Lévy-Khintchine formula, we find that for

all x ~ Rn, t  0,

(T(t)f)(x) = (203C0)-n 2  eiu.xE(ei(u,Y(t)))(u)du
Rn

= (203C0)-n 2 Rn eiu.xet~(u)(u)du.

Hence by dominated convergence, S(Rn) C Dom(A) and

Af(x) = (203C0)-n 2 eiu.x~(u)(u)du,
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so that (1) is established. (2) then follows by standard use of the Fourier
transform. D

Of course we can go much further in characterising the domain of A. It
is shown in Sato [27], pp. 208-11 that the twice continuously differentiable
functions in Co (Rn ) are in the domain and that C~c(Rn) is a core. If we
extend the semigroup to act in L2(Rn), the entire domain forms a non-
isotropic Sobolev space whose structure is determined by the symbol ~ (see
e.g. [19] p. 49-50).

3. Lévy Processes in Lie Groups

Let G be a Lie group with Lie algebra g. A Lévy process in G is a
G-valued stochastic process p = (p(t), t  0) which satisfies the following:

1. p has stationary and independent left increments, where the incre-
ment between s and t with s  t is p(s)-1 p(t).

2. p(0) = e (a.s.)

3. p is stochastically continuous, i. e.

lim P(03C1(s)-103C1(t) E A) = 0,
s~t

for all A E B(G) with e / A

Let Co(G) be the Banach space (with respect to the supremum norm)
of functions on G which vanish at infinity. Just as in the Euclidean case, we
obtain a Feller semigroup (T(t), t  0) on Co (G) by the prescription

T(t)f(03C4) = E(f(03C403C1(t))),

for each t  0, T E G, f E C0(G) and its infinitesimal generator will be
denoted as G.

We fix a basis {Z1,..., Zn} for g and define a dense subspace C2(G) of
Co (G) as follows:

C2 (G) =

lf E C0(G); ZiL(f) E Co (G) and ZiL(f) e Co (G) for all 1  i, j  n},

where ZL denotes the left invariant vector field associated to Z E g by
differential left translation.
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In [17], Hunt proved that there exist functions y2 E C2(G), 1  i  n so

that each

yi(e) = 0 and ZiLyj(e) = 03B4ij,

and a map h e Doum(£) which is such that:

1. h &#x3E; 0 on G - {e}.
2. There exists a compact neighborhood of the identity V such that for

allTEV,
n

h(03C4) = L Yi(7)2.
i=1

Any such function is called a Hunt function in G.

A positive measure v defined on B(G - {e}) is called a Lévy measure
whenever

r h(a)v(da)  oc,
G-{e}

for some Hunt function h.

We are now ready to state the main result of [17].

THEOREM 3.1 (HUNT’S THEOREM). - Let p be a Lévy process in G
with infinitesimal generator £ then,

1. C2 (G) C Dom(£).

2. For each T E G, f E C2 (G)

£(f)(03C4) = biZiLf(03C4) + cijZiLZjLf(03C4)
+ y (f(03C403C3) - f(03C4) - yi(03C3)ZLf(03C4))v(d03C3), (3.1)
G-{e}

where b = (bl, ... bn) E Rn, c = (cij ) is a non-negative-de, finite, sym-
metric n x n real-valued matrix and v is a Lévy measure on G - {e}.

Furthermore, any linear operator with a representation as in (3.1) is
the restriction to C2 (G) of the infinitesimal generator of a unique weakly
continuous, convolution semigroup of probability measures in G.

Several obscure features of Hunt’s paper were later clarified by Ra-
maswami in [26] and then incorporated into the seminal treatise of [13].
For a survey of this and related ideas see [2].
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Now let h be a complex, separable Hilbert space and U(h) be the group
of all unitary operators in h. Let 7r : G ~ U(h) be a strongly continuous,
unitary representation of G in h and let COO (7r) = {03C8 e h; g ~ 03C0(g)03C8 is C~}
be the dense linear space of smooth vectors for 7r in h. We define a strongly
continuous contraction semigroup (Tt03C0, t  0) of linear operators on h by

Tt03C003C8 = E(03C0(03C1(t))03C8) = fa 03C0(03C3)03C8qt(d03C3),G

for each 11 E h. Here qt is the law of pt, and the integral is understood in
the sense of Bochner.

Alternatively if we fix lli, 112 G h and define f E Cb (G) by f ( a ) =
 03C81, 03C0(03C3)03C82 &#x3E; where a E G, we have

(T(t)f)(e) = 03C81, Tt03C003C82 &#x3E; .

Let ,C" denote the infinitesimal generator of this semigroup. It follows
from the arguments of [3] (see also [28]), that C~(03C0) C Dom(03C0) and for
all 11 E C°° (03C0) we have

£7r 1jJ = bid03C0(Zi)03C8, + cijd03C0(Zi)d03C0(Zj)03C8 +

+ r (03C0(03C3) - I - yi(03C3)d03C0(Zi))03C803BD(d03C3). (3.2)
G-{e}

4. The Heisenberg Group

This section is based on Chapter 2 of [29] (see also the monograph [9]).
The Heisenberg group Hn is a Lie group with underlying manifold R2n+l,
equipped with the composition law

1
(a1, q1, p1)(a2, q2, p2) = (a1 + a2 + 1 2(p1 · q2 - q1 · p2), q1 + q2, p1 + p2),

where each ai E R, qi, pi E Rn (i = 1, 2).

