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Divergence and summability of normal forms
of systems of differential equations

with nilpotent linear part

MIREILLE CANALIS-DURAND (1), REINHARD SCHÄFKE (2)

Annales de la Faculté des Sciences de Toulouse Vol. XIII, n° 4, 2004

ABSTRACT. - We consider the following system of differential equations
x = 2y + 2x 0394(x, y), y = 3x2 + 3y 0394(x, y), (0394)

where A E C{x,y}, A(0,0) = 0. The above system is a prenormal form
of a generic perturbation of the hamiltonian system x = 2y, y = 3x2.
Substituting x by xU(x, y)2 and y by yU(x, y)3 where U(x, y) is a formal
power series with U(0,0) = 1, (A) can be transformed into a formal
normal form

x=2y+2x0394*, y=3x2+3y 0394*, (A*)
where A* - A0(h) + xA1(h), h = y2 - x3, and Ao(h) = A0khk + ...,
Al (h) = A1lhl +... are formal power series with A0k, A1l ~ 0 ([Lo99]).

In the present work, we discuss the Gevrey order and summability of
the formal power series Ao, Al and U as a function of the above valuations
k and of the series Ao and Al. Here, we distinguish two cases: in the
first case, l is smaller than k, in the second k  l. The first case includes
the non-degenerate case where A = ax + ..., 03B1 i- 0; all the others are

degenerate. In this work, we present the following results:
In the first case, Al can be reduced to All hl and the power series

U(x,y) = 03A3r,sbrs xrys and A0(h) = 03A3mk A0mhm are Gevrey of
order a = 1/(6l + 1) in the weighted degree; i.e. there exist K, A &#x3E; 0

such that for all r, s, m

|Am|  K A6m03B1 0393(6m03B1 + 1), |brs|  K A(2r+3s)03B1 0393((2r + 3s)a + 1).
Moreover, the power series Ao (t6) is summable and generically, the above
Gevrey order is optimal. In the second case, Ao can be reduced to A0khk
and U(x, y) and Al (h) are Gevrey of order 1/(3k + 3l) in the weighted
degree. Moreover, the power series Al(t6) is summable and generically,
the above Gevrey order is optimal.

In the non-degenerate case, we also detail the type A of the series.
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(2) IRMA, Université Louis Pasteur, 67084 Strasbourg Cedex.
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RÉSUMÉ. - On considère des formes prénormales associées à des per-
turbations génériques du système x = 2y, y = 3x2. Il est connu qu’elles
admettent une forme normale formelle x = 2y+2x0394*, y = 3x2+3y0394*, où
A* = A0(h) + xAl (h) avec h = y2 - x3 ([Loray, 1999]). Nous démontrons
que Ao, AI et les transformations normalisantes sont divergentes, mais
k-sommables. L’entier k dépend des premiers termes non nuls de Ao et Al.

1. Introduction

We consider the system of differential equations:

where A E C{x, y}, i.e. a convergent power series of y, 0394(0, 0) = 0 and
. 

- d
dz 

Remark 1.1. - The above system is a prenormal form of a generic per-
turbation of the hamiltonian system

D. Cerveau and R. Moussu ([CM88]) have shown that this prenor-
mal form can always be reached by a convergent transformation. F. Loray
([Lo99]) showed that (A) can be transformed into a system (0394) - of the
same form, but with A replaced by A - by a substitution

where U(x, y) is a convergent or formal power series with U(O, 0) = 1. Thus
(A) is transformed into 

The transformation equation connecting A, À and U is

where subscripts x etc denote partial derivatives.
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If U is convergent, we say that (A) is analytically equivalent to (A). If
U is only a formal power series, we say that (A) is formally equivalent to
(0).

It is natural to ask for the "simplest" (A) equivalent to a given (A), i.e.
for a normal form which will be denoted by (0*).

