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Intertwined mappings(*)

JEAN ECALLE (1), BRUNO VALLET (2)

ABSTRACT. - We show that, contrary to expectations, there exist pairs
of formal and even analytic, non-commuting and non-elementary (neither
algebraic nor algebraic-differential) mapping germs in Diff(C,0) that are
‘entwined’ in a group relation W(f, g) = id. In the case of identity-tangent
mappings, ’twins’ exhibit, rather than analyticity, generic divergence , but
of a particularly interesting sort: resurgent, accelero-summable, and with
simple alien derivatives.

RÉSUMÉ. - Nous montrons que, contrairement à une attente assez parta-
gée, il existe dans Diff(C, 0) des paires ( f, g) de difféos locaux jumelés, qui
engendrent des groupes « intéressants », i. e. ni libres ni trop élémentaires

(ils ne sont pas abéliens et ne se réduisent pas, même après éclatement, à
des groupes d’homographies). De tels groupes sont dits liés. Nous ébau-

chons une classification des relations W ( f, g), nécessairement très spo-
radiques, qui les définissent. Dans le cas de difféos tangents à l’identité, les
générateurs jumelés f, g sont génériquement divergents, mais résurgents,
accéléro-sommables, et ils possèdent des dérivées étrangères remarquables.
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1. Introduction. Intertwined mappings and bound groups

1.1. Interwined mappings and bound groups

The mappings we shall be concerned with are mainly the local diff eo-
morphisms (or "diffeos" for short) of C (with either x = 0 or z = 00 as
fixed point) as well as their formal counterparts. More to the point, we shall
be looking for "intertwined mappings", i.e. for pairs (f,g) of diffeos (or
"twins") that generate a ’bound’ group G{f,g}, by which we mean a group
that is

(i) non-free, i.e not isomorphic to the two-generator free group

(ii) non-abelian

(iii) non-elementary, i.e. not conjugate to a group of homographies.

The last requirement is there to rule out uninteresting situations. It

means that no local change of variable, whether analytic or formal, unrami-
fied (x ~ cx + ···; z ~ a z +···) or ramified (x ~ c xn +···; z ~ a zn +···)
should turn f and g simultaneously into a pair of "homographies" or
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"möbius maps" x H ax(1 + bx)-l (near x = 0) or, if the fixed point be
z = oo, into a pair of "similitudes" z H a z + b.

In order to generate a bound group in the above sense, f and g must of
course verify some composition relation :

The point, however, is that most relations W force f and g to commute or
"nearly-commute" , i.e. to be simultaneously conjugate to homographies. In
fact, as we shall see, only finely honed and fairly intricate relations W can
lead to suitable solutions (f,g) and give rise to bound groups G{f,g}.

1.2. Motivations

(i) Originally, the question as to the existence of bound groups (specif-
ically, for analytic, identity-tangent local self-mappings of C) was
raised in the early 90s by D. Cerveau, R. Moussu and others in con-
nection with the classification of local analytic foliations on C2 and
the holonomy of local differential equations (see [Ce]). The expecta-
tion, it seems, was that such groups didn’t exist. In 1995, however,
one of us came up with a first series of examples, namely those listed
in the mid-part of §3 (mainly §3.3). But then the subject was provi-
sionally laid to rest, and only recently taken up anew for systematic
investigation.

(ii) Another way of looking at the same question ([Ce]) is by trying
to extend the so-called Tits alternative. In its classical formulation,
the Tits alternative applies to subgroups G C Gl (n, C) of the linear
group, and it states that
- either G is virtually solvable, i.e. it contains a finite solvable sub-

group of finite index
- or it contains a free 2-generator subgroup, which is Zariski dense.
So a natural and important question is: does a similar alternative hold
for Diff(C, 0) and its formal counterpart? For the latter, we shall show
that the answer is no. For the former also, the answer is no, but the
identity-tangent sub-case is still open.

(iii) Actually, bound groups of mappings are basic and natural objects in
their own right and their study requires no elaborate apology. Indeed,
in the one-operation-only context of group theory, "being intertwined"
is for a pair of mappings ( f , g) the closest equivalent one could think
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of to "algebraic dependence" for a pair of irrational numbers (a, b).
Moreover, since twins (f,g) are so scarce, so thinly spread out in
the landscape, their precise shape and properties are a matter of
legitimate curiosity.

(iv) The search for twins (and more generally for siblings, ie "overrelated"
systems of diffeomorphisms; see §6.7-8) is closely bound up with the
topic of infinite-dimensional group representations ("into") and re-
alisations ("onto"). Whereas finite-dimensional representations and
realisations are quite adequate for finite groups, infinite groups (es-
pecially solvable ones) often call for infinite-dimensional representa-
tions, and in particuliar for realisations as special groups of mappings
(local or global).

(v) Twins provide a striking illustration of the ubiquity of resurgence
and the usefulness of acceleration. Indeed, as we shall show, although
identity-tangent twins are generically (and probably always) diver-
gent, they are always resurgent (in a suitable chart) and even biresur-
gent, i.e. resurgent with respect to two distinct "critical times". There-
fore, to resum them, we must resort not only to the usual Borel-
Laplace scheme, but also to one intermediary acceleration transform.

1.3. Reminders about local diffeos of C

Rather than working directly with local diffeos f :

we shall give precedence to the associated substitution operators F, denoted
by the same letters, but capitalised :

The reason is that operators afford greater flexibility : instead of one single
operation for diffeos (namely the composition product o), operators can
be subjected to four operations: addition; multiplication; the taking of the
logarithm (or infinitesimal generator) and the Lie bracketing of infinitésimal
generators. But one should be mindful of the order reversal: the operator
product FG corresponds to the composition product g o f.

Diffeos (1.2) with a "multiplier’ a = 1 are said to be identity-tangent.
When a is ~ 1 but a unit root, f is said to be pre-identity tangent (since a
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suitable iterate is identity tangent). When neither is the case, f is declared
non-identity tangent.

If f is identity-tangent, the substitution operator F is triangular with
respect to the natural basis {xn} of C[[x]]. Moreover, F -1 is triangular with
a zero-diagonal, and so is F* := log F, but whereas F is an automorphism
of the algebra C[[x]]:

its logarithm F* is a derivation and thus of the form:

The tangency order p ( 2) of an identity-tangent diffeo f is the index of
the first non zero coefficient an in (1.2) or a*n in (1.5), which amounts to
the same, since the leading coefficients coincide in both series (ap = a*p).

If f has tangency order p, then under some (formal, unramified) change
of coordinate it can be brought to the normal form:

with a well-defined iteration residue ce,, E C. As a consequence, a further

(ramified) change of coordinate :

will turn f into the plain unit shif t z ~ z + 1 with the fixed point moving
from x = 0 to z = ~.

If f is pre-identity-tangent, its multiplier is a primitive unit root a =
exp(27ri p** p*) of some order p*. So the iterate fP* is identity-tangent, and f
itself can be normalised to:

with a well-defined iteration residue 03B1*, a tangency order p divisible by p* ,
and with R denoting the rotation operator of angle -203C0 p** p*:
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Lastly, if f is non-identity-tangent, it can be linearised, at least formally,
i.e. normalised to f nor (x) = a x.

Throughout the first half of this investigation (right through §5), we
shall be concerned with f ormal twins, without any growth restriction on the
coefficients an in (1.2). Only in the second half shall we look for analytic
twins or, failing that, for resurgent ones. But right now, we must briefly
mention how analyticity affects the main constructs pertaining to diffeos.

For non-identity-tangent analytic diffeos f, the normalising (i.e. linearis-
ing) change of coordinate (unique up to a linear map x ~ c x) is always
analytic, except if the multiplier a of f is of module 1 and Liouvillian,
which in this context means that it violates A.D. Bryuno’s diophantine
condition. In that case, the normalising map is generically divergent and
non-resummable.

For identity-tangent (or pre-identity-tangent) analytic diffeos, on the
other hand, both the normalising change of coordinate and the infinitesimal
generator f * are (generically) divergent but (always) resurgent (with critical
time z = x-P) and Borel-Laplace resummable. Such diffeos, on top of their
two formal invariants (the tangency order p and the iteration residue Q*)
possess a countable infinity of independent analytic invariants, each of which
depends holomorphically on f (see [E2]).

All these results carry over, with only slight changes, to the context of
higher-dimensional local diffeos (i.e. diffeos of C03BD0), but there is one respect
in which one-dimensional diffeos stand out: for them, the set of all iterates
f w of complex order w always coincides with the centraliser of f, that is,
with the set of all diffeos g that commute with f.

1.4. Free groups and algebras

Let Al(a, b) (resp. Lie(a, b) denote the associative (resp. Lie) alge-
bra freely generated by two non-commuting symbols a and b, with the
natural immersion Lie (a, b) C Al (a, b). Further, let Gr (A, B) be the
free non-abelian group generated by A and B. By substituting (ea, eb) for
(A,B), we may regard Gr(A, B) as a multiplicative subset of Al(a, b)
and log(Gr(A, B)) as a subset of Lie(a, b), where Al and Lie denote the
natural completion of Al and Lie obtained by allowing infinite sums.
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A polynomial function on Gr (A, B) is a (scalar-valued) function P of
the form:

with polynomial dependence on the variables mi and ni and the natura
connection condition:

A subset H of Gr(A, B) is said to be of (polynomial) codimension d if
it is the zero locus of d independent polynomial functions on Gr (A, B) :

If, for each monomial c = a03BC1 b03BD1 ··· aJ-Ls b03BDs in Al (a, b) and each ele
ment W(A, B) - Am1 Bn1 ··· Ams Bns in Gr(A, B), we define Pc(W
as the (rational) coefficient of c in the natural expansion of W(ea, eb) the]
the aggregate of all these Pc clearly constitutes a complete but non-free se
of polynomial functions on Gr ( A, B). But if we let, run through some
basis (eg Lyndon basis) of Lie (a, b) and define P*03B3(W) as the coefficien
of log(W(ea, eb)) along the basis vector 03B3, then these Pi yield a set o
polynomial functions on Gr(A, B) that is still complete but free as well.

1.5. Campbell-Hausdorff type formulae

We shall make constant use of the notations:

We shall also require the Campbell-Hausdorff formula :

along with these two variants:
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where the first term in the sum E (corresponding to j = 1) has to be
interpreted as ar ... a3 al a2 al or, equivalently, as 2013r ··· a3 âi a2.

1.6. Général notations

Boldface symbols shall be reserved almost exclusively for free structures
(groups, associative algebras, Lie algebras) and their elements. Plain sym-
bols shall be used for bound structures, such as the group 9 (resp. 9) of
all formal (resp. analytic) local diffeomorphisms of C. As a rule, the twid-
dle N shall signal formalness (as opposed to analyticity) in series, diffeos,
differential equations etc. But in practice, to avoid unnecessary clumsiness,
the twiddle will mark only sets (such as g) and seldom their elements ( f ,
g etc.), except when strictly indispensible, for instance whenever we must
carefully distinguish between a divergent formal power séries and its (not
necessarily unique) sums ~ obtained by various resummation procedures.

As already pointed out, diffeomorphisms shall be denoted by small letters
f, g, etc, while the corresponding substitution operators F, G, etc, shall
always be capitalised. For expediency, both will usually be referred to as
"diffeos".

1.7. Outline of the paper

The paper’s first half is devoted to the construction of f ormal twins. Af-
ter some group-theoretic reminders (§2), we go through a series of easy-to-
construct examples (§3) illustrative of the main types of (identity-tangent)
twins. Then, after a Lie-theoretic excursion with some novel material (§4),
we attempt a reasonable systematisation (§§5, 6), as opposed to an exhaus-
tive one which, as we shall see, is completely out of reach. For each of the
leading twin types, we carefully indicate the simplest defining relations W,
i.e. those with lowest (polynomial) codimension or with other low "com-
plexity indices". We then sketch a natural generalisation: bound groups
with more than two generators ("siblings".)1

(1) A section devoted to yet another generalisation - bound groups consisting of higher-
dimensional diffeos - was scrapped for lack of space.
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In the next section (§7) we investigate the analytic nature of the twins
constructed thus far. Since the solutions (F, G) of any equation W(F, G) = 1
are defined upto a simultaneous conjugacy:

the pertinent question is not, of course, whether the general solution con-
verges, but rather: how simple can the pair (F, G) be made in a suitable
chart? Or again: how simple does F (resp. G) become after its twin G

(resp. F) has been normalised? For non-identity tangent twins, it is rather
easy (by applying the theory of the so-called "sandwich equation" ) to show
the generic analyticity of well-chosen representatives (F, G). For identity-
tangent twins, the position is exactly the reverse: we establish their generic
divergence and resurgence. It would even seem that identity-tangent twins
are always divergent and always resurgent, but a regular proof (especially
of the former) appears to be a long way off.

The last, very sketchy section (§8) discusses twins in the larger setting
of transseries and analysable functions (as opposed to power series and
analytic or resurgent germs) and broaches a number of side-issues, such as
the ordering of free groups. 2

2. Some group theory. Alternators and word factorisation.
Periodic automorphisms

In this section, Gr and Lie will stand for Gr(A, B) and Lie(a, b), i.e.
will denote the two-generator free group resp. Lie algebra.

2.1. Filtrations and gradations on Gr and Lie

The algebra Lie has an elementary gradation into homogeneous compo-
nents

with Lie[d] (resp. Lie[d1,d2]) spanned by multicommutators of global degree
d (resp. of degree dl and d2 in a and b). The corresponding dimensions are

(2) Another such side-issue, originally meant for inclusion in this paper, has been
removed for lack of space and redirected to [EV2]. It asks: what is the "proper" and
most "comprehensive" notion of analyticity on free algebras (Lie or associative)? We
rephrase the question so as to give it a clear-cut meaning. Then we solve it and come up
with a startling, quite counter-intuitive answer.
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given by classical formulas:

03BC(2022) being the classical Môbius function.3 Going with that graduation w
have the filtration:

with the obvious commutation inclusions.