A basis for the Lie algebra of left-invariant vector fields is {T, L1,..., Ln,
Ml , ... , M,, 1 where for 1  j  n,

T = 8t,Lj = 8qj + 1 2pj~ ~t, Mj = ~ ~pj - ’2qj 8t’

and we have the commutation relations
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[Lj, Lk] = [Mj, Mk] = [Mj, T] = [Lj, T] = 0, [Mj, Lk] = 03B4jkT,

for 1  j, k  n, so that Hn is step-2 nilpotent.

By the Stone-von Neumann uniqueness theorem, all irreducible repre-
sentations of Hn are either one-dimensional, or are unitarily equivalent to
the Schrôdinger representations in L2(Rn) which are indexed by R and
given, for each 03BB  0 by

7r :f:À (a, q, p) = ei(±03BBaI±03BB1/2q.X+03BB1/2p.D) ,

where X = (Xi,..., Xn) and each Xiu(x) = xiu(x) for u e S’(Rn). As the
work in the remainder of this paper is not affected by the value of À, we will
from now on work only with 7r1, which we will write simply as 7r. We note
that the linear operator p.D + q.X is essentially self-adjoint on S(Rn). A
basis for the representation of the Lie algebra is 

d03C0(T) = iI, d03C0(Lj) = iXj, d1r(Alj) = iDj,

for 1  j  n, where I is the identity operator.

The Schrôdinger representations allows us to define an interesting class
of pseudo-differential operators using the Weyl functional calculus. Indeed
let E S’ (R2n ) then we may define

03C3(X, D) = (203C0)-n / (q, p)ei(q.X+p.D)dqdp,
R2n

and 03C3(X, D) is a continuous linear operator from S(Rn) to S’(Rn).

Moreover, we have the following useful alternative form

(03C3(X, D)f)(x) = (203C0)-n R2n 03C3(1 2(x + y), 03BE)ei(x-y).03BEf(y)dyd03BE, (4.1)

for each f E S(Rn), x E Rn.

In particular we have the classical symbol class - if a e C~(R2n) and
for all multi-indices, a, j3 we can find C03B1,03B2  0, K E R and à  2 such that

|Dx03B1D03BE03B203C3(x, 03BE)|  C03B1,03B2(1 + |03BE|2)K+03B4(|03B1|+|03B2|),

then 03C3(X, D) maps S(Rn) continuously into itself and extends to a conti-
nuous operator on S’(Rn).
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Two straightforward examples which we will find useful below are:

1. If u(x, 03BE) = ei(q.x+p.03BE) then a(X, D) = 7r (0, q, p).
2. If 03C3(x, 03BE) = |x|2 + lçl2 then 03C3(X, D) = Hosc = -0394 + IXI2.
The sub-Laplacian Hosc is of course the well-known harmonic oscillator

Hamiltonian of elementary quantum mechanics.

5. Lévy Processes in the Heisenberg Group

Let p be a Lévy process in Hn and consider the unitary operator valued
process 7r(p) where 7r is the Schrôdinger representation. We compute the
form of the generator (3.2) on the domain C~(03C0) = S(Rn). We will find
it simplifies matters if we write the vector b = (bo, bl, b2), where bo E R
and bi e RI, i = 1, 2. We also write the non-negative definite matrix

coo coi C02

C = coi Ci E , where for i = 1, 2, c00  0, coi E Rn and Ci, E( c02 ET C2
are n x n matrices, with each Ci symmetric.

PROPOSITION 5.1. -

n 

£03C0 = i(b0 + tEjj) l + (ibj1 - 2cJI)Xj + (ibj2 - 2cj02)Dj
j=l 

- c00I - cjk1XjXk - 2 . k 2E D k (5.1)

+ R2n+1-{0} ei(aI+q.X+p.D) - I - i(aI + q.X + p.D) 1 + |a|2 + |q|2 + |p|2 v(da, dq, dp),
Proof. - This follows directly from (3.2). The most interesting part is

the quadratic term which we write as

(
COO C01 C02 (il )

cijd03C0(Zi)d03C0(Zj) = (iI iX iD) coi Ci E iX .

C02 ET C2 2D
Using the Lie algebra commutation relations, we obtain for each

1/J S (Rn)

(EjkXjDk + EkjDjXk)03C8 = E j k(XjDk + DkXj)03C8
n

= 2EjkXjDk03C8 - i 03A3Rjj03C8.
j=l

~
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The following is a fairly straightforward computation using the Weyl
calculus:

PROPOSITION 5.2. 2013 03C0 is a pseudo-differential operator with symbol

03C303C0(x, 03BE) i bo + Ejj + (ibj1 - 2cq’)xj + (ibj2 - 2cj02)03BEj
j=1

- coo - cjk1xjxk - cjk203BEj03BEk - 2Ejkxj03BEk
+ / (ei(a+q.x+p.03BE) - 1 - i(a + q.x + p.03BE) 1 + |a|2 + |q|2 + |p|2) v(da, dq, dp),

where x, 03BE E Rn.

Now let each of the vectors coi = 0 for i = 1, 2 and define a Lévy process
Y in R2n+1 with characteristics (m, 2C, v) where C and v are as above and
mo = bo + 03A3nj=1 Ejj, mj = bj1, mj+n = bj2 for 1  j  n, then we can
as in Proposition 2.1 associate a symbol cpY to the generator of Y via the
Kohn-Nirenberg calculus and the Lévy-Khintchine formula.