THEOREM 1.2 ([Lo99]). - Given 0 E C{x, y}, 0394(0, 0) - 0, there is

a unique formal power series U(x, y) = 1 + ... transforming (0394) into its
formal normal form (0394*), A* - Ao(h) + xA1(h), where h = y2 - x3 and
Ao, A1 E C[[h]]. The series 0 and 0* are related by (1.2). More precisely,
A* is in one of the following form A* 0, 0394* = alhl, 0394* = ak xhk,
A* - alhl + xA1(h) or 0394* = A0(h) + ak xh k; in the forth case, A1(h)
contains no terms of lower order than hl, in the last case Ao (h) contains
only terms of higher order than h k

As in the resonant saddle case [MR83], the question of convergence of
this normal form and the normalizing transformation arises. There, the nor-
mal form was polynomial, but the normalizing transformation was diver-
gent, but nevertheless summable. Moreover, it is known that if two con-

vergent systems (A) and (A) are formally equivalent, then according to a
theorem of [CM88], they are analytically equivalent, i.e. the normalizing
transformation converges if the series A* is convergent.

With the background of these statements, R. Moussu, F. Loray,
J.-F. Mattei and J.-P. Ramis asked the question about the convergence/di-
vergence of the normal form A* = A0(h) + xA1(h) and the normalizing
transformation U.

We distinguish two cases: the non-degenerate case where A = cxx -I- ... ,
03B1 ~ 0 and the degenerate case where ce = 0. The non-degenerate case will be
treated in some detail below and in section 2, the degenerate case somewhat
less detailed below and in section 3.

In [CMT01], the first 30 terms of Ao(h) were calculated for several exam-
ples in the non-degenerate case, using MAPLE and resources of the com-
puter algebra center MEDICIS. The authors used a "pattern recognition
algorithm" for the growth rate of the coefficients of the power series Ao.
The procedure includes several steps (numerical analysis of the coefficients,
cut-off asymptotic ([RS96]), method of least squares) to determine the con-
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stants of the Gevrey characterl of the power series. They obtained numerical
evidence that A0(h) is generically divergent, but of Gevrey order 6 and type
A = 0.18 ..., Ao considered as a power series in h.

A similar approach had been used earlier in the field of singular per-
turbations : in 1985, the first fifty coefficients of the formal solutions of the
forced Van der Pol equation were calculated ([CDG89]) and these results
suggested the possible Gevrey character of the formal power series. Five
years later, a proof of the Gevrey character of the formal solution was given
in ([Ca91]). As a consequence, the existence of so called "canard" solutions
could also be established using Borel-Laplace summation and generalized
in [CRSSOO].

For the non-degenerate case the results are summarized in the theorem
below. For convenience, we introduce the weighted degree by deg(x) = 2 ;
deg(y) = 3 so deg(h) = deg(y2 - x3) = 6.

THEOREM 1.3. - With notations as above and when 0 = x + ..., then

A1=1 and the power series U(x, ?/) = 03A3r,s brsxrys and A0(h) = 03A3m1 Amhm
are Gevrey 1 in the weighted degree; i. e. there exist K, A &#x3E; 0 such that f or
all k, l, m

|Am |  K A6m (6m)!, | brs |  K A2r+3s(2s+3s)!,
where the type A = 0.1844 ± 0.0001.

The power series A0(t6) is 1-summable if arg t is not congruent to 03C0 6
modulo 03C0 3. Finally, there exists a non-zero analytic function Q such that
Q(0394) ~ 0 implies that U and 0* - x + Ao(h) are divergent and the above
type is optimal.

The above theorem was presented in ([CS03]); a complète proof will be
given in a subsequent article. In the present work, a sketch of the proof in
6 steps is given in section 2:

2022 Step 1: Transformation of the coordinates (elliptic functions).
2022 Step 2: The Borel plane.

(1) Definition ([Gevl8, Ram78, RS96]): Let k, A two positive numbers. A formal power
power series (t) = 03A3m0 an t n ~ C[[t]] is said to be Gevrey of order 1/p and type A, if
there exist two nonnegative numbers C and p such that
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2022 Step 3: The linearized problem.

