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Power and exponential-power series solutions
of evolution equations

RODICA D. COSTIN (1)

Annales de la Faculté des Sciences de Toulouse Vol. XIII, n° 4, 2004

ABSTRACT. - The paper studies transseries solutions of linear evolu-
tion equations, and their correspondance with solutions using generalized
Laplace transform. It is found that, in spite of a rich functional freedom in
the form of the transseries solutions, there is a maximal exponential order
possible. This is a distinguished order a growth, and others are obtained
by asymptotic superpositions of transseries solutions of this order.

RÉSUMÉ. - Cet article examine les transséries solutions formelles d’équa-
tions d’évolution linéaires et leur correspondance avec les solutions, en
utilisant la transformation de Laplace généralisée. On trouve que, malgré
la grande diversité des formes possibles pour une solution transsérielle, il

y a un ordre exponentiel maximal. Il s’agit d’un certain ordre de crois-
sance, et les autres solutions transsérielles sont obtenues par superposition
asymptotique de solutions transsérielles de cet ordre.

1. Introduction

1.1. Brief overview

The theory of partial differential equations when one, or more variables,
is in the complex domain, and approaches a characteristic variety has only
recently started to develop.
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In their paper [11], generalized in [12], O. Costin and S. Tanveer proved
existence and uniqueness of solutions with given initial conditions, for quasi-
linear systems of evolution equations in a large enough sector of C.

Borel summability of divergent solutions of the heat equation was proved
by Lutz, Miyake, and Schâfke [13], and more generally, Borel summability
of series solutions of linear equations with constant coefficients was proved,
in a general setting, by Balser (see [1], and the references therein).

A natural question is to find what formal objects lie beyond formal power
series solutions, and what is their connection to power series. The present
paper contains initial results in this direction.

For ordinary differential equations a comprehensive and general theory
of formal solutions (transseries), in a one-to-one correspondence with true
solutions, is presented in the fundamental work of Ecalle [3]-[5]. The cor-
respondence between transseries and solutions was later proved under non-
resonance assumptions by O. Costin, who constructed a generalized Borel
transform [6], [7]. O. Costin and Kruskal showed how formal solutions can
be used to produce the Stokes constants [9], [8]. Transseries solutions can be
used to find the type and location of movable arrays of singularities toward
the irregular singular point [8], [10].

Braaksma has recently extended the theory of transseries representa-
tions to nonlinear difference equations [2]. The structure of singularities of
solutions of difference equations has been obtained by Kuik [15].

1.2. Général Remarks

The present paper considers a few simple evolution equations, and ex-
amines the formal solutions that can be built with exponentials and powers.
Some conclusions are mentioned below.

A main distinction between formal solutions of ordinary, versus partial
differential equations is that there is an tremendous freedom in the formal
solutions of a partial differential equation: after each monomial there is a
functional freedom.

Perhaps surprisingly however, there is a maximal order possible for ex-
ponential solutions (for evolution equations of order at least two); these
maximal exponentials are also distinguished in another way: they generate
the terms beyond all orders of divergent power solutions.

For the linear equations examined in this paper, the heat equation and
Airy equation, solutions can be obtained by superposition of simpler solu-
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tions (which solve similarity reductions to ordinary equations). A remark-
able fact is that the PDE transseries are also obtained by superpositions
of the transseries of the similarity solutions. This provides robustness to a
theory of transseries for solutions of partial differential equations.

Formal series and exponential series solutions of partial differential equa-
tions are deduced in this paper using standard tools in asymptotic analysis;
their basic principles were exposed by Kruskal in [14]. Such calculations ap-
ply to solutions that do have a (trans)asymptotic representation, and use
the assumption that monomials in this representation do preserve their or-
dering after operations with functions. In the case of algebraic, ordinary
differential or difference equations, with analyzable coefficients (as is the
case of equations arising in applications), the general solutions seem to be
in a one-to-one isomorphic correspondence with such algebraic representa-
tions (transseries) (see [3] for ordinary differential equations). For partial
differential equations however, due to a rich functional freedom in the set of
solutions, it is clear that only subclasses of solutions can be represented by
algebraic objects. The steps of specific calculations will be shown in some
detail to uncover that they can be justified for algebraic representations
that have the properties of Écalle’s transseries: they are based on monomi-
als, that can be well ordered with respect to the much larger relation (»),
and for which all operations preserve the ordering.