Using propositions 2.1 and 5.1 we have the following correspondence
between the processes p and Y at the level of their symbols.

THEOREM 5.3.

~Y(1, u) = 03C303C0(x, 03BE),

where each u = (x, 03BE) E R2n .

It is interesting to contemplate theorem 5.3 from the following viewpoint.
Suppose that we were only given the symbol as data from which we wish to
construct a process, then we can build either the generator of a Lévy process
y in R2n+1 via the Kohn-Nirenberg calculus or of p on Hn by means of the
Weyl calculus. If we know the diffusion matrix C a priori, we could argue
that the non-commutativity of Hn can be detected in either context by the
presence of its off-diagonal elements in the drift. We now introduce a class of
Lévy processes in Hn for which this method of detecting non-commutativity
no longer works.

We say that p is phase-dominated if E = 0, each coi = 0(i - 1, 2),
bo = coo = 0 and v has support in ({0} x R2n) - fol (which we can identify
with R2n - {0}).
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We employ the phrase "phase-dominated" to indicate that the charac-
teristics of p only operate on ’phase-space co-ordinates’.

We investigate phase-dominated processes more extensively. To this end
we introduce a Lévy process Y = (Y(t), t  0) in R2n. It has the following
Lévy-Itô decomposition (see e.g. [27], Chapter 4).

Yj(t) = 03B1jt + 03C4ijBi(t) + 10 il, xj(ds, dx) + 0t+ |x|1 xjN(ds, dx),

for each 1  j  2n, t  0, where a = (03B11,...,03B12n) e R2n, (TI) is a

2n x r matrix, B = (B1,..., Br) is standard Brownian motion in Rr, N
is a Poisson random measure on R+ x (R2n - {0}) which is independent
of B and has intensity measure ~ and N is the associated compensator so
lV(t, A) = N(t, A) - t~(A) for each t  0, A e B(R2n - {0}). We will find it
convenient to define

YQ(t) = (Y1(t),..., Yn(t)), YP(t) = (Yn+1(t),..., y2n(t)), 

and we introduce the Lévy stochastic area of YQ and YP to be the process
(A(t), t  0) comprising Itô stochastic integrals, which is defined by

A(t) = 1 203A3t(YjP(s-_dYjQ(s) - YjQ(s-)dYjP(s))

= 1 203A30t (Yj+n(s-)dYj(s) - Yj(s-)dYj+n(s)).
We say that the Lévy process Y diffuses phasewise if T = 03C4Q0 03C4P0),

where 03C4Q and Tp are (n x ri ) matrices for i = 1, 2 with ri + r2 = r. We
write ’YQ = TQ TI and qp = TpTp .

The next result is a special case of a theorem by Pap on the structure of
Lévy processes in general nilpotent groups ([23], theorem 2 - see also Exam-
ple 1 on page 154 therein). We include a proof for the reader’s convenience.

THEOREM 5.4. 2013 A Lévy process 03C1 = (03C1(t), t  0) in Hn is phase-
dominated if and only if there exists a Lévy process Y in phase space R2n
which diffuses phasewise, for which

03C1(t) = (A(t), YQ(t), YP(t)) a.s. (5.2)
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for each t  0. The in, finitesimal generator of p is given by

(£f)(a) = 03B1j(Ljf)(03C3) + 03B1j+n(Mjf)(03C3) + 1 203B3ijQ(LiLjf)(03C3)
+ 1 203B3ijP (MiMjf) (03C3) 

(5.3)
+ R2n-{0}(f(03C3.(0, xQ, xP)) - f(a) - [xj(Ljf)(03C3)
- xj+n(Mjf)(03C3)]1|x|1)~(dx),

for each f E C2(Hn), 03C3 ~ Hn, where . is the composition law in Hn,
xQ = (xl , ... , xn ) and x p = (xn+1,..., x2n).

Proof. - To ease the notation, we will take n = 1. There is also no great
loss of generality in taking al = a2 = 0, 03C411 = T2 = 1 and assuming that q
has support in flxl E R2n, |x|  1, x ~ 0}. We then have the following

YQ(t) = Bi (t) + 0t+ Xl Ñ(ds, dx),

YP(t) = B2 (t) + 0t+ |x|1x2(ds, dx).
Now assume that p is defined as in (5.2).

By Itô’s formula for semimartingales with jumps (see e.g. [25],
Chapter 2) we obtain for each f E C2 (R3),

t t

f(03C1(t)) = f (0) + 0t(~af)(03C1(s-))dA(s) + 0t(~qf)(03C1(s-))dYQ(s)
+ 0t(~pf)(03C1(s-))dYP(s) + t0(~a~qf)(03C1(s-))d[[A, YQ]]c(s)
+ 0t(~a~pf)(03C1(s-))d[[A, YP]]c(s) + 0t(~a~pf)(03C1(s-))d[[YQ, Tp]]c(s)
- 0t(~a2f)(03C1(s-))d[[A, A]]c(s) + 1 2 0t (~q2f)(03C1(s-))d[[YQ, YQ]]c(s)
+ 1 2 0t(~p2f)(03C1(s-))d[[YP, YP]]c(p(s) + 03A3[f(03C1(s-) + 039403C1(s)) - f(03C1(s-))
- (~af)(03C1(s-))0394A(s) - (~qf)(03C1(s-))0394YQ(s) - (~pf)(03C1(s-))0394YP(s)],
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where [[., .]]c denotes the continuous part of quadratic variation (see e. g. [25]
p.62). The following are then easily deduced from the quadratic variation
of Brownian motion.