2022 Step 4: Zeroes of the function R(03C4) = 1 203C0i ~H e03C4I(s)/2 ds.

2022 Step 5: The non-linear problem.

2022 Step 6: Divergence.

On the last step, the origin and the nature of the function Q will become
clear.

As also the degenerate cases fall into some categories, it is more con-

venient here to introduce another classification: Denote the formal normal
form by A* = A0(h) + xA1(h), where A0(h) = A0khk + ..., A1 (h) -
AIlhz + ... with A0k, A1l ~ 0. If one of the series vanishes, we formally put
k = 00 or l == oo, respectively. Then as the first case, we consider the case
that l is smaller than k, in the second case k  l. The first case includes the
non-degenerate case. Here we present the following results:

THEOREM 1.4. - In the first case, Al can be reduced to A1L hl and the
power series U(x, y) = 03A3r,s brs xrys and A0(h) = 03A3mk Aomhm are Gevrey
of order 03B1 = 1/(6l+1) in the weighted degree; i. e. there exist K, A &#x3E; 0 such
that for all r, s, m

1 Am | K A6m03B1 0393(6m03B1 + 1), 1 brs K A(2r+3s)03B10393((2r + 3s)03B1 + 1) .

Moreover, the power series A0(t6) is summable and generically, the above
Gevrey order is optimal. In the second case, Ao can be reduced to A0khk and
U(x, y) and Al (h) are Gevrey of order 1/(3k + 31) in the weighted degree.
Moreover, the power series Al (t6) is summable and generically, the above
Gevrey order t’s optimal.

The idea of the proof is given in section 3. We would like to mention that
the theory presented here is somewhat analogous to that of J. Martinet and
J.-P. Ramis ([MR83]); in the resonant saddle case, y2 - X3 is replaced by
Y2-X2, their normal form is polynomial and in general, the transformation
U is divergent but summable. Observe that in our framework, the divergence
is introduced by the normal form (recall that formal equivalence of analytic
equations of the form (A) implies analytic equivalence) whereas in their
case, only the normalising transformation is (in general) divergent.
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2. The non-degenerate case

2.1. Numerical results

[CMT01] established a specific algorithm derived from F. Loray’s work
([Lo99]) in order to determine the Gevrey character of the normal form and
the normalizing transformation. They first presented a "pattern recogni-
tion" algorithm for the growth rate of the coefficients. This algorithm will
be part of a general procedure called Gevreytiseur to establish the numerical
Gevrey character of a given series.

Let S(X) = 03A3n0 an X n E C[[X]]. First, the procedure consists in
studying the sequences (an+1 an) and (anXn)n~N for certain X in order
to determine the radius of convergence of the power series. When the radius
of convergence is zero, [CMT01] study the Gevrey character (cf. [Gevl8,
Ram78]) of the power series.

If a power series is Gevrey of order 1 /p and of type A, then its coefficients
satisfy the following estimate: an C An/p 0393(03C1 + n p) where C and p are
positive constants. Often, it seems reasonable to conjecture (cf. [CK99])
that the coefficients an are asymptotically equivalent to an expression of
the above type:



- 499 -

Then applying the method of least squares to (log an)n~N, they note that
the relation (2.1) can also be written as an rv (n!)03B1 Bn n!3 M. Thus the
new constants are related to the previous ones by the following relations:

The problem consists in determining constants o;, B, 0 and M such that
the curve a ln(n!) + n ln(B) + 03B2ln(n) + ln(M) is as close as possible to the
curve ln(an). The method of least squares is a convenient way of doing this.

Finally interpolating by spline functions, [CMT01] calculate the con-
stants C, A, p and p by using spline functions: the value ln(an) is approxi-
mated by a spline cubic function a(n) using all ai (for details, see [CMT01]).

In several examples, the study of [CMTO1], based on 35 coefficients
of A*, leads us to conjecture that if the power series A(x, y) contains the
monomial x and is convergent, then the normal form 0* - x + h Ao (h), h =
y2 - x3 , Ao E C[[h]], is generically Gevrey of order 6 and type A close to
0.18.