As far as the algebra Lie is concerned, the gradation is the primary
notion and the filtration rather derivative. But with the group Gr the po-
sition is exactly the reverse. Moreover, we seem to have the choice between
two alternative, a priori non-equivalent definitions for the filtration on Gr.
According to the first definition, Gr Idj (resp. Gr{d1,d2}) is simply the set
of all W(A, B) in Gr whose natural Lie image

lies in Lie{d} (resp. Lie{d1,d2}). This defines a filtration, i.e

because the Campbell-Hausdorff formula (1.19) for brackets involves, on its
right-hand side, only terms of degree  1 in a and b.

Then we have a second definition (provisionnally distinguished by dou-
ble braces) according to which Gr{{d}} (resp. Gr{{d1,d2}}) is the subgroup
generated by all multicommutators of alternance  d (resp.  (di, d2)). We
speak here of "alternance" rather than "degree" to preclude any confusion
with the "degree" of a word W(A, B). A multicommutator of alternance
d is of course one with exactly d arguments (which we may take to be A±1

(3) Recall that 03BC(n) = (-1)s (resp 0) if n is quadrat-frei and a product of s distinct
primes (resp otherwise).
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or B±1) and a multicommutator of alternance (dl, d2) is one with exactly
dl arguments Ami (or A±1) and d2 arguments Bn2 (or B-1:1). The reason
why we may assume all exponents mi and ni to be ±1 is that by repeated
use of the Witt-Hall identities:

we may break up any multicommutator into a product of multicommutators
with equal (or greater) alternance, but with arguments of the form A±1 or
B±1.

Clearly, the Gr{{d}} and Gr{{d1,d2}} define a new filtration on Gr, i.e.
the inclusions (2.7) extend to the double-braced Gr{{···}}. But in fact:

PROPOSITION 2.1. - The two natural filtrations on Gr coincide:

COROLLARY 2.2. - The quotients:

make sense (since the groups right of the slash are distinguished subgroups of
those left of the slash) and define abelian groups Gr[d] and Gr[d1,d2] that are
isomorphic to Lie[d] and Lie[d1,d2] (or rather to their additive submodules
spanned by multicommutators).

Proof. - The inclusions Gr{···} ~ Gr{{···}} are trivial, since formula
(1.20) carries on its right-hand side only multicommutators of degree  1 in
each of the variables ai. The reverse inclusions, however, are by no means
obvious. The one involving the "global" filtration, namely Gr{d} C Gr{{d}},
is a classical result by P. Hall (see [L.S]),which involves much more than
dabbling with the Witt-Hall identities (2.8), (2.9), (2.10). Fortunately, it is
but a short step from this inclusion to the more precise inclusion Gr{d1,d2} C
Gr{{d1,d2}}. In fact, all it takes is proving the following:
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LEMMA 2.3 (WORD FACTORISATION). - For each W (A, B) in Gr{d}
(d  1) and each pair (d1(2022), d2(2022)) of ’complementary’ permutations of
{1,..., d - 11 (i. e. permutations such that d1(i) + d2 (i) ~ d), there exists a
(non-unique) factorisation:

The argument being much the same for all permutations, let us check
this for dl (i) = i. Due to the inclusion Gr Idj C Gr{{d}} and by repeated use
of the Witt-Hall identities, we can produce a factorisation W = VI V2 ... Vs
with elementary factors Vy of alternance (d’j,d"j) in (A, B) with d’j + d"j 
d. Set l5 == inf dj and write W = P Q Vj R, with P - V1 V2 ... Vj1
regrouping all factors Vj (if any) with alternance l5 in A and already in
front position; with Vj1 denoting the first factor (if any) with A-alternance
l5 but not in front position; and with Q regrouping all remaining factors.
This leads to a new factorisation:

with a factor {Vj1, Q-1}Q which in turn may be broken up into elementary
factors vj of A-alternance &#x3E; 2 J. By repeating the process for the remaining
factors V j1’ Vj2, etc. (i f therebesuch)o f A - alternance03B4 in Q, we can move
all these factors into front position; and the all factors with A-alternance
03B4 + 1, 03B4 + 2, etc.

This proves the lemma, which we may now apply to words W ( A, B) in
Gr{d1,d2}, in which case the decomposition (2.15) will reduce to only one
non-trivial factor, that single factor being in Gr{{d1,d2}}. So Gr{d1,d2} C
Gr{{d1,d2}}, which completes the proof of Proposition 2.1. The corollary
about the structure of Gr[d] and Gr[dl,d2] is then an easy consequence. D

2.2. Finite criteria for alternance (dl, d2)

Each subgroup Gr Idl has finite codimension in Gr (see §1.4). In fact, its
codimension is exactly lie(2)+···+lie(d-1). But, save for (di, d2) = (1,1),
each subgroup Gr{d1,d2} has infinite codimension. Indeed, if we go by the
(first) definition of Gr{d1,d2}, checking that a given word W (A, B) is in
Gr{d1,d2} implies checking infinitely many "polynomial" identities P(W) =
0 of type (1.12).
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Fortunately, there exist criteria involving a finite number of steps. First,
observe that any W ( A, B) in Gr{1,1} may be written in a unique way as
finite products of factors An := Bn A B-n or Bm := A"2 B A-’:

LEMMA 2.4. - W(A, B) is in Gr{d1,d2} ((d1, d2) &#x3E; (1, 1)) if and onl
if :

The symbol 0 means that the right-hand sides are of total degree  di
(or d2) in the an2 (or bmj) regarded as free independent variables. The
lemma directly follows from the fact that within the algebra Lie {a, b}
(i.e. in the ’closure’ derived from Lie {a, b} by allowing infinite sums), the
subalgebras Lie {an1, ans1} or Lie {bm1,..., bms2} finitely generated
by a finite number of distinct elements an or bm:

are themselves free. So, checking that W (A, B) has alternance (dl, d2)
involves only a finite number of steps which, however, steeply increases
with 81 and 82.

2.3. Low-complexity alternators. Measures of word complexity

Let us apply the above criterion to words of the form:

with indices j regarded as elements of Zr := Z / r Z. For r = 3, we find that
W (A, B) has alternance  (1, 3) iff:

and alternance (2, 3) iff A = 1
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Similarly, for r = 4, the word W (A, B) has alternance  (1, 4) iff:

and alternance (2,4) iff T = -1. In the case r == 3,À = 1, we may take:
(n1, n2, n3) = (n’2, n’3, n’1) = (-1, -1, 2) in which case the (2, 3)-alternator
W(A, B) has a fairly simple commutator factorisation:

but otherwise the simplest words with alternance (dl, d2) tend to be much
simpler than their simplest expressions in terms of multicommutators (of
the same alternance).

There exist of course many ways of measuring the "complexity" of a
word W (A, B) - 03A0(Ami Bn2), but we shall use only the following four
complexity indices:

(i) the length, global or partial:

(ii) the number of alternatzng monomials Am2 or Bmi

(iii) the variance var(W) (resp. varA(W) or varB(W)), defined as the
number of distinct pairs (mi, ni) (resp. as the number of distinct
values assumed separately by mi or ni ) whereby mj := m1 +··· mj
and nj : = n1 + ··· nj

(iii) the alternance alt(W) (resp. (altA(W), altB(W))) defined as the
smallest d (resp. (di, d2)) such that W be in Gr{d} (resp. Gr{d1,d2}).

In the usual graphical representation of words, the first three complexity
indices are immediate to detect, but not so the alternance, which doesn’t
’meet the eye’, at least when dl + d2  3.

2.4. Periodic automorphisms of Gr

Let Aut(Gr) denote the group of all automorphisms of Gr. It is known
(Nielsen’s theorem) to be generated by three elementary automorphisms:
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For the sequel, we need to know, up to conjugacy, all the finite subgroups
of Aut(Gr) and in particular all its periodic (unipotent) elements.

LEMMA 2.5 (PERIODIC AUTOMORPHISMS OF Gr). - They necessarily
have order 1,2,3,4, the number of distinct conjugacy classes being respec-
tively 1,4,1,1. Each involution (order 2) is conjugate either to (A, B)
(B, A) or (A, B) ~ (A-1, B) or (A, B) ~ (A-1, B-1) or (A, B) ~
(B-1, A-1). Each automorphism of order 3 is conjugate to (A, B)
(B-1, AB-1). Each automorphism of order 4 is conjugate to (A, B) ~
(B-1, A).
For a proof, see [L.S.], prop.4.6, p25, and the references thereafter.

Now that we have the list of all periodic automorphisms, it is an easy
matter to construct all non-cyclic finite subgroups of Aut(Gr). There are
four of them (upto conjugacy), namely the two abelian groups of order 4:

and the two non-abelian groups of order 6 and 8:

whose elements P are listed below, in terms of their action P : W ~ Wpon
words:

Note that the composition law follows from the rule (W pl )p2 = W(P1P2)
(beware of the proper order). Thus:
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3. Identity-tangent twins: twenty typical examples

3.1. Collapsors and divisors

Our aim in this section is to produce examples of identity-tangent twins
that cover all the main possible situations and yet remain easy to construct.
But this ease of construction cornes at a price: it usually entails severe com-
plexity. It also involves highly non-generic relations W(F, G) == 1, with the
corresponding words W (A, B) never ranging over subsets of finite codi-
mension in Gr{A, B}. For truly generic examples and finite codimensions,
we shall have to wait for §5.

As in most of this paper, we shall have to work simultaneously in the
four structures:

go is the group of formal, identity-tangent diffeos f : x ~ x {1 + 03A3anxn},
usually denoted by the corresponding substitution operators F. CO is the
Lie algebra of 0, with its natural basis elements:

The map F ~ F* := log F from go into Êo is one-to-one, but the in-

jective map W(A, B) ~ w(a, b) = log W(ea, eb) from Gr{A, B} into
Lie{ a, b} is of course far from surjective. Among the maps from Lie{a, b}
into Êo, deserving of special attention are the graded morphisms (i.e. which
respect the natural gradation of both algebras) and are necessarily of the
form:

Perhaps the quickest way to produce twins in go is to consider mul-

ticommutators W(A, B) (with alternance (dl, d2) &#x3E; (1, 1)) whose corner
component wo (a, b) (defined as the homogeneous component of w (a, b)
that lies in Lie[d1,d2]) has the following three properties:

(i) wo (a, b) ~ 0.

(ii) It is a collapsor, i.e. it belongs to the kernel of some (or all) graded
morphisms of Lie into 0:
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(iii) Its divisor D is ~ 0 for all t in N*. The divisor D(t) - D(p, q; t) is a
polynomial in t characterised (for all p, q such that wo(lp, lq) = 0) by
the identity:

which makes good sense, since the right-hand of (3.5) is a priori of
the form:

but necessarily vanishes when we take:

Divisors owe their name to the fact that, when solving the equation
W(F, G) = 1 through coefficient identification, one has to divide by D(t)
at the t-th inductive step. And the collapse’ (3.4) is necessary to get the
induction started.

Now, a cheap (if wasteful) way to get words W with those three prop-
erties is to take them of the form W = {U, V}, where U and V are them-
selves multicommutators with non-proportional corner components uo, vo
and with distinct (resp. identical) alternance which generally leads to twins
with a fixed (resp. free) tangency ratio plq.

The actual expression of the divisors shall of course involve the structure
constants T. of the algebra Co:

which are explicitely given by:

We shall also make frequent use of the identity:

which immediately results from applying the derivation ad(lt) to both sides
of (3.6).
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3.2. Normal-conormal form of twins. Connectors

Since knowing a pair of twins (F, G) is the same as knowing their in-
finitesimal generators (F*, G*), we shall often work with the latter, for the
greater fiexibility they afford. And since these pairs are defined up to a
common conjugacy, we shall privilege "normal-conormal forms", which nor-
malise one of the twins to F*nor (resp. G*nor) while the other assumes a
rigidly fixed conormal form G*conor (resp. F;onor). Actually, for complete
rigidity we have to demand that F*conor and G*conor should contain no term
of the form lp+q if F* starts with lp and G* with lq. 

In the most typical examples, these namely with exactly one parameter
(other than the ratio p/q, which is discrete), we shall find that:

with a countable infinity of invariants:

Another object of central importance, on account both of its invarianc
and (anti)symmetry in (F, G), is the connector Hnor = expH,,nO’r whicl
conjugates the normal to the conormal forms:

but which may also be constructed directly from any solution (F, G) by
setting:
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The connector Hnor is uniquely defined, provided we normalise it by im-
posing the absence in H*nor of terms lp and lq. In the most typical (one-
continuous parameter) examples, we shall see that the connector assumes
the form:

In this case, the secondary invariants {03B1(m,n)} or {03B2(m,n)} or {03B3(m,n)}, to-
gether with the primary invariants (03B1, 0) and (03B1*, 03B2*) and (p, q), constitute
a complete and free set of joint invariants for the pair (F, G). The three sets
of secondary invariants are clearly equivalent. Indeed for m + n  2:

with the condition m + n  2 excluding the terms:

and ensuring that the leading factors in (2.19), (2.20), (2.21) be i- 0, oo.

The invariants (a, {3) in the first pair of primary invariants have a sepa-
rate existence only if we restrict ourselves to identity-tangent conjugacies. If
we accept conjugacies with a multiplier k’(0) ~ 1, then there remains only
one invariant, namely the ratio:

Similarly, the tangency orders (p, q) lose their invariance if we accept rami-
fied conjugacies and there only remains the pair (p*, q*) of coprime numbers
proportional to (p, q). On the other hand, the third pair (03B1*, 03B2*), as well
as all the secondary invariants {03B1(m,n)} {03B2(m,n)}, possess strong invariance,
since they remain unaffected even by non-identity-tangent or ramified con-
jugacies.
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3.3. Main types of twin-begetting relators W(A, B)

Our first series of examples (3.1 through 3.9) illustrates two basic di-
chotomies :
- the twins (F, G) verifying a given relation W (F, G) = 1 may have a fixed
or free tangency ratio p/q
- or again, their continuous parameter c (constructed from the leading co-
efficients : see (3.22)) may be fixed or free.