d[[YQ, YP]]c(t) = 0, d[[YQ, YQ]]c(t) = d[[YP, YP]]c(t) = dt,

d ’Y’ , A]]c) t = 1 ’Y’ p t dt d Y p A]]c t - 1 2 ’Y’ t dtd[[YQ, A]]c(t) = 2 Yp(t)dt, d[[YP, A]]c(t) = -2 y Q(t)dt,
d[[A, A]]c(t) 4 ((YQ(t))2 + (YP(t))2)dt.

We can now simplify the expression for f(03C1(t)) by incorporating these
results, the Lévy-Itô decompositions of YQ and YP and by introducing the
Lie algebra basis T = aa, L = 8q + 1 2pT and M = ~p - 1 2qT. We then obtain

f(03C1(t)) = f (0) + 0t(Lf)(03C1(s-))dB1(s) + 0t(Mf)(03C1(S-))dB2(s)
+ - 2 0t(L2f)(03C1(s-))ds + 1 2 0t (M2f)(03C1(s-))ds + 0t |x|1 {f(A(s-)
+ 1 2(YP(s-)x1 - YQ(s-)x2), YQ(s-) + xl, l’ p(s-) + x2
- f(03C1(s-))}(ds, dx) +10 0t+|x|1 {f(A(s-)
+ -(T p(s-)xl - l’ Q(s- )x2), YQ(s-) + xl, YP(s-) + x2)2

- f(03C1(s-)) - 1 2(YP(s-)x1 - YQ(s-)x2)(~af)(03C1(s-))
- x1(~qf)(03C1(s-)) - x2(~pf)(03C1(s-))}ds~(dx)

t t

= f(0) + 0t(Lf)(03C1(s-))dB1(s) + 0t(Mf)(03C1(s-))dB2(s)
+ 0t+ |x|1 [f (p(s-).x) - f(03C1(s-))](ds, dx) + 0t (f)(03C1(s-))ds,

where for each u E H1,

(f)(03C3) = 

1 
(L2f)(03C3) + 1 (M2 f) (03C3)

+ |x|1 (f(a.x) - f(a) - xl (Lf)(03C3) - X2 (Mf)(03C3))~(dx).

Sufficiency now follows immediately from theorem 3.1 of [1]. For neces-
sity, let p be an arbitrary phase-dominated Lévy process in Hn, then it has
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an infinitesimal generator of the form (5.3), and hence we can define a Lévy
process in R2n with characteristics (a, T, ~) which diffuses phasewise. The
required result then follows by reversing the steps in the argument given
above and appealing to the uniqueness of solutions to stochastic differential
equations of this type (see e.g. [1], [23]). ~

Note. - For readers with a background in stochastic differential equa-
tions, we remark that since the exponential map from R2n+1 to Hn is

surjective, the equation for f o p which appears in the proof of theorem 5.4
is equivalent to

dp(t) = cjZ-1 (03C1(t-)) ~ dTi(t) (5.4)

with initial condition p(O) = e (a.s.), where o denotes the Marcus
canonical form (see the appendix to [2] and references therein). Here
03C3ji = diag(o,1, ... , 1), Zi (i = 0,1, ... , 2n) are the usual Lie algebra gen-
erators and Y = (To, YQ, ’Y’p) is a Lévy process on R2n+1 (note the com-
ponent Y0 is included simply for "accounting purposes" and plays no role
in determining the process p).

Example 5. 5 (Phase-dominated Brownian motion). -
Let p(t) = (2A(t), 2BQ(t), 2BP(t)), where B = (B0, BQ, BP) is a stan-
dard Brownian motion in R2n+1 and 2A(t) = 03A3nj=1 0t(BjP(s)dBjQ(s)
- BjQ(s)dBjP(s), for each t  0. In this case, the o in equation (5.4) is

the Stratonovitch differential and Y = B. We note that .c1r = 2013Hosc which
has symbol -(|x|2 + lçI2). This example also appears in [31] as a special case
of a prescription for solutions of general SDEs driven by Brownian motion
on nilpotent Lie groups. A related process is studied in [16].

Example 5.6 (Phase-dominated Poisson process). 2013In this example, we
take n = 1. For each t  0, let p(t) = (A(t), NQ(t), NP(t)), where NQ and
Np are independent, one-dimensional Poisson processes. Let (Ibm), mEN)
and (03C4P(m), m E N) be the arrival times for NQ and Np, respectively. We
compute

A(t) = 2 03A3 NP(t ^ 03C4Q(m) -) - NQ(t ^ 03C4P(m)-).
m=0

Example 5.7 (Phase-dominated compound Poisson process). We re-
turn to the case of general Hn . Let (XQ (m), m E N) and (XP(m), m E N)
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be i.i.d. sequences of Rn-valued random variables and let NQ and Np be
as above. Assume further that they are independent of all the XQ (m)’s and
XP(m)’s. Define the following compound Poisson processes in Rn, where
t  0 :-

0398Q(t) = XQ(1) +··· + XQ(NQ(t)), 8p(t) = Xp(l) + ....+ XP(NP(t)).