In the present work, we sketch a proof of this conjecture (see Theorem 2)
and generalize it to the degenerate case. Observe that a formal power series

Em0 amhm ~ C[[h]] is Gevrey of order 6 and type A if and only if the
power series 03A3m0 amt6m ~ C[[t]] is Gevrey of order 1 and type A. The
following subsection are devoted to a sketch of our proof.

2.2. Transformation of the coordinates

The solution of the unperturbed system suggests the following coordinate
transformation

where q is an elliptic function verifying q2 = q3 + 1, q(O) = oo. Precisely,
q - 4P where P is the Weierstrass P-function with parameters 92 - 0
and 93 = -1/16 ([AS64]). Observe that h = y2 - x3 = t6. Each point (x, y)
outside the cusp y2 == x3 corresponds to 6 points (s, t) where s is an element
of the hexagon H defined by the first six zeroes of q: H is the hexagon with
vertices 03C1jc, j = 0, ... , 5 where c = 2~10(1-t3)-1/2 dt ~ 2.80436, p = e03C0 3i.
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With the notation

the transformation equation (1.2) is simplified to

where Ut = at’ Us = as. This follows from 2tUs = C(2yUx + 3x2Uy)(s,t),
t t =C(2xUx+3yUy)(s,t) and D(s, tU) = C(0394(xU2,yU3))(s,t).

We are looking for solutions in s and t of this equation with certain
symmetry properties that can be expressed in terms of power series in x
and y. Let us introduce the following C-vector spaces: Hm the space of
homogeneous polynomials 03A32k+3l=m aklxkyl of weighted degree m and 03B5m
the space of meromorphic functions on C that are po- and pl-periodic (po ==
2ia and p1 = 2i03C1a, where a = ~~1(t3-1)-1/2 dt ~ 2.42865, are fundamental
periods of q), whose only pole inside the hexagon x is 0, of order  m, and
such that f(03C1s) = 03C1-mf(s).

The coordinate change (C) induces a bijection l between Hm et 03B5m
by I(f)(s)tm = C(f)(s,t). Let S = {03A3~m=0fm(s)tm/fm ~ 03B5m} and Sn =
{03A3~m=n fm(s)tm/fm E 03B5m} (S is the set of all formal power series in t whose
coefficients are elliptic functions of s which can be expressed in x and ?/).

Using the above notation, given D E q(s)t2 + S6, we are looking for a
solution U E 1 + S5, D* = q(s)t2 + A0(t6) of (2.5). So let:

Then equation (2.5) becomes

2WS-I-t2 q(s)Wt+E* = q(s)t2W2-2tWE*-t2WtE*+E(s, t(1+tW))(1+tW)2.
(2.6)

We now rewrite equation (2.2) in the Borel plane (see Appendix 4.1 for
details). We apply the formal Borel transformation 1 with respect to t,
defined by 1 (tn) = 03C4n-1 (n-1)! for n  1, to all the preceding power series (cf.
figure 1).
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Figure 1. - Dictionary of the change of variables.

Precisely, let E(s, t(l + tW))(1 + tW)2 = _n-- Fn(s,t)tn Wn anc

Using properties of the Borel transform, in particular Bi (t2~ ~tf(t))
== 03C41(f(t)), equation (2.6) can be written as follows in the Borel plane:

wher(

where * denotes the convolution product with respect to T. The restrictions
are the following: Given are T3Fn E csmax(n,6) and we are looking for E*(03C4) E
73C[[76]], 72W E S5. For a summary of all our transformations and the
corresponding equations, see figure 3 in the Appendix 4.2.

2.3. The linearized problem

We consider the linearization of (2.7):
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Given T3G E S6, we have to find T2W E S5, E*(03C4) E T3C[[T6]] verifying
this linear ordinary differential equation with a parameter T. We solve it by
method of variation of constants. The "constant" of integration and E* are
uniquely determined by the conditions (in particular W has to be a single
valued function of s). We find

where I is an antiderivative of q, and

with

In (2.9), the path of integration is from oo to s avoiding the poles of q and
such that Re (T7(cr)) tends to -~ as 03C3 ~ oo.