1.3. Setting

The formal solutions will be derived under the assumption that x is real
positive x ~ +00 and that t varies in a compact subinterval of (0, +~).

1.4. Main results

Formal solutions of the heat equation, and their association to solutions
obtained by inverse Laplace transform are studied in §3.

It is shown that power series are linear combinations (finite, or infinite,
in the latter case possibly transfinite) of pure series solutions, in which all
freedoms besides the first term are taken to be 0 (3.7); these series are gener-
ically divergent. It is shown that exponential terms cannot have arbitrary
order. In fact, there is a maximal order of decay. These distinguished expo-
nential series (3.11), together with the pure power series satisfy the same
ordinary differential equations (3.13), hence it may be inferred that these
exponentials are the possible terms beyond all orders of the pure power
series.
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Complex plane solutions u of the heat equation are then studied in §3.4
using inverse Laplace transform, after proper normalization in the sense
of O. Costin. The power series asymptotic to Laplace integrals are pre-
cisely the corresponding superpositions of pure power series. Moreover, the
corresponding superposition of the distinguished exponentially small terms
coincides with the loop integral that encircles all the singularities of the
inverse Laplace transform of u, then generating all the terms beyond all
orders of u (Proposition 3.1).

In §3.6 it is shown that initial data determines the power series and

boundary data fixes the exponentially small terms as well.

Similar results hold for the Airy equation and are briefly presented in
§4.

A simple first order, nonlinear example is examined in §5. Power series
solutions cannot have arbitrary order, and there is a maximal power.

2. The simplest partial differential equation

Consider the simplest first order evolution equation

2ct = ux ( 2 .1 )

Equation (2.1) has the general solution u = 03A6(x + t) where 03A6 is any differ-
entiable function. Then its formal solutions are any expressions in x + t and
nothing more specific seems to emerge.

3. The Heat Equation

Consider the simplest second order evolution equation: the heat equation

The question is to find the formal series solutions that can be written in
terms of powers of x or exponentials of powers of x, in the asymptotic limit
of §1.3. It will shortly appear that the same formal solutions satisfy another
limit, namely for t ~ +0 and x = O(1).

3.1. Power séries solutions

Formal calculation of power series solutions of (3.1) is standard. The

main steps are as follows.
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Looking for solutions u(x, t) behaving like a power of x, substitute

Then (3.1) becomes

The usual assumption at this point is that since A « xn then also

At, 1B.,x « xn. This certainly holds if A is in a "good" class of functions
(but is clearly not true in full generality, and an easy counterexample is
0394 = xn-l sin(1/x)).

Then in (3.3) the term f’ (t) xn is much larger than all others, and it
must therefore vanish: f(t) = const = cn. Then u = cnxn + A where

The main behavior of A contains a functional freedom, since then A =

(x) +03B4(x,t), where 03A6 is any function satisfying 03A6 « xn, 03A6xx « xn-2 and
03B4 satisfies 03B4 ~ 03A6.

For simplicity (and definiteness) only powers of x are considered here,
so 03A6(x) = ckxk (where Rk  Rn).

Then u = cnxn + ckxk + 03B4(x,t) (where 03B4 « x k) and the steps above
are repeated to determine the leading behavior of b (which is the largest
monomial in its asymptotic représentation).

It turns out that there is a functional freedom after every monomial of
the series solution u; a simple calculation yields the general form of a power
series solution of (3.1):

Equation (3.1) is linear, hence (3.5) is a superposition (finite, or infinite,
in the latter case it can be transfinite)

where ûn are "pure series" : series solutions with leading behavior xn and
where all arbitrary freedoms were chosen zero; a simple calculation yields
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Note that the series (3.7) is finite if n E N and diverges otherwise.