Then our required process is p(t) = (A(t), 8Q(t), 0398P(t)), where

A(t) = 1 2 n 00 (0398jP(t ^ 03C4Q(m)-)XQj(m) - 0398jQ(t ^ 03C4P(m)-)XjP(m)).

Even in the case of phase-dominated Lévy processes, we can detect the
non-commutativity of the group by examining the passage from generator to
semigroup. We begin by recalling the situation in Rn . If Y is a Lévy process
then its generator is a pseudo-differential operator with symbol p and the
semigroup (T(t), t  0) again consists of pseudo-differential operators with
the symbol of each T(t) being et~, indeed this was established in the proof
of Proposition 2.1.

The passage from the symbol of the generator to that of the semigroup is
not so straightforward in the Heisenberg group case, as we will now demon-
strate. In the following corollary a probabilistic representation of the sym-
bol of the semigroup Tt03C0 is derived from theorem 5.4. Although for general
phase-dominated Lévy processes it does not yield a closed form formula for
the symbol, it is in fact, a generalization of the celebrated Mehler’s for-
mula, which we discuss below and which corresponds to phase-dominated
Brownian motion.

COROLLARY 5.8. - Let p = (p(t), t  0) be a phase-dominated Lévy
process in Hn, so that

p(t) = (A(t), YQ(t), YP(t)), a. s.

for each t  0. The symbol of the associated semi-group is given by

03C303C4t03C0(x, 03BE) = 03A9ei(A(t)(03C9)+YQ(t)(03C9).x+YP(t)(03C9).03BE)dP(03C9).

Proof. - Observe that for each t  0, by theorem 5.4,

03C0(03C1(t)) = ei(A(t)+YQ(t)(t).X+YP(t).D),
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and so

Tt03C0 = 03A9ei(A(t)(03C9)+YQ(t).X+YP(t)(03C9).D)dP(03C9)
By a straightforward application of Fubini’s theorem in (4.1) we see that

03C3Tt03C0 (x, 03BE) = 03A9ei(A(t)(03C9)+YQ(t(03C9).x+YP(t)(03C9).03BE)dP(03C9).
~

Note 1. - In the phase-dominated Brownian-case, with n = 1, we see
that

03C3Tt03C0(x, 03BE) = 03A9ei(2A(t)(03C9)+2B1(t)(03C9).x+2B2(t)(03C9).03BE)dP(03C9),
and a classical formula for the Lévy area (see [32], equation (2.7), p.19)
yields

E(exp(i2A(t))|+B1(t) = a, B2 (t) = b)

t (a2 + b2)(1- t coth(t)) 2t).sinh(t) exp 2t ’

Hence, on carrying out a standard Gaussian integral, we find

- R2 ei(2ax+2b03BE)E(exp(i2A(t))|B1(t) = a, B2(t) = b)
e 2t 

dadb

= 

1 ei(2ax+2b03BE) exp (-(a2 + b2) coth(t) ) dadb= 

sinh(t) R2 
exp (-(a2 + b2)coth(t) 2) 

2 27r

= 

1 
exp (- tanh(t)(x2 + 03BE2)).= cosh(t) 

This is precisely Mehler’s formula in the case n = 1. The case for n &#x3E; 1,

03C3Tt03C0(x, 03BE) = (cosh(t))-ne- tanh(t)(|x|2+|03BE|2),
follows by a straightforward independence argument.

The probabilistic approach which we have just given is essentially that
of Gaveau in [11]. See [29] pp 68-76 for three different proofs of this result.
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Note 2. - In related work to this, Pap [24] has recently found a proba-
bilistic interpretation of the formula for the fundamental solution of

~u ~t = £1r u, in the case where p is an arbitrary symmetric Brownian mo-
tion in H1. This result can be interpreted as a generalisation of Mehler’s
formula.

6. Properties of the Operator £7r

In this section we will make frequent use of the projection-valued mea-
sure Pa,q,p in L2(Rn) associated to the spectral decomposition of the self-
adjoint operator aI + q.X + p.D, where (a, q, p) E R2n+l.

We know that £7r is a densely defined, closed linear operator in L2(Rn).
Our first task is to show that C°° (Rn ) is a core for £7r. The key is the
following technical result.

PROPOSITION 6.1. - There exists C &#x3E; 0 such that for all f E C~c(Rn),

~£03C0f~  (6.1)
n n

C ~f~+03A3(~Xjf~+~Djf~)+03A3(~Xjf~+03A3(~XjXkf~+~XjDkf~+~DjDkf~)].

Proof. Using the defining property of the Lévy measure v, we can
rewrite £7r (as given by (5.1)) as

03C0 = 103C0 + 03C02 + 03C03,

where for some a, j3j, 03B3j ~ C, 1  j  n,

£f = aI + 03B2jXj + 03B3jDj - cool - c1jkXjXk - CjkDJ D - 2EjkXjDk,

.C2 - (ei(aI+q.X+p.D) - I - i(aI + q.X + p.D))v(da, dq, dp),
303C0 = Bc(ei(aI+q.X+p.D) - I)v(da, dq, dp),

and where B = {y E R2n+1, ~y~  1}. Now for each f E C~c(Rn), we find
that

~£303C0f~  Bc ~(ei(aI+q.X+p.D) - I)f~v(da, dq, dp)
 2v(Bc)~f~.
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By the spectral theorem and Taylor’s theorem, we see that for each
(a, q, p) E R2n+2,

~[ei(aI+q.X+p.D) - I - i(aI + q.X + p.D)]fI12
=  léx - 1 - i03BB|2~Pa,q,p(d03BB)f~2

R2n+l

 11 + |03BB|4 I Pa,q,p(dA) f ~2

= 1 4~(aI + q.X + p.D)2f~2.