The second series of examples (3.10 through 3.20) imposes additional
symmetries on twins. More precisely, for each of the 10 basic finite groups
Auti of automorphisms of Gr{A, B}, we construct relations W(F, G) - 1
whose set of non-trivial solutions (F, G) is globally invariant under Auti.

Our third series of examples (3.21 through 3.23) deals with more excep-
tional situations, e.g. with relations W (F, G) = 1 whose general solution
(F, G) depends on several continuous parameters with fixed or variable po-
sitions (i.e. parameters making their "first appearance" inside coefficients
of fixed or variable depth t). They also illustrate related questions such as
the glueing or splitting of relators.

3.4. Basic examples

Example 3.1 (Fixed ratio p/q, no continuous parameter) - If we set

then for each s E N*, W(F, G) = 1 has a unique (upto conjugacy) twin
solution (F, G) with tangency orders (p,q) = (s, 2 s) and fixed invariants
c, 03B1*, 03B2*.

Proof. - Let us look for a solution (F, G) with tangency orders p i- q.
We may write the infinitesimal generators (F*, G*) in the form:
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Then if we set:

we find by the Campbell-Hausdorff-like identity (1.20):

Moreover, since U and V have as corner components:

the series in U* and V* have initial coefficients:

and current coefficients of the form:

with

In view of (2.28); (2.29) the identity W (F, G) = 1 clearly implies M = N,
which in turn implies (p,q) = (s, 2 s). It also implies the vanishing of the
first coefficient in W* :

which rigidly fixes the invariant c:
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As for the current coefficients (cxt, 03B2t), their first occurence in W* takes place
at depth t. More precisely:

with

But due to (3.29) we may factor out the term:

Eventually, after expliciting uo,vo etc. and recalling that (p, q) = (s, 2 s), wE
find

The presence of a common factor (6+t+t2) alongside the individual factors
(t - q) and (t - p) is no accident, but a consequence of the identities:

which are but special cases of (3.8). Thus in the end we have:

Therefore, since solving W (F, G) = 1 means solving W*(F,G) = 0, i.e.

killing all coefficients wt, we have one choice at each inductive step. For
t = 0, wo = 0 is ensured by (3.39). For t ~ {0, p, q}, we may choose at
(or (3t) as we wish, after which the other coefficient is fixed. For the ex-

ceptional values p and q, however, the choice is restricted to one of the

coefficients. For t = p, {3p can be anything, but ap is rigidly set and equal
to 03B103B1* irrespective of the choice for Op. For t - q, Qq can be anything,
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but 03B2q is rigidly set and equal to 03B2 03B2*. This comes as no surprise, since the
’iteration residues’ (03B1*, 03B2*) are strongly invariant under conjugations. Their
actual values, as given in (3.82) below, result from a general calculation that
will be carried out in Example 3.4.

If we now analyse the ’earlier terms’ in (3.50) with the help of for-
mula (1.20) applied successively to U(F, G), V(F, G), W (F, G), we find that
these ’earlier terms’ are generated by multiple Lie brackets involving only
monomials lt, for earlier indices ti  t, starting with lp and lq (recall that
ln := xn+1 0). We may therefore restrict ourselves to indices t in pN or q N,
and set all other coefficients at or (3t equal to 0. In particuliar, if we take
advantage of the latitude afforded by the induction to normalise either F*
or G*, then the conormal twin (see (3.10) (3.11)) will carry only indices of
depth t in pN + q N and so too will the connector Hnor. ~

Example 3.2 (Fixed ratio p/q = p0/q0, one discrete parameter) If we
set

then W(F, G) == 1 has a twin solution with tangency orders (p, q) iff p/q =
Po/9o (~ 1). That solution depends on a prime unit root E of order so (so
being the largest common divisor of p, q).

Proof. - Taking F* and G* as in (3.25), (3.26), we get this time:

with

The initial coefficients are:
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where of course m[n] denotes the sequence (m,..., m) of length n. The
subsequent coefficients ut, vt retain their earlier expression (3.33) (3.34)
but with:

But the earlier identities (3.48) (3.49) remain in force (being a simple con-
sequence of (3.8) ) and lead to a drastic simplification of ut and n**t:

Here too, W* may vanish only if M = N, which in view of (3.55) imposes
p/q = p0/q0. So we may write:

with s, so in N* and p*, q* coprime. The argument then proceeds as in
Example 3.1, except that (3.39) now becomes:

so that the invariant c := cxq* /3-P* is now constrained only by

and so depends on a unit root E of order so. That aside, the key identity
(3.50) has its exact counterpart:

with a trivial factor:

and a non-trivial divisor D(t) = Tq,p[1+q0] Tp,q[1+p0] 0394(t), with
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and

Here again, despite the denominator (t - p) (t - q), D(t) is necessarily a
polynomial in t. Thus, if we take s = so = 1 and therefore (p, q) = (po, qo) =
(p*, q*), we find:

etc. The remarkable thing is that, although (t - p) (t - q) D(t) is a real

polynomial of mixed signs, D(t) itself seems always to carry positive co-
efficients only, which automatically ensures D(t) ~ 0 for t E N* and thus
guarantees the solvability of the relation W(F, G) = 1. It should be pointed
out, however, that this positivity result has not been proved for all values
plq - po/9o, but only checked, on a case by case basis, for all pairs (p, q),
(pou q0) with p + q  30, po + q0  30. However, reverting to the expression
(3.7) of T. , we may rewrite 0(t) as:

Then,using the asymptotic properties of the gamma function, it is a straight-
forward exercise to check that, for any fixed pair (p, q) and for (po?9o) =
(03C3p,03C3q) the divisor 0394(t) is &#x3E; 0 for all t &#x3E; 0 and all 0- large enough. Thus,
for any given tangency orders (p, q), we can point to an explicit relation
W(F, G) = 1 that admits twins (F, G) with that tangency order. D

Example 3.3 (Fixed ratio p/q, one continuous parameter). - If we set

with U,V as in Example 3.1, then the relation W(F, G) = 1 has twin
solutions for the tangency ratios p/q = 1/2. These twins still have the same
iteration residues 03B1* = 15/8 and {3* == -7/12 as in Example 3.1, but they
now depend on a free continuous parameter c := Q2 {3-1

Proof. - Starting from any pairs (p, q) and (03B1, 03B2), we take (F*, G*) as
in Example 3.1 and get the same expression for (U*, V*). The expression for
W* , however, does change:
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with an initial coefficient wo that vanishes iff M = N. Thus W* = 0 implies
p/q = 1/2 as before but leaves (a, {3) and thus c := cx2 {3-1 completely free.
As for the current coefficient wt, it is now of the form:

with the same divisor D(t) as in Example 3.1, upto the trivial factor u0n0 R

So the only change is the appearance of the continuous parameter c (invari-
ant under general conjugacies) or the pair (a, /3) (invariant under identity-
tangent conjugacies) instead of the rigidity in Example 3.1. As for the values
(03B1*, 03B2*), they are special cases of (3.76), (3.77) below. ~

Example 3.4 (Fixed ratio p/q = p0/q0, one continuous parameter). - If
we set

==l+po
with U,V as in Example 3.2 (i.e. U := (A) B and V := (B) A)
then the relation W(F, G) == 1 has twin solutions for the tangency ration
p/g = po/qo. These twins still possess the same iteration residues (03B1,* 03B2*) as
in Example 3.2 (see (3.81) below), but they now depend on a free parameter
c := aq. 03B2-p*

Proof. - The transition is the same as from Example 3.1 to ExamplE
3.3. We find this time:

with M, N as in (3.53). The initial coefficient wo vanishes iff M = N, which
implies p/q - Po/9o = p*/q* (irreducible) as in Example 3.2 but leaves
(ce, (3) and thus c := Qq* 03B2-p*. free. The current coefficient wt is still of the

form:

with the same divisor D(t) as in Example 2, upto the trivial factor uo v0/R:

That leaves only one point to settle, namely the invariants 03B1*, 03B2*. These
are known as soon as the ’earlier terms’ in (3.74) are known for t == p and
t = q. To calculate these, we must express u(a,b) := log U(ea, eb) and
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v(a, b) := log V(ea, eb) and retain not just the terms of lowest degree (i.e.
the ’corner components’) but also the terms of immediately higher degree,
by using formula (1.20) (with aj either a or b) and then substituting (lp, lq)
for (a, b). Eventually, we find expressions that depend only on (po, qo) but
not (p, q) :

with A(.) = 0394p,q;p0,q0(2022) as in (3.67) and (3.69). Remarkably, these formulas
don’t apply directly when t = po or qo for then the denominators vanish.
We must either calculate 0394(t) first as a polynom in t or else resort to the
formulas:

with a summation extending to all qi  0 such that q1 + q2 = qo (resp. to
all pi  0 such that pl +p2 = po. Thus we get:

Example 3.5 (Free ratio p/q, one continuous parameter). - If we set
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then the relation W (F, G) = 1 has a twin solution for each p ~ q and each
(a, 03B2). That solution is unique (upto identity-tangent conjugacies), with
iteration residues:

Proof. - In the free structures Gr{A, B} and Lie{a, b}, the elements
U,V,W have alternance (2,3),(2,3),(4,6) and their Lie images u,v,w have
corner components:

Going over to the bound structures go and 0 and defining U, V, W and
U*, V*,W* in the usual way, we find:

but with M = N = 2p + 3q irrespective of the choice of (p, q). Furthermoi
we have leading coefficients:

and the current coefficients of the form:

with (at, 03B2t) denoting the coefficients of (F*, G*) of depth t, as in (3.25:
(3.26)
and with:
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and therefore:

But applying (3.8) to Ua and vo we ge

As a consequence, (t - p) wt + (t - q) wt** = 0 and we may write:

with a divisor D(t) given by:

A simple calculation then yields:

so that the divisor D(t) is always ~ 0 for positive integers (p, q, t) (p ~ q).
The upshot is that, given initial data (p, q) and (cx, /3) (p i- q ; a (3 ~ 0), the
inductive resolution of {Wt = 0} is possible, leading to ’intrinsical series’
for Feonor G*conor, H*nor that have exactly the form (3.10), (3.11), (3.18)
and carry only coefficients of depth t in pN + q N. To find the exact values
of the iteration residues (03B1*, 03B2*), we must first apply (1.20) to calculate
the terms of degree (2 + 1, 3) and (2, 3 + 1) in u(a, b) := log U(ea, eb) and
v(a, b) : = log V (ea, eb); then plug this into w(a, b) := log W (ea, eb); and
lastly replace (a, b) by (lp, lq). We find:
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with u0, v0, D(t) as above and:

Which eventually leads to the values 03B1*,03B2* mentioned in (3.85). D

Remark 3.6 . - We observe that Q*, {3*, as indeed all the secondary in-
variants 03B1(m,n), 03B2(m,n), 03B3(m,n) carried by the "intrinsic series" (3.10),(3.11),
(3.18), are homogeneous functions of degree 0 in (p, q).

Remark 3.7 . - For the time being, we have set aside the case of twins
with identical tangency order p = q. But we may note that when p/q -- 1,
then a-1 F* and {3-1 G* in Example 3.5 tend to common, non-trivial series.
In particuliar, oz. and {3* go to a common limit, which interestingly is ~ 0.
As (3.85) shows, that limit is 3/2.

Remark 3.8. - What makes Example 3.5 tick is clearly not the precise
shape of U(A, B) and V (A, B), but the following three circumstances:

(i) the words U(A, B) and V(A, B) have the same alternance (dl, d2)

(ii) the corner components uo (a, b) and vo (a, b) are independent in
Lie[d1,d2]

(iii) the divisor D(t) = D(p, q; t) is ~ 0 for p i- q and t &#x3E; 0.

Example 3.5 happens to be the simplest possible instance of this type since
it corresponds to (d1, d2) = (2, 3), which is the lowest alternance for which
Lie[d1,d2] has dimension &#x3E; 1. But in this case, the pair (dl, d2) consists of an
even and an odd number, and for the sequel it will be useful to have examples
corresponding to the two other combinations: odd+odd, even+even.

Example 3.9 (Free ratio p/q, one continuous parameter) . - If we set

with distinct words U, V of equal alternance (di, d2), the picture is usually
the same as in Example 3.5, for the condition (ii) and (iii) are generically
fulfilled. In particular, for (dl, d2) == (3,3) = (odd, odd), we may take:
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since in this case:

with positive coefficients only. We also find

Similarly, for (d1, d2) = (2,4) = (even, even) we may take:

since in this case:

again with positive coefficients only. Here again we find: 03B1* ~ 0, 03B2* ~ 0.

We skip the proofs, since they follow axactly the same lines as in Exam-
ple 3.5. Of course, the above Remarks 3.6 and 3.7 still apply.

3.5. Examples with built-in symmetries

To a given twin-generating relation W(F, G) = 1, one may not add any
independent relation W1 (F, G) - 1 without forcing F and G to commute
(which by our definition twins are forbidden to do). One may well, however,
impose additional symmetries. More precisely, given any one of the ten (upto
conjugacy) finite subgroups 4 of Aut Gr{A, B}, one may look for relations
R(A, B) = 1 that generate twins while being invariant under the action of
the subgroup Autj in question:

(4) Their list was given at the end of §2, along with the notation for their elements.
We recall that among these 10 finite subgroups 6 are cyclic; 2 abelian non-cyclic; and 2
non-abelian.
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(Here the exponent ET has to be an integer and a unit root. So ET = ±1). In
each of these ten cases, we shall restrict ourselves to relations R(F, G) - 1
whose general twin solution (F, G) depends only on a free ratio p/q ( i- 1
unless stated otherwise) and a free continuous parameter c = aq* j3-P* (like
in Examples 3.5 or 3.9). And as always in this section, we shall strive to
pick those examples which are easiest to construct, rather than those with
the lowest word complexity.