The zeroes of the function R of (2.10) are important because they in-
troduce the singularities of E* (and W) in the Borel plane.

2.4. Zeroes of the function R

We study the zeroes of the function

Here, the function I(s) is the unique antiderivative of q(s) without constant
term; I(s) = -403B6(s) where ((s) denotes the Weierstrass zeta function with
parameters 92 = 0 and g3 = -1/16 ([AS64]). I is a pseudo-periodic function.
Its (simple) zeroes are po/2, pl/2, ... p5/2 and its saddle-points are the
zeroes of I’ = q, that is, the vertices 03C1jc, j = 0,..., 5 of the hexagon H.

Obviously, R is an entire function. As I(ps) = 03C1-1I(s), we have R(pT) =
pR(T) and the coefficients of R are real like those of q and I. So

If T is a zero of R, then 03C103BD03C4 and 03C103BD03C4, v = 0, ... , 5 are zeroes of R, too. We
have the symmetries R(pVT) == 03C103BDR(03C4), R(03C103BD03C4) = 03C103BDR(03C4), v = 0, ... , 5.
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The first terms of the series of R are

LEMMA 2.2. - The function R has exponential growth as |03C4| ---+ ~;
more precisely

Moreover, we can localize the zeroes of the function R:

THEOREM 2.3. - The zeroes of the function R (other than 03C4 = 0)
are on the rays arg 03C4 (2l+1)03C0 6, l - 0, ... , 5 and form six sequences
mke(2l+1)03C0i/6, k ~ N, l = 0, ... , 5. One has Imo - 5.42041  0.0002 and

Imk - tk |  12t-3k with tk = (3 + 4k) if k  1 ; here I(-c) =

2~10t(1-t3)-1/2dt ~ 1.72474.

Sketch of the proof: First, we study the zeroes near the origine. We have
the result:

THEOREM 2.4. - The function R has exactly 7 simple zeroes in the disk
ITI  10.6. They are T = 0 and T = 03C103BDim0, 03BD = 0,..., 5, where mo is real
and |m0 - 5.42041  0.0002. Thus 1 m0 ~ 0.1845.

The zeroes of R satisfying ITI &#x3E; 10.6 are less easily located; we use
an asymptotic method: since R(T) is given by an integral formula with
an exponential term, we apply the "saddle point method" to determine
precise asymptotic estimates, i.e. we use Laplace’s method with error bounds
([Olv74]) for large T.

Remark 2.5. - The modulus of the first zeroes of R is almost equal to
5.4204. Now, we are going to prove that the first zeroes of R effectively are
the first singularities of E*; so we will conclude that A* is divergent, Gevrey
of order 6 (in t6) and with a type equal to 1 5.4204 ~ 0.1845. This value of
the type was obtained numerically in [CMTO1].
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2.5. The non-linear problem

As the linear differential equation has a unique solution (W, E*) satisfy-
ing the restrictions, we obtain two linear operators W(G) := W,
03B5(G) := E*.

In order to find a solution of (2.7), it is sufficient to solve the fixed point
equation G = G(W(G), 03B5(G)) in 03C4-3 S6, i.e. to solve

wher

LE

THEOREM 2.6. - There exists a unique analytic solution G : (CBR) x
D ~ C of (2.16). It is R-periodic, symmetric: G(03C1s, 03C103C4) = 03C1-3G(s,03C4) =
-G(s, T) and G(s, T) E 03C4-3 S6.

As a consequence, G and thus also W(G) = W, 03B5(G) = E* have
convergent power series representations at T = 0, hence the formal solution

(0394*,U) is Gevrey 1.

We also need a statement concerning the growth of G(s, T) as 03C4 ~ ~
along rays in D.

THEOREM 2.7. - Consider 03B8 ~ R B (03C0 6 + 03C0 3Z). For sufficiently small
03B4 &#x3E; 0, there exists K, M &#x3E; 0 such that |G(s,03C4)|  M exp (K|03C4|) for all
s, T E C with dist(s, R) &#x3E; 03B4 and 1 arg T - 03B8|  03B4.