We thus obtain

~03C02f~  1 2 1B (aI + q.X + p.D)2f~v(da, dq, dp)
n

 Ci L (lal2 + |q|2 + Ip12) [~f~ + 03A3(~Xjf~ + ~Djf~) +
+ 03A3 (~XjXkf~ + ~XjDkf~ + ~DjDkf~) v(da, dq, dp)

j,k=i 

 C2 ~f~ + 03A3(~Xjf~ + ~Djf~) +

+ 03A3 (~XjXkf~ + ~XjDkf~ + ~DjDkf~)] ,... (ii)

where Ci, C2 &#x3E; 0.

The required result now follows on combining (i), (ii) and the expression
for 11£lfll. D

THEOREM 6.2. 2013 C~c(Rn) is a core f or £03C0.

Proof. - Let f E Dom(£03C0), then we can find (fn, n E N) in C~c(Rn)
such that f = limnn~~fn. By Proposition 6.1, we deduce that

limm,n~~|~£03C0(fn - fm)~ = 0, hence the sequence (£03C0fn, n E N) is Cauchy
and so convergent to some g E L2(Rn). But £03C0 is closed, hence 9 = £1r f
and the result is established. D
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In the following we will find it convenient to denote the restriction of £7r
to C~c(Rn) by £003C0.

By (5.1) we see that £0 is symmetric if the following conditions hold:

2022 b0 = bij = 0(i = 1,2,j = 1,...n), E = 0.
v is a symmetric measure i. e. v(A) = v(-A) for all A E B(R2n+1).

If we make the further assumption that each Coi = 0(i = 1, 2), then
2013£03C00 is also a positive operator in the sense that  03C8, (-£03C00)03C8 &#x3E; 0 for all

03C8 E C~c(Rn) as the following result shows :-

PROPOSITION 6.3. 2013 -£03C00 is a positive symmetric operator where

-£03C00 = c00I + c1jkXjXk + c2jkDjDk

+ / (1 -cos(a1 + q.X + p.D))v(da, dq, dp). 
(6.2)

Proof. Since C is a non-negative definite symmetric matrix, it is

easily verified that the first line of (6.2) is a positive symmetric operator.
We write

M7r =  (1- cos(aI + q.X + p.D))v(da, dq, dp).

By the spectral theorem, for each 03C8 E S(Rn), we have

 03C8, M03C003C8 &#x3E;=R2n+1-{0} R (1 - cos(03BB))~Pa,q,p(d03BB)03C8~2v(da,dq,dp)  0,
and the result follows. D

Now since -£0 is positive symmetric, we can define a positive quadratic
form £7r with domain C~c(Rn) by the prescription

03B503C0(f) = -  f, £03C00f &#x3E;,

for each f E C~c(Rn). Then 03B503C0 is closable with closure £7r, and there exists
a positive self-adjoint operator A 7r, which is an extension of -£03C00, such that
Dom(A03C0) ç Dom(03B503C0) and 03B503C0(f) = f, A03C0f &#x3E;, for all f E Dom(A03C0). A03C0 is
called the Friedrichs extension of -£0 (see e.g. [7], p.4).



2014 170 2014

David Applebaum, Serge Cohen

LEMMA 6.4. A03C0 = -.c7r and (Tt03C0, t  0) is a self-adjoint semigroup
in L2(Rn).

Proof. - Since A7r is positive and self-adjoint, -A7r is the generator
of a self-adjoint, strongly continuous, contraction semigroup (St03C0, t  0)
in L2(Rn). st f and 7t-’f are both solutions of the initial value problem
f’(t) = .c7r f(t), f(0) = f, where f E C~c(Rn), hence by uniqueness of such
solutions we conclude that St’ f = Tt03C0f, for each t  0, f E C~c(Rn). A
standard density argument then yields that St f = T.¿7r f, for all f e L2(Rn),
and the result follows. Il

In order to construct Dirichlet forms, we need to know when the operator
.c7r preserves real-valued functions.

PROPOSITION 6.5. - -,Cô maps real-valued functions to real-valued func-
tions if and only if 

fol sin(a + q.x) sin(p.03BE)v(da, dq, dp) = 0, 03BE E Rn. (6.3)
R2n+1 - {0}

Proof. 2013 Because of (6.2) the only part of -£003C0 that can map real-
valued functions to complex-valued functions is M03C0. Hence without loss of
generality we state a necessary and sufficient condition for M03C0.