We begin with the six cyclic groups of automorphisms.

Example 3.10 (Invariance under Si : (A, B) ~ (B, A)). 2013 If we set

U := A 2 B 3 A and so US1 = 23 B, then R := {U, US1} is a twin-
generating relation invariant under SI whose general twin solution depends
only on p/q and c = aq- {3-P*.

Proof. - This is in fact nothing but Example 3.9 for (dl, d2) - (3, 3)
since then we had Y - US1. So all there is to check is the 81 -invariance
of the relation R - 1, which simply results from RS1 ~ R-1. D

Example 3.11 (Invariance under S2 : (A, B) ~ (B-1,A-1).2013 If we
take once again U := Â B A and so U S2 = (B-1 ) (A-1) B-1, then
R := {U,US2} is a twin-generating relation invariant under S2 and with
a general solution depending on p/q and c.

Proof. - This new relation R not only differs from that of Example 3.10
but is not even equivalent to it. However, it has the same corner component
r0(a, b) and so the same non- vanishing divisor D(t) (see (3.111)). As for
the invariance, it results once again from RS2 ~ R-1. D

Example 3.12 (Invariance under Io : (A, B) ~ (A-1, B-1)). 2013 Let W
= {U, V} be a twin-generating relation as in Example 3.5 or 3.9. Since U,
V necessarily share the same (global) alternance d = dl +d2, W is always of
even (global) alternance 2 d and W 1 = {W,A} of odd (global) alternance
2 d + 1. If we then we set:

we get two (non-equivalent) twin-generating and Io-invariant relations R
and R1, whose general solution depends on p/q and c = aq. !3-P*, but whose
iteration residues (Q*,!3*) automatically vanish.
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Proof. - The la-invariance trivially results from:

The corner component and the divisor of R (resp. Ri) are twice those of
W (resp. W1). The divisor D(p, q; t) of W, in turn, being the same as in
Example 3.5 or 3.9, does not vanish for p ~ q and p, q, t E N*. Neither does
the divisor Dl (p, q; t) of W 1 since:

Hence

The simpler invariance relation (3.120) (bought at the cost of a more com-
plex W 1 ) implies that the Lie image r1(a, b) of R(A,B) carries only com-
ponents of odd (global) degree in (a,b). The component of lowest degree is
the corner component w10(a, b), with degree exactly 2 d + 1. But the next
two components (of degree 2 d + 2) vanish, and so do the invariants 03B1*, 03B2*
which stem from these components. The same conclusion also holds for the
solutions of the relation R - 1, but the proof is slightly less direct. First,
we note that (3.119) implies:

So, if we set:

we have:

Since 1 + exp(-w), as an operator on Lie(a, b), is clearly invertible, the
identity r(a, b) ~ 0 is equivalent to r2 (a, b) = 0 (though r2 (a, b) is not the
Lie image of any word R2(A, B)). Now, in view of its definition (3.125),
r2 (a, b) carries only components of even (global) degree in (a, b). So here
again the two components of r2 (a, b) immediately superior (in degree) to
the corner component necessarily vanish, so that Q* = {3* = 0. D

Example 3.13 (Invariance under Il : (A, B) ~ (A-1, B)). 2013 Let W:=
{U, V} be a twin-generating relation of alternance (dl, d2) in (A,B), with
dl even (as in Example 5) or odd (as in the same Example, but with A and
B exchanged). Then if we set:
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we get Il- invariant twin-generating relations. As usual, their general solu-
tion depends on p/q and c, but here only 03B1*, is guaranteed to vanish.

Proof. - Same as for Example 3.12. D

Example 3.14 (Invariance under J : (A, B) ~ (B-1, AB-1)) . - If we
set successively:

then the J-invariant relation R(F, G) ~ 1 has a general twin-solution that
depends on p/q and c.

Proof. - The Campbell-Hausdorff formula shows that the action of J on
the images of (A, B) is:

So here the restriction to the terms of lowest degree is not a diagonal map-
ping. Therefore, if we want to construct an example which, like the previous
ones, leads to twins with a completely free ratio p/q, special precautions
have to be taken to produce words U, V whose Lie images u, v have corner
components uo, vo that are:

(i) non-proportional

(ii) separately invariant under (3.136)

(iii) and which give rise to a non-vanishing divisor.

If furthermore we want U and V to be expressible each as one single mul-
ticommutator, then the "simplest" possible choice happens to be (3.132)-
(3.133), yielding:
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The non-proportionality of uo, vo is easily checked by specialising (a,b)
to (lp, lq). The invariance (mod [a, b]) under (3.136) is immediate. As for
the divisor associated with wo = [u0, v0], a tedious but straightforward
calculation yields:

so that D(p, q; t) ~ 0 for p ~ q and t E pN + q N (p, q, t &#x3E; 0). The same
holds for the divisor of ro, which is simply three times that of wo. That
leaves only the J-invariance, which as usual is the easiest part to check.
Indeed, from (3.135) we get:

Remark. - Although we have postponed dealing with twins with equal
tangency orders (p = q) until the "systematic" investigation of §5, it may
be noted that in the above Example 3.14 (as also in Example 3.18 below)
the action of J and J2 exchanges both types of twins (i.e. p ~ q and p = q).

Example 3.15 (Invariance under K1 : (A, B) ~ (B-1, A)). 2013 If we set
successively:

then the K1-invariant relation R(F, G) - 1 has a general twin-solution that
depends on p/q and c.

Proof. - Since K4 1 = 1, (3.144) gives RK1 ~ W1-1 RW 1 which takes
care of the invariance. Up to the innocuous factor:

the divisor associated with W 1 coincides with the divisor of W, which we
already encountered in Example 3.9 and found (see (3.114)) to be non-
vanishing.
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The reason for bracketing W with Q is of course a question of parity:
whereas W and WK1 have opposite corner components (since these are of
even degree 6 in both a and b, and so change signs under (a, b) ~ (-b, a)),
the new words Wl and W1K1 have identical corner components:

so that the corner components (and divisors) of all four factors in (3.144)
merely add up. ~

Example 3.16 (Invariance under Aut1 = {I, 10, Il, I2}). - Take any
twin-generating relation W = {U, V} as in Example 3.5 or 3.9 and set
W1 := {B,{A, W}}. Then the Auti-invariant relation:

has a general twin solution that depends on p/q and c.

Proof. - The invariance follows from the relations:

On the other hand, W automatically has alternance (even,even) in (A,B),
but W1 has alternance (odd,odd), and a divisor which differs from that of
W by the trivial factor T2dp+2dq+t,p,q (d being the global alternance of
U or V). As a consequence, all four factors in (3.147) contribute the same
corner component and the same divisor. ri

Example 3.17 (Invariance under Aut2 = 11, 10, S1, S2}). 2013 Take any
U - U(A, B) that has symmetrical alternance (d1, d2), d1 = d2, and

yields a twin-generating relation W := {U, US1}. For instance, take U =
A B A as in (3.113). Then the Aut2-invariant relation R := W" 0 W = 1
has a general twin-solution that depends on p/q and c.

Proof. - The invariance follows from:
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Moreover, since W has an even (global) alternance 2 (d1 + d2) = 4 dl = 4 d2,
the two factors W and Wlo which make up R contribute the same corner
component and the same (non-vanishing) divisor - namely (3.114) if we take
U as in (3.113). ~

Example 3.18 (Invariance under Aut3 = {I, J, J2, S1, S1 J, J S1}). -
We take the same word W of alternance (10, 10) as in Example 3.14, but
this time we set:

Then the Aut3-invariant relation R = 1 has a general twin-solution that
depends on p/q and c.

Proof. - The whole point of bracketing W with {A, B} is of course
to get a word W 1 with the same divisor as W - upto the trivial factor

Tq,pT10p+10q+t,p+q 2013 but such that W1 and (W1S1)-1 have the same
corner components (rather than opposite ones as in the case of W). This

yields a W2 verifying W2S1 = W21 and with twice the corner component of
W1. Moreover since the corner components of {A, B} and W are invariant
under the action (3.136) of J, so too are those of W 1 and W 2 . The upshot
is that the corner component and divisor of R are exactly six times those
of W1, which in turn are essentially the same as those of W.

As for the invariance, it is enough to check it for two generators of Aut3,
e.g. J and 81. Due to W2S1 = W2-1, the definition of R yields:

Example 3.19 (Invariance under Aut4 - {7, 10, I1, I2, S1, S2, Ki,
K2}). 2013 If we take a word W = W(A, B) such that:

(*) W be twin-generating

(**) WS1 = W-1

(***) W be of alternance (dl, d2) in (A,B) with d1 = d2 = odd



- 329 -

and if we set:

then the Aut4-invariant relation R = 1 has a general twin solution that
depends on p/q and c. For instance, a suitable choice for W is given by the
following steps:

Proof. - As soon as W verifies (*) and (**), the relation R defined by
(3.156) verifies:

which ensures the invariance, since K1 and S1 generate Aut4. Moreover,
the imparity condition (***) makes sure that the corner components of the
four factors in (3.156) add up rather than self-destruct.

But the existence of words W with these properties is far from obvious.
So let us check the suitability of the particular W mentioned above. We
observe that the divisor D1(p, q; t) of W1 is given by (3.114) and that the
divisor D(p, q; t) of W is essentially the same:

with an innocuous front factor which merely reflects the bracketing of W 1
by W 2 and W 3, and is therefore equal to:

It is natural that W2 and W 3 should contribute only trivial factors, since
neither U2 nor U3 have equal alternance in A and B, so that for j =
1, 2 the corner component of {Uj, UjS1} cannot vanish identically under all
realisations (a, b) H (lp, lq). ~

Despite its forbidding complexity, this example is the ’simplest of its
kind’, at least as long as we insist on working with multicommutators and
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demand a certain symmetry in A and B. But if we drop these requirements,
we may produce a slightly simpler example:

Example 3.20 (Invariance under Aut4 : simpler example) . - If we set:

then the Aut4-invariant relation R = 1 has a general twin solution that
depends on p/q and c.

Proof. - It is enough to check that the new W still meets all three
conditions (*) (**) (***) of Example 3.19. Clearly, if we set bn :== an b, we
find for the corner components of U, V, Wl, W2:

Next, we check that wlo (and so W20) vanish under all realisations (a, b) ~
(lp, lq). Then we calculate the divisor attached to W 1:

and the one attached to W2 :

From that we infer the divisor attached to W = W 2 (W2S1)-1 (beware of
the + sign):

with
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Therefore neither 0394 nor D vanish for p ~ q and t in p N + q N (p, q, t &#x3E; 0). So
W verifies (*) and (**). It also verifies (***), since it clearly has alternance
(5, 5) in (A,B). ~

3.6. Further examples

Example 3.21 (Several unmovable parameters). - Let Wo := W -
{U, V} be a twin-generating relation like in Examples 3.5 or 3.9, with
alternance (m0, n0) in (A, B), and let Wj, ( j = 1, ···, l) be l non-twin-
generating relations with alternance (mj, nj), for instance:

Further, assume that mj, nj increase so fast that the integers Mj, Vj derived
therefrom:

are themselves positive and strictly increasing. Then, if we set:

the relation Rl (F, G) = 1 has a general twin solution which depends not only
on the usual parameters p/q and c == cxq* (3-P*, but also on new parameters
c1, ···, cl which may assume any complex value, but are ’unmovable’ in the
sense that, for each of them, the place of ’first occurence’ in F or G is within
coefficients of a well-defined depth, namely t = tj := 03BCj p + vjq for cj.

Proof. - The divisor Dl (p, q; t) of Rl is equal to the divisor D(p, q; t) of
W multiplied :

(i) by the trivial (i.e. t-independent) factors Tp,q(nj) p contributed
by the words Wj (j 1, l). 

(ii) by the elementary (i.e. t-affine) factors (t - 03BCj p - vj q) ( j = 1, ···, l)
which we introduced by bracketing Rj-1 with Wj.

Therefore Dl (p, q; tj ) = 0 for tj := 03BCjp + vjq ( j = 1, ···, l). Under
normal circumstances, this should prevent the existence of twin-solutions,
but here it has the opposite effect of enlarging their number, by introducing
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l new free parameters cj. Indeed, for any initial conditions (p, q) and (a, ,Q),
the relation Rl (F, G) = 1 is equivalent to the system :

log Rj-1 = cj log Wj (mod. terms of depth tj+1) ( j = 1,... l) (3.180)

which, for any given choice (c1, ··· cl) in Cl, clearly admits (upto conjugacy)
a unique solution (F, G).

The coefficients of F, G with depth t  t1 are calculated inductively
exactly as if we were dealing with the sole relation R0(F, G) := W(F, G) = 1.
Then the coefficients with depth t1  t  t2 are calculated from log R0 =
cl log W1; those with depth t2  t  t3 from log Ri = C2 log W2 ; etc.; and
lastly those of depth tl  t from log Ri - 1 == el log Wl.

Actually, the conclusion would remain unchanged if the (03BCj, 03BDj), instead
of forming an increasing sequence, were pairwise distinct and comparable
(for the natural order on N2) while of course remaining positive. For non-
comparable pairs, however, there would occur some slight changes, since
the order of the sequence formed by the zeros tj of the divisor’s ’elementary
factors’ would depend on the tangency ratio p/q. 0

Example 3.22 (One movable parameter) . - Let Ri and R2 be two twin-
generating relations of the type encountered in Example 3.12 (see (3.120-
121)), with invariance under Io :

Then if we set

the relation R(F, G) - 1 has a general twin-solution which, on top of the
usual parameters p/q and c = aq* /3-P*, depends on two new parameters:
one continuous parameter ci, which may assume any complex value, and one
discrete parameter rl, which denotes the place (or ’depth’) of first occurence
of ci, and may assume any entire value.