Here, we only give a rough idea of the proof of Theorem 2.7. We introduce
a certain subset 40 of C of s that can be joined to oo by a path 03B3(03C3), -00 
03C3  0 on which Re (e03B8iI(03B3(03C3))) increases. Then we obtain an inequality
containing convolutions for

Following an idea of B.L.J. Braaksma and W. Walter, we show, using thE
Laplace transform, that the corresponding equation has a solution having
-at most exponential growth and that it is a majorant of f (r). This show;
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the statement of the theorem for s E Ao. Finally we extend this statement
to s outside Ao.

Observe that this theorem implies that also E* = 03B5(G) is at most of ex-
ponential growth as T ---+ oo. This proves the 1-summability of A0(t6) stated
in Theorem 1.3. We obtain also the 1-summability of (s, t) = (CU) (s, t)
with respect to t.

2.6. Divergence

In order to show the divergence of the formal solution in the generic
case, we show that the Borel transform E* (T) has a singularity at T = Tj ==
mo exp(zi + j zi), j = 0,..., 5. We establish this fact in a way similar to
the preceding proof, but we work with a different function space (a very
simplified version of the resurgent functions of J. Ecalle [Eca85]).

We consider the subset D of the universal covering D of {03C4 ~ C ||03C4| 
mo +1} B {TO, ... 03C45} of all points that can either be joined (in D) to 0 by a
segment or whose distance from one of the 03C4j,j = 0,..., 5 is smaller than 1.
We write this decomposition D = D U U5j=0Bj. Let 0 the Banach space of
all holomorphic functions G : C8 x D ~ C bounded on C8 x D that can be
written as

where 03B1Gj and 03B2Gj are bounded holomorphic functions on Cb  {|03C4 - 03C4j|  1}.

First we show that (2.16) has a unique solution G in the closed subspace
06,6 of all H E 0 such that 03C4-6H(s,03C4) E 0 and all (T - 03C4j)-603B2Hj(s,03C4) are
also bounded. By (2.10), there exists a constant ao E C such that E* -

03A35j=0 a003C1-2j 03C4-03C4j ~ 06,5. Then we show that ao depends analytically upon the
coefficients of A and by considering the example A = x + 03B5y, 03B5 ~ 0 small,
we show that ao is a non trivial function of the coefficients of A. This proves
the divergence of E* (and hence of A* and consequently U) in the generic
case and yields the function Q of the theorem. Moreover, in the case of
a0 ~ 0, the type is equal to 1

Remark 2.8. - One might hope to achieve a convergent "prenormal"
form by allowing two full series Ao (h), A1(h). This does, unfortunately, not
help: a "final" transformation x E- xU(h)2, y ~ yU(h)3 with convergent
U(h) reduces such a convergent prenormal form to a convergent normal
form!
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3. The degenerate cases

3.1. Numerical results

In [CMT01], a second group of tests concerned power series which do not
contain the monomial x (degenerate cases). The following two cases were
considered:

a) The power series 0(x, y) is of the form: bx3+ 03A3p+q2, p~0, 2p+3q7 xpyq
with some b i= 0. Here the (modified) formal normal form is 

b) The power series 0394(x, y) is of the form: Cx 4+ 03A3p+q3, p~0, 2p+3q9 XP yq
with some C ~ 0. Here the (modified) formal normal is 

For each case [CMT01] used a specific algorithm. Contrarily to their previous
tests, the curve n ~ ln(an) here was not regular. It was not possible to
estimate the Gevrey order p 1 consistently even with the method of least
squares and the results were very different depending on whether all the
coefficients of A* were considered in the curve fitting or only part of these.
Briefly, [CMT01] did not obtain a precise conclusion.

Later, the çalculations were redone for simpler A, namely 0394(x, y) =
xh + y3 and A(.r, y) = h + xh + y3. These tests allowed to conjecture the
results stated in Theorem 1.4.