We will employ the Weyl functional calculus which was introduced in
section 4. Since equation (4.1) is valid for all f E C~c(Rn), an operator of
the form or(X, D) maps real-valued functions to real-valued functions if and
only if

R2n 03C3(1 2(x + y), 03BE)ei(x-y).03BEd03BE ~ R,
for all x, y E Rn. Hence for all x, p E Rn

R2n 03C3(x,03BE)eip.03BEd03BE ~ R,

and this is equivalent to the symmetry condition

03C3(x, 03BE) = 03C3(x, -03BE) for all x, 03BE e RD. (6.4)

Now we return to the operator M7r. By Proposition 5.2, we have for all
x, 03BE E Rn,

03C3M03C0(x, 03BE) = R2n+1-{0} (1 - cos(a + q.x + p.03BE))v(da, dq, dp).
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Equation (6.4) then yields

R2n+1-{0} (cos(a + q.x + p.03BE) - cos(a + q.x - p.03BE))v(da, dq, dp),

for all x, 03BE e Rn, which is equivalent to equation (6.3), as required. D

Note that if v is symmetric with respect the variable p that is

v(A) = v(s(A))
for all A E B(RD), where s (a, q, p) = (a, q, -p), then (6.3) is satisfied. A

less trivial probabilistic example where (6.3) is true is when ’Y’p and YQ
are independent. This is easily verified from the observation that, by the
Lévy-Khintchine formula, we have

v (da, dq, dp) = 03B40(da) ~ vQ(dq) ~ 80 (dp) + 80 (da) 0 50 (dq) 0 vp (dp), (6.5)

where vp is the Lévy measure of Yp, vQ is the Lévy measure of YQ, and do
denotes the Dirac mass at the point 0.

For the remainder of this paper, we will assume that the condition (6.3)
is satisfied.

In this case, -,Cô maps real-valued functions to real-valued functions
and Theorem 6.2 allows us to extend this property to the generator .c7r and
to the semigroup (Tt03C0, t  0). From now on, we will restrict the action of the
positive symmetric operator -,Cô and its closure -£03C0 to the real Hilbert
space L2(Rn, R), where the domain of the former operator comprises the
real-valued smooth functions of compact support, C~c(Rn, R). We may sim-
ilarly restrict the domain of the form S, and of its closure £7r, to comprise
real-valued functions.

PROPOSITION 6.6. 2013 For each f E C~c(Rn, R),

03B503C0(f, f) = 2: Cjk 2 1 n ~jf(x)~kf(x)dx
+ Rn [c00 + c1jkxjxk + R2n+1-{0} sin2(1 2(a + q.x + 1 2q.p))p» 

(6.6)
+ sin2(1 2(a + q.x - 1 2q.p))v(da, dq, dp f2(x)dx

2 r r cos(a + q.x + 1 2p.q)(f(x) - f(x + p))2v(da, dq, dp)dx.
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Proof. - Using the notation M03C0 from the proof of Proposition 6.3 and
applying the symmetry of v, we obtain for each f E cga (Rn), x E Rn,

(M03C0f)(x) = R2n+1-{0} [f(x) - ei(a+q.x+1 2p.q)f(x + p)]v(da, dq, dp).

(6.6) follows by a straightforward computation using Fubini’s theorem, a
change of variable and the symmetry of v. D

The structure of (6.6) can be written more succinctly as follows. For
each f E C~c(Rn, R),

03B503C0(f, f) = 03B5c(f, f) + Rn f(x)2k(dx) 
(6.7)

Rn 
(6.7)

+ Rn (R2n+1-{0} 

(f(x) - f(x + p))2J(da, dq, dp, dx),

where 

Ec(f, f) 03A3 c2jk Rn ~jf(x)~kf(x)dx,

k (dx) coo + c1jkxjxk
+ R2n+1-{0} sin2(1 2(a + q.x + 1 2q.p))
+ sin2(1 2(a + g.x - 1 2q.p))v(da, dq, dp)) dx

and J(da, dq, dp, dx) = 1 2 cos(a + q.x + 1 2p.q)v(da, dq, dp)dx.
(6.7) is closely related to the Beurling-Deny formula for regular Dirichlet

forms (cf. [10], p.108) and it is tempting to give the formula a probabilistic
interpretation wherein Éc is the local part, associated to a diffusion process,
the term controlled by k represents killing, while that determined by J
represents jumps. In general, however J is not a positive measure, take for
instance v(da, dq, dp) = 03B4(03C0,0,1)(da, dq, dp) + 03B4(-03C0,0,-1) (da, dq, dp) where 03B4 is
Dirac mass.

The interpretation of £7r in general, is an interesting problem. Here we
will concentrate on the case where we obtain a legitimate Dirichlet form
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and so, from now on, we will make the assumption that J is a positive
measure on {(a, q, p, x) E R2n+1,p ~ 0}. This holds, for example, when
supp(v) = {(0, 0, p), p ~ Rn} or, when v is the Lévy measure corresponding
to ’’lC’p and ÏQ independent, as can easily be deduced from (6.5).

THEOREM 6.7. 2013 If J is a positive measure on {(a, q, p, x) E R2n+l,
p ~ 0} then £7r is a symmetric Dirichlet form.

Proof. - By standard use of mollifiers, see e.g. [10], p.7-8, for each
e &#x3E; 0, there exists a family of infinitely differential functions (0, (x), x E R)
such that 0, (f ) e ego (Rn, R) for all f E C°° (Rn, R). Moreover we have
~03B5(x) = x, for all x E [0, 1], -e ~03B5(x)  1 +é, for all x E R and 0  ~03B5(y)
- ~03B5(x)  y - x, whenever x, y ~ R with x  y. Now it follows immediately
from the representation (6.6), that for each f e C~c(Rn, R), 03B5 &#x3E; 0,

03B503C0(~03B5(f), ~03B5(f))  £1r (f, f),

and so £7r is Markovian. Hence 03B503C0 is a symmetric Dirichlet form by Theorem
3.1.1 of [10], p.98-9. n

By general properties of Dirichlet forms (see e.g. [10], [7]), £7r generates a
symmetric sub-Markov semigroup in L2 (Rn, R), so that whenever 0  f  1
(a.e.), we have 0  Tt03C0f  1 (a.e.).