Proof. - Fix three pairwise distinct integers p, q, ri. Then set P2 :=
p, q2 := m1p + n1q+ r1, where (m1, n1) denotes the alternance of R1(A, B)
in (A, B). Upto conjugacy, the general solution of R1 (F, G) = 1 may be

written in normal-conormal form (see (3.9) and (3.10)) as:

Similarly, the general solution of R2 (F, K) = 1 may be written as:
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with Kconor depending only on (P2, q2) := (p, m1p + n1q + r1) and (03B1, 03B2),
so that Fnor is the same in (3.183) and (3.184). D

Example 3.23 (Twin glueing) . - Let R1 (A, B) ... , Rr(A, B) be dis-
tinct twin-generating relations of the type encountered before, and let

== no == mo

Ro (A, B) = A B A be a multicommutator of very high alternance
(no, m0). Then for each i = 1,..., r, the relation:

has a twin-solution which coincides upto high order (but not exactly) with
the twin solution of Ri (A, B).

Proof. - This is simply because for each i the corresponding divisor
coincides, upto a non-vanishing factor, with the divisor Di(t) associated
with the isolated equation Ri(A, B). D

The separateness of the i solutions (each with its own parameters) stands
in sharp contrast to the connectednes of the solutions of what would be the
differential equation analogue:

with ri (a, b) denoting the lowest-degree homogeneous component in the se-
ries ri (a, b) := log Ri(ea,eb) and with a = ~~, b = 03C8~ for, say, ~ given
and 03C8 unknown. Here too, each ’factor’ Ki (a, b) contributes its own parame-
ters, but the multibracket on the right-hand side of (3.186) introduces r - 1
additional parameters which have the effect of connectzng (under continuous
deformations) the separate solutions.

Thus, whereas the solutions of differential equations may be seamlessly
’welded’ together, the solutions of composition equations can only be ’glued’
(with only a weak interaction stemming from the perturbation Ro). This
reflects a very basic difference between the two classes of problems. Nor
is it due to the fact that we are solving our (differential or composition)
equations in rings of powers series: the difference persists, undiminished,
when we go over to transserial solutions (see §8 infra).
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4. Some Lie theory. Active/passive subalgebras. Divisors and
universal kernels

4.1. The active/passive filtration of Lie[a, b].

The twenty examples of twins reviewed in the previous section are easy
to construct but somewhat atypical in so far as all of them verify relations
made up of suitably arranged multi-commutators. Before turning to the
description of truly ’generic’ twins, we must insert a section devoted to the
natural filtrations that arise on free algebras when they get represented as
one-variable differential algebras.

Let us for simplicity deal with the two-generator algebra Lie[a, b]. It

admits a natural sequence of decreasing ideals: 5

The k-th ideal Ukerk is defined as consisting of all w(a, b) E Lie[a, b] whicl
vanish up to order k:

whenever the pair (a, b) gets replaced by a pair (F*, G*) of the form:

or, what amounts to the same6, of either form:

Remark 4.1 . - The reason for limiting ourselves to pairs (F*, G*) con-
sisting of perturbed monomials is of course that we are mostly concerned
with twins in the ring of power series. But even when investigating transse-
rial twins (see §8), the ordinary monomials retain their primacy, due to the
fact that they alone, of all transmonomials, enjoy a double stability: under
multiplication and composition.

(5) with Uker standing for universal kernel.
(6) under a suitable variable change x = hE (z)
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The ideal Ukero coincides with the whole algebra Lie[a, b], while the
ideal Uker 00 consists of all elements w that vanish identically in all one-
variable differential representations of Lie[a, bl. For our present purposes
they are as if non-existent, and deserve to be regarded as constituting the
’passive’ subalgebra Pass. What matters is the ’active’ algebra Act, i.e. the
quotient of Lie[a, b] by Pass.

Actually, we shall require the full filtration:

Of special importance is the leading active algebra Acto := Lie/Ukerl. Its
(homogeneous) elements w(a, b) vanish in all ’monomial’ representations,
but possess non-vanishing divisors D (t) : = Dw(t; p, q). 7

Remark 4.2 (from filtration to gradation). - In order to turn the natu-
ral filtration (4.1) into a gradation of type (4.5), one would have to actually
embed each Acti into Lie [a, b]. The most natural way of accomplishing this
is by ruling that all the embedded components Act i should be orthogonal
to one another and to Pass, with respect to the natural scalar product
on Lie[a, b] 8. This again would lead to worthwhile developments which,
however, would be a distraction from our present investigation.

Next cornes the question of the dimensions, which makes sense only
inside specified homogeneous components Lie[a, b](d1,d2).

For any given degree (dl, d2), the components Ukeri(d1,d2) clearly be-
come stationary after a certain critical i :== icrit(d1, d2). This stationary
ideal component coincides with Uker~(d1,d2). Of course the corresponding
components Act(11,d2) of the active algebra turn empty.

For any given index z, the dimensions dim(Ukeri(d1,d2) and also, less
obviously, dim(Acti(d1,d2), are non-decreasing (but non-convex) functions
of dl and d2.

Remark 4.3 . - The spaces [Ukeri(d’1,d’2), Uker 1 2 are clearly (strict)
subspaces of Ukeri’+i"(d’1+d"1,d’2,d"2). Taking into account the corresponding quo-

(7) We have already encountered many instances of divisors. For a general definition,
valid even in the case of more than two generators a, b, c..., see §6.6.

(8) ie the one induced by the natural scalar product on the enveloping free associative
algebra Ass(a, b)
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tients 9 Act(i’,i")(d’1,d"1),(d’2,d"2) would lead to a considerable refinement of our ac-
tive/passive filtration, but we need not go into that here.

Before establishing the exact formulas for the main dimensions, we ad-
duce two tables.

The first table extends to all degrees (dl, d2)  (15, 10). In fact, in view
of the interchangeability of dl and d2, it covers all cases (d1, d2)  (15, 15).
The entries are three-number columns:

When Act*(d1,d2) doesn’t reduce to its first component Act1(d1,d2), the
number {3 is entered as * {3.

The second table extends to all degrees (4, 4)  (d1, d2)  (14, 14) and
gives the exact decomposition 3 = 03B21 + 03B22 + 03B23 + ...:

Actually, the calculations are rather costly and we did not reach the point
where (33 becomes &#x3E; 0, although this certainly takes place within the limits
of the table. The uncalculated numbers have been replaced by dots. ID

(9) which may be joined to form Lie algebras.
(10) Entries for d1 or d2  4 were left out since for them /3 = /31 and 0 = /32 == 03B23 .....
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4.2. Dimensions

Throughout this section, we shall use the following notations:

p(n) := nb of partitions of n with positive summands (4.7)
p*(n) := 1 + p(1) + p(2) + ... + p(n) (4.8)

p(n, m) := nb of partitions of n with m non-negative (4.9)
summands

:= nb of partitions of n with at most m positive (4.10)
summands

P(n, m) :== nb of partitions of n with m positive summands (4.11)

Clearly, p (., .) and P(., .) are expressible in terms of each other ;
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Let us first get all the main statements and formulas out of the way

(Prop. 4.4 through 4.7) and then proceed with the proofs.

PROPOSITION 4.4 (FULL ALGEBRA). - The dimensions L(d1,d2) :=

dim Lie[a, b](d1,d2) are given by the classical formula:

with M(.) as the Möbius function.

PROPOSITION 4.5 (FULL ACTIVE ALGEBRA). - The dimensions D(d1,d2)
:= dim Act(d1,d2) = codim Uker~(d1,d2) are given by:

PROPOSITION 4.6 (LEADING ACTIVE ALGEBRA). - The dimensions

D0(d1,d2) := dim Act0(d1,d2) = codim Uker0(d1,d2) are given by:

where E(x) denotes the entire part of the real number x.

PROPOSITION 4.7 (SECONDARY ACTIVE ALGEBRAS). - For any fixed in-
dex i  0 and any fixed dl (resp d2)  sup(3, i + 1), the dimensions Di(d1,d2) :=
dim Acti(d1,d2) = dim Ukeri(d1,d2) - dim Ukeri+1(d1,d2) grow roughly like d2i+1
(resp d1i+1) times some constant.

More precisely, though none of the generating functions

is rational, the partial sums 03A3d Di(d0,d) xd = Ed Di(d,d0) xd are all rational,
with denominators apparently of the form (1 - xi+1)(1 - x(i+1)d0).
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4.3. Universal constraints

A non-increasing sequence v :== (n1, n2,..., ns) with ns  1 and n
ni is said to be a positive partition of n. We write for short v &#x3E; 0 and

~~ - n. A non-increasing séquence := (ml , m2, ... , ms ) with ms  0
and m = 03A3mi is said to be a non-negative partition of m. We write for
short   0 and ~~ = m.

Let 03C8 be any smooth one-variable function with algebraically indepen-
dent derivatives 03C8, 03C8’, 03C8", 03C8"’ ...
For any non-negative partition p we set:

We denote by IHI (resp Hd1d1+d2-1) the Lie algebra over C spanned by ail
operators 03C8(x) ~x (resp those operators whose index  is a non-negative
partition of the number dl + d2 - 1 into d1-summands).

PROPOSITION 4.8 (REPRESENTATION OF THE ACTIVE ALGEBRA

ACT). - The component Actd1,d2 of the quotient

is isomorphic to the subspace of IHIdi+d2-1 that is orthogonal to the ’La

grangian constraints’ Lagv or to the ’power constraints’ Pow with indices,
of the form  =  or of the form v = (n1,..., ns) with

In symmetric fashion, it is also isomorphic to the subspace of Hd1d1+d2-1
that is orthogonal to the constraints Lagv or Pow with indices of the form
 =  or of the form v - (nl, ... , ns) with

By linearity, the constraints Lagv and Powv are wholly determined by the

’constraint tensors’ Lagv and Powv such that:
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4.4. Lagrangian constraints

PROPOSITION 4.9 (TENSOR OF ’LAGRANGIAN CONSTRAINTS’). - It 2s
explicitely given by:

with a sum extending to all decompositions  = v1 (D ... (D vr of  into r
sub-partitions vi (some of which may be empty) and with integers lagvi (mi)
defined by:

and for non-empty partitions v by means of the identity:

that connects the successive derivatives of two functions ~(x) and 03C8(y)
linked by the reciprocity relation:

Remark 4.10 . - In practical terms, the identities (4.28) are established
- and the coefficients therein can be calculated - by successive differentia-
tions of the identities:

which are reminiscent of Lagrange’s inversion formula: hence the name given
to the corresponding constraints.

Remark 4.11 . - An easy induction shows that for small values of m:
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and that for larger values each lagv(m) resolves into an exponential11 sum:

with coefficients Pvj(m) that are polynomial in m, with well-defined degrees.
Actually, even for m in the interval 1  m  s - 1 + ~03BD~, the exponential
sum (4.32) still yields the right answer, i.e. 0. For m = 0, however, it yields
non-zero values, whereas the correct value is 0, as in definition (4.217).

Remark 4.12 . - Expanding (4.26) for s = 2 and s = 3 we find:

Remark 4.13 . - Let us write down the exponential sums lagv(m) for
the first seven partitions, ie for ~~  3: 

(11) with respect to m.
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For m = 0 we must posit lag(0) := 0, but for small, positive values of m
(i.e. smaller than s - 1 + ~v~) the above formulas, of their own, yield 0.

4.5. Power constraints

PROPOSITION 4.14 (TENSOR OF ’POWER CONSTRAINTS’) . - It is ex-

plicitely given by pow = 1 and for non-empty partitions v by:

J

with a sum ranging over all r!/(r - s)! injections j of the set {1,..., s}
into the set 11, .’.., r} and with nm defined in the usual way for vanishing
arguments.12

Proof (derivation of the power constraints). - Let t := (t1,..., tr) be
s complex variables and define linear maps:

by the orthogonality conditions:

for all non-negative partitions Il == (ml, ... ms) and with injections j as
above. Then the polynomials defined by:

clearly verify the following induction:

(12) ie 0° := 1 ; no := 1 (n  1) ; 0n := 0 (n  1)
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with ~t~ := 03A3ti and with " in ik signalling omission.

The first two relations yield:

Note the absence of t1n3, t1n4 .... Therefore:

More generally, in view of the factors (~t~ + r - s - 2) and (~t~ + r - s - 2 tk)
in (4.46), it is an easy matter to check, by a double induction on r and s,
that the identities:

hold true whenever:

which establishes the analytic expression of the ’power constraints’. 0

4.6. Proofs

Derivation of the Lagrangian constraints:

The model we used for:

Act := Lie[a, b]/Uker~ (4.47)

was obtained by specialising (a, b) as (~y, 03C8(y)~y). With equal right, we
might have specialised (a, b) as (cp(x) 8x, ~x). If we now consider the change
of variable which takes us from the first to the second specialisation, we find:
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which is readily seen to imply, for any positive m:

with the same coefficients lag as in (4.28
More generally, we have:

with the usual notations:

and with the same tensor Lagv(m) as in (4.25-26).
Thus, for the generators 03C8() a of H, the change of variable x F--4 y =
h(x) introduces exactly r - 1 negative powers of ~. However, in a single
concatenation of Lie brackets:

no negative powers of cp can possibly appear, since under the change x ~

y = h(x) the elements inside the multibracket (4.54) transform according
to the simple rule:

There is thus a discrepancy between the behaviour of the generators of H
and that of multibrackets, and if we write down the condition for a linear
combination of generators to behave like a multibracket, we arrive precisely
at the ’Lagrangian constraints’ of Proposition 4.8 and 4.9. ~

Equivalence and exhaustiveness of the Lagrangian and power
constraints. Dimension of the homogeneous components of Act.