The series (3.6) is an asymptotic object only if its terms can be arranged
in a decreasing way. For this to be possible the set S must be well ordered
with respect to the relation  : n k iff xn » xk (x ~ oo).

The decomposition (3.6), (3.7) allows to distinguish between the diver-
gence intrinsic to the equation (seen in (3.7)) and possible divergence due
to given data (seen in the behavior of cn, for n going towards points of
accumulation in S ~ {+~}).

It is interesting to note that t appears only in the form of powers (even
if no assumptions on t were made). Also, the series (3.6) is asymptotic in
the another limit as well: t ~ +0, and x varying in a compact subinterval
of R+.

3.2. Exponential séries. Distinguished exponentials

Unlike the case of the first order equation (2.1), where any exponential
growth of solutions was possible, for the heat equation (and seemingly, for
most other second or higher order equations) it turns out that there is a

maximal order of increase (for representations in a "good class").

Formal calculation of exponential series solutions is the WKB method,
whose main steps are outlined below together with necessary assumptions.

With the substitution u - exp(W) (where lW/ » 1) equation (3.1)
becomes

The term Wxx can be neglected in a first approximation, since Wxx «
W2x. (Indeed, otherwise Wxx/W2x is much larger, or of order 1 which by
integration gives that W has at most logarithmic order, so u does not have
exponential growth.)

For the dominant order of W one needs then to solve Wt ~ 1 4 W2x, which
gives

where 03A6 is an arbitrary function.

It turns out that solutions W of (3.9) belonging to a "good" class have
the maximal order of growth x2. Indeed, if Wx is much larger than, or of the
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same order as 03A6(Wx) then (3.9) implies that Wx is of order x. Otherwise
03A6(Wx) must have order x, hence Wx « x. Thus Wx has at most order x,
so W has at most order x2.

Note that these considerations hold for functions W in a class for which
the relation » is conserved under operations in x (W (., t) is analyzable).

Looking for the specific form of a maximal W, substitute W = f (t)x2 +
o(x2 ) in (3.8), which gives W = -x2 t-03C4 + o(X2). Since the heat equation is
invariant under translations in t, take T == 0, and find the distinguished
exponential

Other solutions of (3.9) have the form W = cxn + o(xn) with Rn  2

and c ~ C.

There is a functional freedom after each monomial in the expansion of
W, and this freedom is an arbitrary function of x t:

An interesting case is 03A61(z) = 203BEz (with 03BE E C). Taking all other free-
doms to be 0 we get the exact solution

and the freedom 03A61 corresponds to invariance of (3.1) under translations
in x.

Another special freedom is 03A60(z) = (-n - 1) ln z (with n e C). Again
taking all other freedoms 0 one gets the formal solutions

Note that the series (3.11) is finite if n e Z- and diverges otherwise.
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3.3. Similarity solutions and transseries

In this section it is shown that the exponentially small terms following
a series solution (3.7) are precisely (3.11). Indeed, it will be shown that
the series (3.7) and (3.11) solve the same differential equation (for fixed
n); based on existing results in the theory of transseries representations
for solutions of ordinary differential equations it follows then that if (3.7)
diverges, then (3.11) must constitute the terms beyond all orders of that
series.

3.3.1 Transseries

Noting that the formal solutions (3.7), (3.11) are powers of t multiplying
series in x2 t, denote

which transforms (3.1) into the ordinary differential equation

Equations (3.13) are usually called similarity reductions of (3.1) and
their solutions (3.12) are similarity solutions.

Transseries solutions of (3.13) are of course, linear combinations of two
independent solutions, which have the form

Then formal, as well as actual, solutions of the heat equation are obtained
from (3.12) and (3.13), (3.14): they are

The series multiplying the constant An is (3.7), and Bn is followed by (3.11).