By Theorem 6.2, 7 is regular and by the construction of Chapter 7 in
[10], we can assert the existence of a symmetric (with respect to Lebesgue
measure) Hunt process X = (X(t), t  0) with state space Rn~{0394} (where
A is the cemetery point), which is unique up to exceptional sets and whose
transition semigroup is a quasi-continuous version of (Tt03C0, t  0). It is an in-
teresting problem to relate this equivalence class of processes more directly
to p. From (6.7), we see that the local part 7, is simply given by a Brow-
nian motion in Rn with covariance matrix (c2jk), while both the diffusion
and jump characteristics of p contribute to killing of X. In the case where
supp(v) = {(0, 0, p), p E Rn 1 and coo = c1jk = 0, for all 1  j, k  n, then X
is a symmetric Lévy process in Rn. The next proposition describes the Hunt
process in a more interesting setting. We will take n = 1, for simplicity.

PROPOSITION 6.8. - Let p = (A(t), YQ(t), YP(t), t  0) be a phase-
dominated Lévy process for which T Q and YP are symmetric and indepen-
dent. For each x E R consider the sub-Feller process (Ytx, t  0) defined
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by

Yt - x + YP(t) if TX &#x3E; t,
= A if Tx  t, (6.8)

where 0394 is a cemetery point, and

Tx = inf {s  0, -r  03A6Q(YP, x, s)},
where 7 is a random variable with an exponential distribution with parameter
1 which is independent of p.

We then have

(Tt03C0 f)(x) = E(f(Ytx)),

for every f E C~c(R, R), t  0, x E R. The functional 03A6Q is defined by the
relation

E exp(i 0t (g(s-) + x)dYQ(s)) = exp(-03A6Q(g, x, t)),0

for every function 9 : R+ - R which is right continuous with left limits.

Proof. - For every f E C~c(R, R), t  0, x E R, the Schrôdinger repre-
sentation yields

(Tt03C0 f)(x) = E (exp(i(A(t) + YQt).x + 1/2YQ(t).YP(t)))f{x + YP(t))),
see e.g. [29], p. 49 equation (2.23).

Since

YQ(t).YP(t)) = 0t YP(s-)dYQ(s) + YQ(s-)dYP(s),0

we may also write

(Tt03C0 f)(x) = E exp(i( YP(s-)dYQC(s) + YQ(t).x))f(x + YP(t)))
= E (exp(i(t0(YP(s-) + x)dYQ(s)))f(x + YP(t))) .

0

Then the conditional expectation,

E exp(i 10 t (YP(s-) + x)dYQ(s)) 1 y p ) = exp(-03A6Q(YP, x, t)),
because YP and YQ are independent.
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Now the Lévy-Itô decomposition for the symmetric Lévy process YQ
takes the form

YQ(t) = 03B8QB(t) + fiui u(t, du) + fiui)1 uN(t, du),

where 03B8Q  0, B = (B(t), t  0) is a standard Brownian motion and N is
a Poisson random measure on R+ x (R - {0}) which is independent of B
and has a compensated measure N and a symmetric Lévy measure 77Q.

Let 9 : R+ ~ R be right continuous with left limits. We apply Itô’s
formula to the semimartingale exp ( i jj (g (s -) + z)dTQ (s)) and then take
expectations, to obtain for each t  0, x E R,

03A6Q(g, x, t) 2 Q 0t(g(s-) + x)2ds2 0

t

- / |u|1 [exp(iu(g(s-) + x)) - 1 - iu(g(s-) + x)]~Q(du)ds

- / |u|1 [exp(iu(g(s-) + x)) - 1]~Q(du)ds.

Observe that 03A6Q(f, x, t) is a non-negative functional since 77Q is sym-

metric, indeed if we interpret all integrals with respect to qQ as principal
values, we may write

03A6Q(g, x, t) = Q 0t(g(s-) + -x)2ds + it 1 (1-cos(ug(s-)))~Q(du)ds.
We now conclude that

(T;7r f) ( x) = E (exp(-03A6Q(YP, x, t))f(x + YP(t))),

which completes the proof of the proposition. D

We remark that much of the analysis described in this section can also be
carried out for non-symmetric Dirichlet forms, provided the sector condition
described in [21] holds.

Note. - When - £7r is positive and symmetric, the symbol of £7r takes
the form



-176-

David Applebaum, Serge Cohen

03C3£03C0(x, 03BE) = -c00 - c1jkxjxk - c2jk03BEj03BEk
+ R2n+-{0} (cos(a + q.x + p.03BE) - 1)v(da, dq, dp),

and following a calculation in [12], p.109, we can write the associated closed
form in the alternative form

03B503C0(f, f) = -(203C0)-n  03C303C0(x,03BE)0393(f)(x, 03BE)dxd03BE,
Rn Rn

where 0393(f)(x, 03BE) = fRn e-iy.03BE f(x + 1 2y)f(x - 1 2y)dy, for each f E C~c(Rn).
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