The power constraints are obviously much simpler and far easier to han-
dle than the Lagrangian constraints. Both sets of constraints, however, are
equivalent, and with the latter set, exhaustiveness is easier to prove.
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The shortest way to proceed is to check, separately, the independencE
of the various power constraints and that of the various Lagrangian con-
straints. Then we provisionally assume that the power constraints are ex-
haustive and see what this says about the dimensions Dd1,d2 of Act. Il

clearly implies that Dd1,d2 = D*d1,d2 - D**d1,d2, with D*d1,d2 being the di-
mension of Hdl+d2 -1 and D**d1,d2 the number of (independent !) Lagrangiar
constraints Lagv subject to (4.28). Therefore:

We thus get for Dd1,d2 the equivalent expression (4.14), (4.15) along with the
special cases (4.16), (4.17), but under the assumption that the Lagrangiai
constraints are exhaustive. To fill this one last gap, we introduce on If

the filtration H - U IHIp, where IHIp denotes the subspace of H generate(
by products of p Lie elements, and we check that, if the exhaustivenes;

hypothesis is valid for all components such that dl + d2  d - 1, then th4
next component dl + d2 = d has codimension:

But this leaves no scope for Hd1,d2 (= Actd1,d2) to have a dimension smaller
than Dd1,d2, which by induction establishes the validity of the expression
for Dd1,d2. But since the power constraints are also mutually independent
and, if exhaustive, also lead to the same expression for Dd1,d2, it means that
they, too, must be exhaustive. This completes the proof. 0

5. Generic, low-complexity identity-tangent twins

5.1. Finite co-dimension. The général picture

The basic tools for investigating twin-begetting relations W(A, B) = 1
is not the word W(A, B) itself13 but its image w(a, b) in the natural closure
of Lie(a, b), defined in the usual way:

(13) at any rate, if we are interested in power series solutions only. But when searchir
for general transserial twins (see §8), the word W(A, B) returns to the forefront.



-347-

We also require precise information about the nature of the homogeneous
components wm,n(a, b) and their exact position with respect to the Uker-
filtration of Lie(a, b). So it is natural to set:

Let Actw, Actw, Actw... denote the convex hulls of these sets and
let Actw ? Actw, Actw.. be the corresponding (finite) sets of extremal
points or ’summits’.

Our twenty examples of §3 were "typical" only in the sense of illustrating
the main types of twins that are liable to occur, with discrete or continu-
ous parameters, built-in symmetries or invariance properties etc. In each
case, however, the words W(A, B) consisted of strict multi-commutators,
with the result that the set Actw was always included in an upper-right
quadrant of summit (d1, d2)  (2, 2) with dl, d2 often quite large. As a
consequence, w(a, b) had infinitely many vanishing components wm,n(a, b)
and the ’codimension’, in the sense of §2.2, was always infinite. 14

Put in simple terms: our twenty ’typical’ examples were fairly simple, but
also embarrassingly non-generic. So we must now tackle the generic case.

In all three tables further down this section each full dot. stands for one

homogeneous component Lie’ n and the numbers 03B103B203B3 next to it indicate
the dimension of, respectively, Acto m,n, Act* m,n, Passm,n. When il or
both {3 and 03B3, vanish, they simply get omitted. 15

5.2. Fixed ratio p/q and no continuous parameter

Let us first examine the generic counterpart of Examples 3.1 and 3.2 in
§3.4.

Suppose there are in ActW two consecutive summits (ml, n1), (m2, n2)
which are also in Actw- Suppose further that neither of the homogeneous
polynomials 16 Wm1,n1 (p, q) and wm2,n2 (p, q) has a positive rational root plq

(14) Every twin-begetting word necessarily resolves into a product of simple commuta-
tors. But in the generic case, the ’alternance’ (dl, d2) is (1, 1), which imposes only two
constraints: w1,o(a, b) = w0,1(a, b) = 0 (vanishing of the linear components).
(15) Here, the dimension 3 of Act* m,n matters less than the dimension {31 of its first

subalgebra Actlm,n, but for all points 8 envisaged, both actually coincide because 0 =
03B22 = 03B23....
(16) defined as usual by monomial substitution: wm,n(lp, lq) ~ wm,n(p, q) lmp+nq with

ln := xn+l ~x.
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other than p/q = 1. This is automatically the case if (ml, n1) and (m2, n2)
are of the form (1, n) or (m, 1) or (2, 2), for the corresponding components
of ActO are one-dimensional, but it can occur with any (m, n), for instance
for (m, n) = (3, 2) and

Suppose lastly that the edge linking the two summits has slope - Po :=
-n1-n2 m1-m2 ~ 1. The simplest instance of this situation is:

5.3. Fixed ratio p/q and one continuous parameter

Let us now examine the generic counterpart of Examples 3.3 and 3.4 in
§3.4.

Suppose Actw has a summit (m0, n0) which is also in Actw. Suppose
further that the homogeneous polynomial wm0,n0 (p, q) has one or several
positive rational roots p/q (other than p/q = 1) such that the line D of
slope -p/q drawn through the summit (m0, n0) lies outside the convex hull
Actw. This may occur with any (mo, n0)  (2, 2) and ~ (2, 2). The simplest
instance of this situation corresponds to (m0, m0) = (3, 2) and:
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Exercise. - Find the simplest words W(A, B) corresponding to the sim-
plest values of p/q.

Drawing a line of slope p/q through the summit (3, 2) within one of the
angular domains A, B, C and counting the dimensions a of the cells . below
that line, one finds ’codimensions’ equal to, respectively, 8,11,12.

5.4. Free ratio p/q and one continuous parameter

Let us now examine the generic counterpart of Examples 3.5 and 3.9 in
§3.4.

Suppose Actw has a summit (mo, no) which lies in Actw rather than

Actw. This may occur with any (m0, n0)  (3, 3) and i- (3, 3). The poly-
nomial wm0,n0(p,q) is then = 0. Let p/q be any rational i- 1 such that the
line D of slope -p/q drawn through the summit (mo, no) lies outside the
convex hull Actw. The simplest instance of this situation corresponds to
(mo, no) = (4, 3) with an extremal component w4,3 (a, b) in Ukeri B Uker2.
That space, however, has dimension 1, so that our w4,3 (a, b) has to be pro-
portional to:

or, equivalently, to:
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Drawing a line of slope p/q through the summit (4, 3) within either of the
angular domains A, B and counting the dimensions oz of the cells 2022 below
that line, then adding 4, which is the dimension of Act04,3, one finds the
same ’codimension’ with A and B, namely 31.

Exercise. - Find the simplest words W(A, B) that induce an extremal com-
ponent w4,3(a, b) as above and for which all components lying below the
bissectrix of A (or B) vanish.

Remark 5.1 (additional symmetries). - The above constructions in §5.2,
§5.3, §5.4 provide generic analogues to the typical situations exemplified in
§3, in Ex 1-2, 3-4, 5-9 respectively. As for the other situations reviewed in §3
(Ex 10 through 23) and which mostly involve twins with extra symmetries
or invariance properties, they too have their generic counterparts. More
precisely, the reader may satisfy himself by going seriatim through these
16 examples that each achievable set of symmetries can also be achieved in
finite ’codimension’.

Remark 5.2 (precautions with the divisors). - The constructions of this
section, as indeed the earlier constructions of §3, do work provided the cor-
responding divisor D(t) doesn’t vanish on N. Simple calculations confirm
that this is indeed the case with all three lowest-complexity examples pro-
duced in §5.2, §5.3, §5.4. There exist, however, exceptional cases in which
the polynomial D(t) may have k roots on N. Even in such cases, there al-
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ways exist transserial twins 17, but for there to be true power series twins,
k additional conditions have to be fulfilled, bearing on the relevant homo-
geneous components of w(a, b) 18. When these conditions are fulfilled, the
twins automatically inherit k new continuous parameters.

6. Non identity-tangent twins

6.1. Twins of tangency (0, q)

Let us now deal with words W(A, B) that are no longer products of
commutators (multiple or even simple). As a result, their Lie image w(a, b)
is supported by a quadrant of apex (mo, na) which is no longer  (1,1) but
either (0,1) or (1,0). Let us settle for the first choice:

with relative integers n*j defined upto some arbitrary additive constant n*0.
We adjust nô so as to have inf(n*j) = 0 and form the polynomial:

These new divisors 0394W(03B8), though rather different in form from the familia
Dw(t), play much the same role, since the inductive calculation of the n
th coefficient bn of g leads to relations of the form 0394W(an)bn = earlie
terms. As a consequence, everything hinges on the "resonance" of 0394W(03B8)
which is the largest integer s for which 0394W(03B8) admits s roots of the forn
03B8i = ai,i = 1..5, with s distinct integers qi and a not a unit root. T
normalise the situation and fix a, we may, and always shall, assume tha
the {qi} are co-prime.

Then, depending on whether the resonance k is 1,2,3..., our equatio
(6.256), which may be rewritten as:

(17) See §8. Here, the relevant transseries closely resemble power series. In fact, they
are usually power series of x and some block x (log x)s.
(18) ie on the wm,n(a, b) for which t = (m - m0) p + (n - n0) q. Of course, that keeps

us in "finite codimension" .
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admits a general 1,2,3...-parameter twin solution of the form:

with operators Hqb and K corresponding to post-composition by mappings oj
the form :

provided (for k  3) that the qi ’s verify no dependence relation of the form:

For k = 1 the solution (6.6) is of the type which we have dismissed as

’elementary’ in §1.1. For k  2, however, the solutions (6.7), (6.8) etc are
genuine twins as soon as two of the free complex parameters bi are chosen
~ 0.

Proof. - Straightforward: apply Campbell-Hausdorff to rephrase equa-
tion (6.5) in terms of the infinitesimal generators Gn*m of the factors Gn
and observe that, whenever all parameters bi but one vanish, the ’corrective
factor’ Hb1,b2&#x3E;, Hb1,b2,b3&#x3E; ... reduces to the identity operator. 0

6.2. Simple examples

The simplest possible ’resonant’ divisor is:
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and may be obtained from these words:

The last two words have the advantadge of forcing a symmetry within the
general twin solution:

and of halving the quantity of unknown coefficients to compute.

For the sequel we also require examples with a on the unit circle but not
a unit root. The simplest cluster of examples corresponds to divisors of the
form:

Here are some of the simplest choices:

The first choices may be realised by either of the words:

Here again, W6, unlike W5, forces a reflection-symmetry of type (6.21).
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From the formal viewpoint, the value of a doesn’t matter, as long a is
not a unit root, but from the viewpoint of analysis, as we shall see in a
moment, the picture changes completely depending on whether a lies on, or
outside, the unit circle.

6.3. Twins of tangency (0,0)

Pick any word W (A, B) leading to twins of tangency order (0, q). Then
the word:

admits a general twin solution of tangency order (0,0).

To see this, normalise F by setting f (x) := a x for the right value of a.19
Next, solve W(F, G0) = 1 with respect to Go as above. Then end by solving
Go = {F, G} with respect to G, which is always (uniquely) possible for any
choice of b :== g’(0), provided b is not a unit root.

6.4. Simple examples

With the word W* as in (6.32) and any one of the words W in §6.2.

6.5. Pre-identity-tangent ’twins’: type (0*,0*)

Let p be prime  5 and let el, e2 be two distinct unit roots:

Then the systel

is easily seen to possess a general non-elementary20 solution that inher-
ently 21 depends on infinitely many parameters. Similar results hold for non-
prime powers p  8, also for a great many systems analogous to (6.35). But
here the dichotomy holds throughout: either there exist no non-elementary

(19) ie for a ’resonant’ root of the divisor 0394W(03B8).
(20) in the usual sense of not being reducible, even under a joint ramified change of

coordinate, to a pair of homographies.
(21) ie after normalising F, G under a joint change of coordinate.
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solutions, or there exist an infinity of them, with an infinite degree of free-
dom. This is a sharp departure from the familiar situation, when twins
depend only on finitely many parameters. Actually, since (6.35) consists
of three equations with just two unknowns, the corresponding pairs (F, G)
should not be regarded as proper ’twins’. As we shall see (§7 infra), their
analytic properties also set them apart from genuine twins.

6.6. Simple examples

With p prime:

With p non-prim

6.7. Siblings

Let us revert to the case of identity-tangent mappings. Proper twins, as
we saw, are non-elementary pairs of mappings bound by one relation. The
natural generalisation is that of ’siblings’, or non-elementary 22 systems of
r mappings bound by r - 1 relations.

A special but important sub-case arises when we impose the pair-wise com-
mutation of r words Vi(F). Indeed, for identity-tangent mappings (or again,
for one-variable, formally real mappings), this requirement amounts to just
r - 1 independent relations rather than r(r - 1)/2, as would be the case
with higher-dimensional mappings: see §6.8 infra.

Let Lie(a) = Lie(al, ... , ar) be the free Lie algebra generated by the
ai’s. To each multi-integer p := (pl, ..., pr) we associate the projectors p*
and pi defined by specialising as usual the free generators ai’s to ordinary
differential operators := x1+t~x:

(22) in the customary sense of not being conjugate to a system of homographies - with
allowance, as usual, for ramified changes of coordinate.
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with

If w E Lie(a) is homogeneous of degree dl in al, d2 in a2,..., then its
p-degree is simply defined as p-deg(w) : = E pi di.