3.2. Idea of the proof

In the first case, the proof is very much like the one for the non-degen-
erate case presented above. First, new coordinates are introduced by (C) and
the principal linear part is isolated. Instead of equation (2.5), we obtain

and this implies that the appropriate Borel transform is the one that es-
sentially maps t6l+2 9 to the multiplication by a power of T. Precisely, this
means that we have to use f r-+ 03C41-pp(tp-1f(t)) with p = 6l + 1. The
remaining steps of the proof are analogous to the ones given in section 2.

In the second case, the result is somewhat surprising as the optimal
Gevrey order does not only depend upon the first non-vanishing term A0khk
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of the formal normal form but also of the first non-vanishing term of the
other series A1(h) = A1lhl + .... This can be interpreted in terms of the
variables introduced in (C): in the new variables, x = q(s)t2 introduces
a pole in the s-plane that implies that the function R(T) of (2.11) has
nontrivial zeroes. If the leading term is h = t6, the analog of the function
R(T) equals simply CT and introduces no singularities in the Borel plane. It
was also surprising for us that the change of variables (C) successful in the
non-degenerate case is inappropriate in the second case. In the sequel we
discuss the ideas for the simplest subcase of the second case, i.e. k = 1 = 1
and Aol = All = 1. In this case, the variables we use are h and x - the
variable y is eliminated.

We proceed as follows. The main linear part of the transformation equa-
tion is isolated on the left hand side; thus (1.2) becomes

where U(x, y) - 1 + W(x, y), 0* - h + xh + x E* (h) and the dots indicate
nonlinear and other lower order terms that are not specified; in a complete
proof these terms would appear on the right hand side in equations anal-
ogous to (2.6) and (2.7) and the fixed point theorem would be applied.
Here, we only indicate the treatment of the analog of the linear equation
(cf. subsection 2.4).

Using y2 == h+x3, every formal series f (x, y) can be written in the form
f(x, y) = f(0)(x, h) +y f(1)(x, h); here f(0) and f(1) are uniquely determined.
In this way, we can write (3.1) as a system of two equations for WCO) and
W(1).

Here the terms 2h W(1)x and (h + xh)x W(0,1)x are less important and can
also be put on the right hand side. Thus we study the simplified system

The appearence of h2 th indicates that the Borel transform of order 1 with
respect to h is the right choice. Let denote 03C9j(x,03C4) = 1(W(j)(x, h)) and
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Then the equation becomes

From now on T is regarded as a parameter and thus differentiation with
respect to x is simply denoted by ’; the right hand sides have been given
names now - keep in mind that they contain nonlinear terms...

Next, we introduce Yo = wo and yl = x3/2w1; they satisfy

As yo and Do only contain powers of x with integer exponents and y1 and
x3/2 Dl (x, T) only contain powers of x with exponents of the form "integer +
1/2", the above equations can be added without loss of information. Denote
z = yo + y1, f(x,03C4) = Do (x, T) + x3/2D1(x, T). Then we obtain

The last change of variables is x = t2 ; we keep the names of the functions for
the sake of simplicity, only differentiation with respect to t will be denoted
by a dot.

This last equation can again be solved by variation of constants.

Again, we need that z is a single valued function of t; hence the residue of
the integrand must vanish. Thus D* is determined by the formula

Here, the denominator happens to be a known special function:

It grows at most exponentially as 03C4 ~ oo and has two sequences of zeroes
on the positive resp. negative real axis. In order to obtain a function z(t, T)
analytic at t == 0, the constant C has to be chosen C = 0 and the path of
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integration in (3.8) has to be from 0 to t such that Re (-03C4/t) ~ ~ as t ~ 0
along the path. We write

where D* is determined by (3.9).

As in the non-degenerate case, the zeroes of the denominator of (3.9)
generically introduce singularities in the Borel plane which correspond to
divergence of Gevrey order 1 in the variable h (or Gevrey order 1/6 in the
weighted degree). As before, the summability of the obtained series can be
shown. This will be detailed in a subsequent article.