3.3.2 Representations using inverse Laplace transform

Assumption: For simplicity only negative integer powers will be con-
sidered in the following: n E Z-.
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Positive values of n correspond to solutions of the heat equation that do
not decrease to 0; they can also be studied using inverse Laplace transform
after subtracting the increasing terms in the expansions (see [7], [10], [11]).
Noninteger values of n make the inverse Laplace transform branched at the
origin, but no major differences exist otherwise in using the Borel space
techniques [7].

Transseries (3.14) are obtained using generalized inverse Laplace trans-
form [4], [7] in the following way. The substitution

(where I! is a path starting at p = 0, going to oo in the right-half plane)
transforms (3.13) toI

whose solution is

Since n was assumed negative, G(p) is integrable at p == 0, and is singular
at p = 1.

The integral (3.16) depends on the path of integration R only relative to
its homotopy class in the right half-plane minus the point p = 1; therefore
R can be assumed to be either d+ = ei03B8R+ or d- = e-i03B8R+ (where B is any
number in (0, 03C0 2)).

A solution of (3.13) whose transseries is a power series with no exponen-
tially small terms is the balanced average [4], [7], [6]

and a solution whose transseries is exponentially small is

(which amounts to integration in (3.16) on a loop around p = 1).

(1) It must be assumed that G is such that the integral (3.16) exists and, when inte-
grating by parts, the boundary values vanish.
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Stating these facts in terms of solutions of the heat equation, using (3.12),
(3.13), (3.14) consider the solutions of (3.1)

and defin(

Then

(see §6.1 for détails) ; the transseries of u[p]n has no exponentially small terms.

Also 

(see §6.2 for détails).

3.4. Solutions of the heat equation by inverse Laplace transform

Solutions of linear, or nonlinear partial differential equations have been
studied using inverse Laplace transform methods by O. Costin and S. Tan-
veer [11], [12].

Looking for solutions of (3.1) which go to 0 for x ~ +00 using inverse
Laplace transform, first normalize the equation by substituting y == x2

and (3.1) becomes

which after inverse Laplace transform gives

with the general solution

where F is arbitrary.
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This gives solutions of the heat equation in the form

where R is a path starting at q = 0, which for t in a specified interval lies in
the right-half plane and avoids the singularities of the integrand.

3.4.1 Assumptions on F.

At this point a discussion is required on the assumptions on the arbitrary
function F that are needed, or useful.

First of all, formula (3.26) defines a solution of (3.1) if the integral exists
and can be differentiated with respect to t and x.

Also, formula (3.26) defines uniquely, by Borel summation, a function
UF if F(03B6) is analytic at 0 (or, at least has a convergent Frobenius
series) .

It should be noted that the path of integration R in (3.26) will have to
vary with t, since the singularities of the integrand do vary. But the value
of the integral (3.26) should not depend on small variations of ~ (otherwise
UF may not solve (3.1)). Then F must be assumed mostly analytic, in an
appropriate sense which assures that when t is varied, the path of integration
can be accordingly varied in a domain of analyticity of the integrand, so that
the value of the integral is locally constant in t.

In addition, considering functions F in a more regular class, more in-
formation on UF can be obtained using analytic methods. For example,
restricting the considerations to solutions UF which are (1) analytic for x
in a sector containing R+ (possibly excepting a discrete set of points), and
(2) are defined for all t &#x3E; to then F(03B6) would be assumed (a) analytic in
the complex plane less two half-lines S03B60 = {03B6 ~ R; |03B6| &#x3E; 03B60}, and (b) the
increase of F at points on S(o should allow integrals (3.26) to converge (see
§6.3 for détails).

3.4.2 Asymptotic and transasymptotic expansions

The asymptotic power series of the solution UF in (3.26) is found in a

straightforward way, using Watson’s Lemma (which amounts to a formal

integration, term by term, of the Taylor series of (1 - tq)-3/2 F (q 1-tq) at
q
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As a natural generalization of the techniques used for ordinary differen-
tial equations, it is to be expected that exponentially small terms of UF are
generated by taking linear combinations of uF(x,t;~) on different paths f.
For linear equations the study of exponentially small series is easier, and
easier to put to test.