Clearly, if w is of p-degree P, these two identities hold:

Now, fix a multi-integer p := (pi,...,Pr) and a shorter (one element
less!) sequence w := (WI’...’ Wr-1) of homogeneous elements of Lie(a),
of various or identical p-degrees, it doesn’st matter, but all subject to the
orthogonality condition:

In view of (6.41), (6.42) the relation:

defines a function D(t) = Dw(t, p) that is not only independent of i 23 but
also polynomial in t. This function is the exact generalisation for siblings of
the ’divisors’ which we came up against when discussing twins.

PROPOSITION 6.1 (Siblings). - Consider a system of type (6.36) and
fix a multi-integer p. Assume that each Lie element wi has exactly one
lowest-degree homogeneous component wi. In other words:

(23) The term pi·w is omitted in (6.44) and of course pj.w stands for
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Then, for the system (6.36) to admit a non-elementary ’sibling’ solution of
the form

with t in N or, what here amounts to the same, in p. N := p1 N + ... + pr N,
it is necessary that the orthogonality conditions p. i = 0 be fulfilled for
each i and, when they are, it is sufficient that the corresponding divisor
D(t) = Dw(t, p) should be 4 0 for t E p. N.

We skip the proof, as it hardly differs from the one for twins (r = 2).

6.8. Simple examples

Since we haven’t developped the Uker-graduation of algebras Lie
(ai,..., ar) for r  3, we shall have to be content with a typical rather than
a generic example, i.e. one relying on highly multiple commutators and,
consequently, of infinite ’codimension’. Moreover, to bring home the point
that, with siblings as with twins, one can achieve invariance under any given
periodic automorphism24 of the r-generator free group, we shall choose r = 3
and pick the simplest example with free orders of tangency (p1,p2,p3) and
invariance under the circular permutation (F1, F2, F3) ~ (F2, F3, Fi). First
we set:

Now, in a general free group setting, imposing the pair-wise commutation
of the three words:

would amounts to imposing three independent relations. However, when
dealing with identity-tangent mappings Fi, imposing the pair-wise commu-
tation of the three words:

(24) or any given group of periodic automorphisms
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amounts to imposing only two independent relations, e.g.:

This ’transitiveness’ property of commutation for identity-tangent mappings
is simply due to the fact that F, G do commute if and only if their logarithms
F,, := log(F) = f*~x, G* = log(G) = g*~x coincide, as operators, upto
multiplication by a constant.

Thus we have our system of 2 relations (6.53), (6.54) with three un-
knowns Fi, and we can easily see than it admits a general sibling solution
with free tangency orders (pl,P2,P3) by observing that:

and then reasoning as in §3.4, Example 3.5 or 3.9.

7. Analytic nature of twins

7.1. Multiplier |a| ~ 1: convergence

Let us start with the case which, from the analytic viewpoint, is simplest:
that of a multiplier |a| ~ 1. We first require an auxiliary lemma.

The ’sandwich equation’:
Consider the equation:

which - conditions (7.2-5) aside - is the most general type of equation that
can arise in a non-abelian group. It goes by the name of ’sandwich equation’
(see [F]) because the iterates of the unknown mapping h alternate with
given factors ki. However, the assumption 03A3 mi ~ 0 is really one of non-
alternance. It says that the right-hand (7.1) doesn’t resolve into a product
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of commutators, so that the sandwich equation is truly the ’opposite’ of the
highly alternate equations which we have been reviewing in our search for
identity-tangent twins. It is, however, quite relevant for the non identity-
tangent case, in particular for proving analyticity.

Changing both data and unknown H ~ H H, Ki ~ Ki Ki , with suit-
able analytic H, Ki we get an equivalent equation:

Up to reindexation and multiplication by a common constant, the ci depend
only on the mi and ai. If lyi attains its maximum for exactly one index
z (let us call this the "peak condition"), we can show that the sandwich
equation admits a (clearly unique) analytic solution.

Proof. - We may always arrange for the peak value |03B3i0| to be 1 and
re-index so as to have io = 0. We may also arrange for Co = 1. Eventually,
our H is the unique solution of the fixed point problem

The number of factors in Pn (1) is exactly o-(l, n) := l+1 l-1 (ln -1). Moreover,
as soon as n exceeds no, the factors of the form

present inside pn (1) do not change, although their exact location does.
Their total number is clearly (l + 1) ln0. Their total contribution, therefore.
will be small of order (l + 1) ln0 03B3*n0k* with 03B3* := in f|03B3i|  1 for i = l..l and
with k* &#x3E; 1 denoting the lowest tangency order for the new unknown h and
the new data bi. But if we choose H analytic and close enough (i.e. tangent
to a high enough order) to a formal solution of Ho, we can make k as large
as we wish and in particular ensure that |03B3*k|  1. Fixing such a k* , we seE
that the analytic operators Pn(1) converge normally to an analytic operatoi
P~(1) which necessarily coincides with Ho. Which means that the forma]
Ho was analytic in the first place. D
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Application to twins. - The scheme clearly applies to all four examples
W1 (A, B) ... W4 (A, B) above since m2 = 1. It would apply equally well to
any example constructed from a monic polynomial25 OW (o) with at least
one ’resonant’ root |03B1| &#x3E; 1. It applies, in fact, with minor adaptations, to
most situations involving multipliers |a| ~ 1.

An interesting aside is this: once f has been normalised to f (x) = a x,
what can be said of g and its natural Riemann surface? The latter appears to
possess, for almost all values of the parameters bi, a highly fractal boundary.

7.2. Multiplier lai = 1: divergence

When a is on the unit circle but not a unit root, we should expect generic
divergence of the formal twins since, in a suitable z-chart (z rv oo), solving
the twin equation reduces to solving an infinite sequence of affine equations:

where, at the n-th inductive step, en is known and ’Pn unknown 26. Now,
even for an analytic27 input 03C8n, the solution ~n is generically divergent and
non-summable. Of course, compensation within the series 03A3~n cannot be
ruled out off hand, but when the solution depends on a continuous param-
eter, a simple argument shows that we must have divergence for almost all
values of that parameter.

7.3. Pre-identity-tangent ’twins’: convergence

As already pointed out, these are not genuine twins, since they are con-
strained by a system S of more than one relation and depend on countably
many parameters. However, that very circumstance makes it possible to con-
struct analytic solutions. The proof, which we skip, relies on the fact:
- that S resolves itself into an inductive sequence of affine systems 5i, 62 ...,
each of which admits analytic solutions
- that suitable a priori bounds can be imposed on the solution of Sn to
ensure convergence in the resulting series.

Needless to say, there doesn’t seem to exist any ’privileged’ choice among
these analytic solutions.

(25) ie a polynomial with integer coefficients and a leading term with unit coefficient.
(26) The sum E in the definition of P is finite but it never reduces to a single term.
(27) at infinity.
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7.4. Identity-tangent twins: the general picture

This is by far the most interesting, but also the most tricky case. The
broad picture with identity-tangent twins of tangency order (p, q), i.e. of the
form:

with, say, p  q, is as follows:

Pl : Due to twins (f,g) being defined only upto a joint conjugation, the
question that makes sense is: how simple (convergent, Gevrey, resurgent,
etc) can f and g be rendered simultaneously? Another way of approaching
the problem is to normalise f to fnor and then look at the nature of the
corresponding conormal form gconor of g. Or vice versa. Or again, more
intrinsically, one may investigate the connector hnor defined in (3.14). As it
happens, it is enough to understand any one of these functions to understand
the rest 28 and so we shall refer to them collectively as "the intrinsic twin

functions ".

P2: The intrinsic twin functions are doubly resurgent, with respect to the
slower critical time zi := x-P and to the faster critical time Z2 := x-q.

P3: The intrinsic twin functions are accelero-summable. Moreover, the axis
R+ is free of singularities in either of the Borel planes {03B61} and {03B62} conju-
gate to the multiplicative plane {z1} and {z2}. As a consequence there exists
a privileged real accelero-summation.29

P4: The privileged sum thus obtained coincides with the one produced by the
’geometric’ method sketched in §8.4.

P5: The invariants associated with the zl - and Z2-resurgence regroup nat-

urally to form a geometric object, the "shadow twins", consisting of two
formal series30 also connected by one relation. These "shadow twins" carry
all the obstructions to the analyticity of the original twins ( f , g).

(28) This is by no means obvious, since the normalisation of an analytic identity tangent
f to for usually involves a divergent-resurgent change of coordinate h: see §1.3. In the
present instance, however, the divergence-resurgence of h cannot ’add’ to the divergence-
resurgence already present in g.
(29) consisting in calculating on JR+ both the acceleration integral in the 03B61-plane and

the Laplace integral in the (2-plane.
(30) They are not power series, though, and, unlike the original twins, they carry tran-

scendental rather than rational coefficients
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P6: Whenever twins depend on one or several continuous parameters, the
intrinsic twin functions are guaranteed to be non-analytic (i. e. strictly resur-
gent) except (at most) for a discrete set of parameter values.

P7: It would seem reasonable to conjecture the non-analyticity of all gen-
uine31 identity-tangent twins.

7.5. Identity-tangent twins: autonomous differential-difference
equations and double resurgence

The phenomenon of double resurgence in the ’intrinsic twin functions’ is
simplest to understand in cases with a free ratio p/q and a free continuous
parameter 03B3 = 03B1/03B2, like in Ex 3.5 and Ex 3.6 of §3.4. To further simplify, we
impose symmetries that make the iterative residues 03B1*, 03B2* of F, G vanish 32

so that F and G may be separately normalised to:

Here is one such example:

Going over to the Lie algebra, we find:

(31) ie non-elementary, in the sense of §1.1
(32) See (1.19).



- 363 -

However, whereas in the formal investigation it was permissible to linearise
with respect to A and B simultaneously, the analytic investigation must
take global effects into account. More precisely, in order to understand the
double resurgence, with must linearise with respect to A alone, then B
alone, and then, in order to establish accelerablity, we must see how these
two resurgences interact.

First linearisation. - We first linearise in A, i.e. in F. We find in the
groups of diffeos:

and then in the Lie algebra:

with

Switching over to the ’critical variable’ Z2 := X-q that normalises G we get:

Freezing to (3 == 1 the parameter associated with G and expanding every-
thing in powers of the parameter 03B1 associated with F, we find:
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with a bilinear difference-differential operator P2 of the form:

and coefficients cm,n affine in 03C3:=p/q and easily calculable from the lineari-
sations (7.18), (7.19):

Second linearisation. - If we now linearise in B i.e. in G, the picture re-
mains much the same, with (F,03A6, ~, a, Z2, cr, P2) and (G, 03A8, 03C8, 03B2, Zl, 03C3-1, Pl)
exchanging places, but with a trilinear operator Pl instead of the bilinear
P2. Let us, for definiteness, go through this second list of parallel equations.
In the group we get:

Going over to the Lie algebra, these relations become:

when expressed in the given chart x:

Both sums 03A3 in (7.22), (7.23) are finite, and their coefficients c*n1,n2,n3
c**n1,n2,n3 are easily calculable from the above factorisations of U++, V++.
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Turning to the critical chart zl :- x-P that normalises F, we find:

the components of the 03B2-expansion of 03C8 are recursively given by the system:

with a difference-differential operator P2 of the form (finite sum) :

whose coefficients cn1,n2,n3 are affine in 03C3:=p/q and easily deducible frorr
the linearisations (7.22), (7.23):

Singular autonomous difference-differential operators P. - The homo-
geneous equations (7.20) or (7.24) which start the induction can easily be
shown to admit a unique formal solution of the form:

that is divergent-resurgent in its single "critical variable", Z2 or z1, and
always possesses a countable infinity of non-zero alien derivatives.

The same holds for the non-homogeneous equations (7.21) or (7.25) tha
continue the induction, as long as their right-hand sides are themselve
resurgent.

Here, the ’invariants’ or ’resurgence coefficients’ or ’Stokes constants
which enter the resurgence equations as their only transcendental ingredient
are particularly interesting entire functions of or, of so-called autarkic type 33

(33) ie with an asymptotics completely defined by a finite set of - equally autarkic
entire functions. Actually, the class of autonomous difference-differential equations an’
their invariants would warrant a special investigation, but there is no room for that here
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7.6. Identity-tangent twins: canonical accelero-summability

Thus, things are fairly unproblematic as long as we expand our ’intrinsic
twin-related functions’ in powers of the free parameter and consider each
contribution ~k&#x3E; or 03C8k&#x3E; in isolation. But the moment we attempt to
sum all these contributions, a sharp dissymmetry makes itself felt between
the two critical variables. Consider for definiteness the choice p  q 34 so
that here z, is the ’slower’ and Z2 the ’faster’ variable: Zl « Z2.

Summing ~(z2) in ce is no problem formally, since only a finite number
of terms ~k&#x3E;(z2) contribute to any given (negative) power of Z2, but Borel
transforming V(Z2) to (03B62) leads to a divergent power series, which is no
use at all.

On the other hand, summing 03C8(z1) in 0 and Borel transforming it to
(03B61) yields a convergent germ at ( = 0, with a sum that can be analytically
continued along the whole of R+ with a faster-than-exponential growth
pattern:

This is not good enough to apply the Laplace transform35 but just about
right to apply the acceleration integral 36 from (l to (2 and get a new
function that now has exponential growth in (2 and so can be subjected to
Laplace integration.

Accelero-summation here is straightforward, as there are no singularities
over the axis arg(03B61) = 0 or arg( (2) = 0 in either of the Borel planes. All told,
we get a canonical sum, resulting in ’germinal’ twins ( f , g) that are defined
and regular in a sectorial neighbourhood of R+ in the original geometric
plane x.

For an alternative method - which in this case leads to the same result,
and is more geometric, but not nearly as constructive - see §8.4 infra.