The general second case with k = l is very analogous to the above, only
the Borel transform will be for a different Gevrey order. If k  l, however,
another complication occurs: instead of x, the variable 03BE = x hl -k has to be
used; in order that no negative powers of h appear in the equation when this
change of variable is made, all terms of A containing a too high power of x
have to be eliminated by a preliminary transformation. Luckily, this can be
achieved using a convergent U(x, y). For details, we refer to our forthcoming
article.

4. Appendix

4.1. The Borel plane

We recall some definitions and properties of Gevrey asymptotics. We use
the formal Borel transform B in order to recognize Gevrey power series.

DEFINITION 4.1 ([GEV18, RAM78, RS96]). - For any given p, A &#x3E;

0, a formal power series f(t) = 03A3n0 an tn E C[[t]] is said to be Gevrey of
order 1/p = a and type A, if there exist two nonnegative numbers C and p
such that

DEFINITION 4.2. - Let f (t) = 03A3n1 an tn be a formal power series. We
call formai Borel transform of order a = 1/p of Î the power series p()
defined by 
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Figure 2. - Gevrey asymptotics.

DEFINITION 4.3. - Let f(03C4) be an analytic function on D(O, R) R &#x3E; 0.

The truncated Laplace transform of level p of f is the function

DEFINITION 4.4. - Let S be an open sector with vertex at the origin. Let
f be an analytic function on S, let f(t) - 03A3n0 bntn E C[[t]] be a formal
power series and let A, p be positive real numbers. We say that f admits
f (t) as an asymptotic expansion of Gevrey order 1/p and of type A as t ---+ 0

on S if there is a positive constant p &#x3E; 0, and for every subsector S’  S

there is a constant CS’ &#x3E; 0, such that

In figure 2, we indicate the most important properties of the Borel and
Laplace transforms in connection with formal power series of Gevrey
order 1/p. Further properties:

1. A formal power series is a Gevrey power series of order a = 1/p if and
only if its formal Borel transform of order a is a convergent power
series in the Borel plane.
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2. If the power series f (t) is a convergent power series, the power series
Bp(1)(T) has a radius of convergence equal to +~, for all p &#x3E; 0.

3. A power series (t) is divergent, but of Gevrey order exactly ex = 1/p
and exact type A, if and only if Bp (1) (T) is a convergent power series
in the T-plane and defines an analytic function f having at least a
singularity. Moreover, the modulus of the first singularity is equal to
1/A03B1 (see [Ca03]).

4. The truncated-Laplace transform of f defines an analytic function on

an open sector whose opening is  a7r and this analytic function has
f as asymptotic expansion of Gevrey order ex (see [Ca03]).

Next, we recall the definitions of p-summability ([Ram80]):

DEFINITION 4.5. - Let p be a positive real number and let do be a di-
rection. A power series f E C[[t]] is p-summable in the direction do if the
power series is Gevrey of order 03B1 = 1/p and if the sum of the convergent
power series p()(03C4) has an analytic continuation f(03C4) that is holomorphic
and has an exponential increasing of order at most p at the infinite on an
open sector V in the neighbourhood of d~. Under these conditions, we say
that 

is the sum of Î in the direction do in the Borel-Laplace sense.

This definition is equivalent to the

DEFINITION 4.6. - Let do be a direction. A formal power series f E
C[[t]] is said to be p-summable in the direction do if there exists an holo-
morphic function f on a sector S, bisected by d~, with opening &#x3E; 03C0/p and
f has  as asymptotic expansion with Gevrey estimates of order 03B1 = 1/p
on S.

Under these conditions, f is a Gevrey power series of order a and the sum
f is unique. We will say that f is the sum of f in the direction do in the
sense of the p-summability.

DEFINITION 4.7. - A formal power series f E C[[t]] is said to be p-
summable if the power series is p-summable in every direction d except a
finite number of directions. These singular directions are called anti-Stokes
lines.
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4.2. Summary of the equations in the non-degenerate case

In this appendix, we condense all the changes of variables we made in the
non-degenerate case and the resulting equations into one table; in the left
column the corresponding equation numbers in the above text are indicated.

Figure 3. - Summary.
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