7.7. Identity-tangent twins: ’shadow twins’ and obstructions to
analyticity

There is a standard way of attaching to any resurgent or multi-resurgent
function f two richer objects, display( f ) and restrict(f), which automat-

(34) Remember that here the ratio p/q is free.
(35) which reverses Borel
(36) See [E6], Lecture 3, pl14-115.
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ically satisfy the same relations 37 as f, while "displaying" in user-friendly
manner all the resurgence properties of f and all its transcendental ’invari-
ants’ or ’Stokes constants’. The display carries all alien derivations of f, of
all orders, and combines the original, resurgence-bearing variable z with a
countable infinity of so-called pseudo-variables Z03C91,...,03C9r. The restriction is
obtained therefrom by jettisoning the true variable and retaining only the
pseudo-variables. For details, see for instance [E9], §2.4.

Applying this to a pair of twins (f, g)38 linked by a relation (7.29), we get
first a mixed object (7.30), and then a ’pure’ one, the ’shadow twins’, linked
by a relation (7.31) formally identical to (7.29), and which concentrates all
the obstructions to the analyticity of ( f , g) .

8. Transserial twins

8.1. Reminders about transseries

This section is something of an aside, and we shall be extremely sketchy.

Let z ~ +~. The formal trigebra T or R[[[z]]] consists, very roughly, of
the natural completion of R[[z-1]] under the basic operations {+, , ~, ~}
and their inverses. Its elements, the so-called transseries, may involve ex-
tremely intricate concatenations of exponentials and logarithms, but always
admit a (unique) distinguished or ’canonical’ representation obtained by
- expelling all infinitesimals from inside the exponentials
- expelling all sums from inside the logarithms39

There is a natural, total order on the trigebra of transseries. In par-
ticular, in the distinguished representation, each transseries appears in the

(37) whatever their form or number, provided they make use "only" of the operations
+, x, ~, ~ and their inverses.
(38) expressed in any chart that makes them simultaneously resurgent.
(39) using in both cases the functional equations and Taylor expansions of exp and log.
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guise of a transfinite, well-ordered sum of transmonomials which, despite
their ’atomicity’, may carry infinitely many coefficients, with a complex
arborescent structure on them.

So much for the formal transseries. The geometric counterpart is the

trigebra Rfff zlll of so-called analysable germs at +oo. These are in one-to-
one correspondance with a small (or huge, depending on how you look at
it) subalgebra of R[[[z]]], consisting either of ’convergent’ or divergent but
’accelero-summable’ transseries.

The correspondance, needless to say, commutes with the full array of
basic operations {+, x , o, ~} and respects the natural order. Both trigebras
enjoy a long list of auspicious properties: stability, closure, algorithmic solv-
ability of many types of differential or functional equations, etc.

A number of applications, though, call for even larger extenstions, re-
sulting from the introduction of extremely fast-growing functions En, the
so-called transexponentials of strength n, or the even faster growing ultra-

exponential 03B5~.

Before defining the latter, let us recall the usual abbreviations for com-
mutators and conjugations:

Let T be the unit shift and E the exponential mapping. The transexponen.
tials En are ’characterised’ by "smoothness" and the conjugation equations

The ultraexponential 03B5~ is also ’characterised’ by "smoothness" and ; 

growth pattern faster than that of any 03B5n of finite strength n.

Actually, no matter what amount of "smoothness" we choose to impose
there is a huge indeterminacy inherent in this construction 40, which canno

(40) roughly, one smooth periodic conjugation per step, and an even more formidabl
indeterminacy for 03B5~.
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be removed by purely asymptotic criteria at +~. This is the bad news,
or the ’negative side’ of the so-called indiscernibility theorem. However, by
the same token, no matter what choice we strike, the resulting trans- or
ultra-exponential extensions of our trigebra of transseries are going to be
essentially one, i.e. isomorphic under the full struxture {+, x , o, a, }. This
is the good news, or the ’positive side’ of the indiscernibility theorem.

The trigebras of transseries and analysable functions were introduced
in the late 90s to solve the so-called Dulac problem about the finiteness of
limit-cycles. See [E5], [E6], [E7], [E8]. The emphasis there was squarely on
the analytic side, and developments about the formal construction - ie the
trigebra of transseries - were kept to a minimum. A far more sophisticated
theory of formal transseries was subsequently developed by van der Hoeven
(see [Hl], [H2], [H3]), with special attention to the algorithmic resolution
of differential, functional etc equations. The present section §8, incidentally,
benefited from exchanges we had with van der Hoeven. Lastly, for comple-
ments about the indiscernibility theorem, the fast/slow functions (such as
the trans- or ultra-exponentials and their reciprocals) and the whole subject
of ’universal fast/slow asymptotics’, we refer to [E5], chap. 7-10.

8.2. Transserial twins of exponential or transexponential type

Switching from power series to transseries, especially of the transexpo-
nential sort, brings significant changes to the typology of twins. There ap-
pears a whole new class of twin-begetting relations which may be be called
’regular’ or ’orderly’and which had no true equivalent in the more restrictive
setting of power series.

Consider for instance the following series of (F, G)-relations, where F
has been normalised to the unit shift T. They consist of a principal, highly-
alternate, (1 + k)-shrinking4l factor {T , Tn1 : ... : Tnk : G} and a pertur-
bative, even more alternate, (2 + k)-shrinking factor. Wk(T, G).

(41 ) An operator G ~ P(G) is k-shrinking if, Vm &#x3E; 0 , it ’shrinks’ any transexponentia
of strength m + k to something that lies in the transexponential growth range of strengtl
m.
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The k-th equation of this list has a neat, predictable set of twin solutions,
which constitute a k-dimensional real variety.

Then, alongside these ’regular’or ’orderly’twin-begetting relations, we
have also, like with power series but in an even more bewildering variety
of shapes, a collection of ’exceptional’ or ’sporadic’ relations, with twin
solutions whose existence, number, nature, connectedness/disconnectedness
etc ... depend on a ’fluke of algebra’ - like log W(ea, eb) accidentally falling
into this or that cell of the Uker-filtration - that is not at all apparent on
the word W(A, B) itself.

8.3. Van der Hoeven’s intermediate value theorem

Let P be a differential polynomial with transserial coefficients. Van der
Hoeven has shown in [H2] that, given any pair of transseries gl, g2 such
that P(gl)  0  P(g2) there exists at least one solution P(go) = 0 with
go ~]g1, g2[. He even supplies an algorithm for constructing go. He has also
extended this intermediate value theorem to an even broader class of func-

tional equations - not broad enough, however, to cover all composition equa-
tions W(f,g) = id 42. Nevertheless, it seems highly likely that the theorem
holds in that context also.

8.4. Canonical resummation of transserial twins

Fundamental squares. - Let W ( f , g) = id be a twin-begetting rela-
tion and (fo, jo) a formal transserial solution, normalised to fo = T -
unit shi f t. We wish to "sum" (Jo, go) to a geometric twin ( fo, go) consist-
ing of true germs at +~.

Here, it is convenient to write W in this way:

A "fundamental square" in R+ x R+ is a square [a, b] x [a, b] that contains
a "tentative portion" of the trivial graphs [z, f0(z)], [f0(z), z] and of the
non-trivial graphs [z, go (z)], [g0(z), z], with a full "cycle" of points Zi duly

(42) with, say, f known and g unknown.
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located on these graphs and appearing in the proper succession.43

Functional continuation and periodic adjustment. - For any (f0, 0) we
may always construct such a square with an approximate (0 := T, 0),
with f 0 T and go smooth, even analytic, except possibly at the extremal
points z = a and z = b. Provided go is close enough to a leading section of
go (itself taken large enough to determine all the finitely many, discrete or
continuous parameters on which the general twin solution ( f , g) depends)
there clearly exists a unique functional continuation of go (that of lois
trivial) over the whole interval [b, +~[, with go everywhere smooth (or
analytic) except possibly at a sequences of ’images’ Z3, Z4, Z5 ... of Zl, Z2
and with the consecutive images of the r points Zi retaining their proper
order inside the succesive images of the ’fundamental square’.

An asymptotic analysis of go at +~ will reveal an oscillatory part in-
terfering with the proper transserial part. But these parasitical oscillations
may always be uniquely corrected by conjugation go H go = h-1 ogo o h with
a suitable 1-periodic mapping h, i.e. one that commutes with the unit shift
T. And not only does this unique h-conjugation spirit away the parasitical
oscillations; it also has the automatic effect of restoring smoothness at the
points Zl, Z2, Z3 .... The pair ( fo, go) thus obtained may be regarded as the
exact geometric counterpart, or ’sum’, of the formal pair (0, 0).

There exits, however, a significant difference depending on whether the
formal pair (10’ go) does or does not involve transexponentials En.

If it doesn’t, then ( fo, go) is determined absolutely and real-analytic on
[..., +~[, though of course usually not at +00.

If it does, then ( fo, go) is determined relatively to a choice of En (and
here the ’indiscernibility principle’ comes into play) and probably (though
this hasn’t been proved) real-analytic on [..., +00 [ for a real-analytic choice

(43) That order is always unambiguously determined by the formal twin (0, 0), due
to the full order that exists on transseries.
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of En. This is by no means a foregone conclusion, for with respect to general
transserial functional equations, an analytic choice of En doesn’t guarantee
the solution’s analyticity, but only its cohesiveness - which is a strong form
of smoothness and quasi-analyticity: see [E5], [E6], [E7]. But the fact is that
twin equations are a very special sub-class of composition equations, and
enjoy a whole range of specific properties. So the jury is still out on that
one.

8.5. The ordering of free or bound groups. Natural and exotic
orders. Ultraexponential arbitration

Natural and exotic orders on the composition group of transseries. - Let
UT denote the composition group of all (formal) identity-tangent transserial
mappings f : z ~ z + O(1) (z rv +~). Alongside its natural order , the
group ET admits a non-countable infinity of exotic orders I,~.

Here is how to construct them. A transmonomial interval I := [Al, A2] or
]A1, A2] or [A1, A2[ or ]A1, A2 [ bounded by two infinitesimal transmonomials
A1  A2 is declared shift-invariant if for any transmonomial A ~ I and

any real shift t, the transseries At(z) := A(z + t) has as its leading term
a transmonomial leadAt that also lies in I. Not all intervals, of course,
are shift-invariants, but those bounded by ordinary (negative) powers, for
instance, are. Now, choose any partition l = Il U 12 ... , finite or not, of the
fully ordered set of all infinitesimal transmonomials (for the natural order)
into shift-invariant intervals Ii and assign a sign Ei E {+, -} to each of
these.

Then define on UT a binary relation I,~ as follows:

The relation I,~ is clearly transitive and trivially stable under right com
position by h E UT. It is also stable under left compostion since, du
to the shift-invariance of all Ii, the leading terms of f o g-1 - id and
h~f~g-1~h-1-id always fall within the same interval of the partition 1
Each relation I,~ therefore defines an exotic order on UT that is compatibl
with the group structure as well as the natural topology.

Embedding-induced orders on free groups. - Any isomorphism Ai
fi of the r-generator free group Gr(A) into a subgroup of the group IT
endowed with its natural order  or some exotic I,~, clearly induces
total group order (with left- and right-stability) on Gr(A).
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Similarly, for any system {fi} of transserial twins or siblings , such an
imbedding induces a total order on a suitable quotient Gr(A)/{W(A)}.

While there probably exist, on the free Gr(A) or its ’bound’ quotients,
other group orders than those obtainable in the above manner, this huge
class of embedding-induced group orders is nonetheless quite interesting, if
only because it points to three rather strange dichotomies:
- first, the dichotomy between natural/exotic orders, depending on whether
the underlying embedding is into {IT, } or {ET, I,~}.
- second, the dichotomy between convergent/divergent orders, depending on
whether all {fi} can/cannot be chosen simultaneously convergent.
- third, the dichotomy between summable/non-summable orders, depending
on whether all {fi} can/cannot be chosen simultaneously summable44.

Ultraexponential arbitration. - In the case of twins or siblings {fi}, the
skilful addition to them of infinitesimal terms of type 1/03B5~, i.e. small beyond
all transexponential orders, can always restore independence, and induce on
Gr(A) group orders which sometimes can be obtained in no other way.

Thus, the order on the two-generator group Gr(A1, A2) corresponding
to the independent pair {f1(z) := -1. (z) , f2 (z) z + 11 or, what amounts
to the same45, to the pair {1(z) := z + f2 (z) := z + 1/03B5~(z)}, is specific
to that (very) particular embedding, and capable of a remarkable combina-
torial interpretation.

9. Conclusion: settled points, open questions

Synoptic table. - With the usual abbreviations:

(44) This third dichotomy is quite distinct from the second one!
(45) Indeed, both pairs {f1,f2} and {1, 2} are conjugate under a "superfast" ~.

Note, however, that replacing 03B5~ by ~ in the above embedding would make no difference
to the order induced on Gr(A1, A2). Indeed, although 03B5~ and ~ are "distinguishable"
when used jointly in the same relation - the latter is much faster growing than the former
and all its finite iterates - they are nonetheless "undistinguishable" when occuring in
isolation!
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Main settled points. -

2022 Existence of numerous but sporadic types of formal twins.

2022 Generic convergence for non identity-tangent twins.

2022 Generic divergence-cum-resurgence for identity-tangent twins.

2022 Extension to ’siblings’: r+1 mappings constrained by r relations.

Main open questions. -

2022 Are identity-tangent twins always divergent?

2022 What is the arithmetic nature 46 of their resurgence invariants?

2022 What autarky relations do these verify 47?

2022 Do all transserial formal twins possess a real-analytic (as opposed to
merely cohesive) geometric realisation?

(46) presumably transcendental
(47) when there are free continuous parameters.
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Intertwined mappings

Some avenues for exploration. 2013

e Extend the Uker-filtration to the case of r-generator free algebras and
higher dimensional differential representations.

e Calculate the dimensions that go with these filtrations.

e Investigate the higher-dimensional analogue of twins and siblings.

e Explore the potential48 of representations of free or ’nearly free’

groups into groups of (one or many dimensional) germ mappings.
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