3.5. Superpositions of similarity solutions and transseries

3.5.1 Similarity solutions

For F(03B6) = (m (with Rm &#x3E; -1) formula (3.26) has the form (3.18) for
7T, == -2m - 2, hence

3.5.2 Finite superpositions of similarity solutions

For F(03B6) a polynomial:

(3.26) is a finite superposition of (3.18):

and the transseries of UF is obtained by a direct summation and rearrange-
ment of the transseries of U-2m-2, m = O..M.

Similar results hold if F (() a polynomial in (1/2.

3.5.3 Infinite superpositions of similarity solutions

Since the function F of (3.26) is assumed analytic at ( - 0, it has a

convergent Taylor series expansion

A natural question is to investigate what formal objects are obtained by the
corresponding superposition of the transseries of u-2m-2, m  0.
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Consider then the formal objects obtained by replacing u -2m-2 and
u[e]-2m-2 with their formal series (3.21), (3.7), respectively (3.22), (3.11):

The power series ûp can be rearranged to become asymptotic (meaning
that the terms are decreasing), and this is clearly the power series asymp-
totics of UF (by Watson’s Lemma).

The exponential series F cannot be immediately rearranged in an asymp-
totic way (since the powers of x multiply the same exponential term and
have no upper bound).

However, F is an analytic function which sums all the exponentially
small terms:

PROPOSITION 3.1. - Let F have a convergent Taylor series (3.29) at
the origin. Let ûF be defined by (3.31).

Then there exists to  0 and c &#x3E; 0 such that 

for all t &#x3E; to.

The integral (3.26) is on the loop which encircles all the singularities of
the integrand.

To be more specific, to and c are any positive constants for which F(03B6)
is analytic on the disk + 1 t0|  1 c. Such constants always exist since F was
assumed analytic at 0; for example if F is analytic on |03B6|  r then one

can take to &#x3E; 1/r. In particular, to can be chosen 0 if F is analytic on the
half-plane R03B6  0.

The proof of Proposition 3.1 is given in §6.4.
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3.5.4 Example 1

If F is entire then the only singularity of the integrand in (3.26) is

q = 1/t, which is an essential singularity. The paths of integration f can be
taken to be rays d7:. as in (3.18).

To examine the transseries of solutions on a simple example in this class
consider 

For this F the exponential series tiF can be calculated explicitly (either from
(3.32), or, directly from (6.2)), yielding

Note that the loop integral (3.33) contains more than one type of expo-
nential terms, in spite of the fact that there is only one singularity.

3.5.5 Example 2

If F is a rational function, then it can be written as a polynomial plus
a sum of poles. Polynomials were considered already in §3.5. Consider next
the case of a simple pole

so

Loop integrals

For F given by (3.34) formula (3.26) is

and the integrand is singular at q, - 1 and q2 = i. There are four paths
of integration f avoiding ql and q2.

Denote by dO"l,0"2 (03C3j = ±) the paths in the right half-plane starting at
q = 0, avoiding qj from above (respectively, below) if aj == + (respectively,
-). Elementary calculations give
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and

Main loop integral

On the other hand, direct superposition of the exponentially small terms
(see (3.32)) give, using (3.36), (3.37),

3.6. Relations between initial data and transseries representations

The structure of transseries solutions makes visible the type of initial,
or boundary data that specifies uniquely a solution with a given class. In-
deed, consider similarity solutions with n  0; their transseries have the
form (3.15), and it is intuitive that looking at the limit t ~ +0 the small
exponential term must vanish, thus fixing An, while in the limit x ---+ +0
the constant Bn becomes visible, since the exponential is no longer beyond
all orders. This means that conditions on solutions given at x = 0+ and
at t = 0+ specifies uniquely a solution. Remarks 3.2 and 3.3 state these
properties.

Remark 3.2. - The initial condition determines the dominant power
series. Indeed:

(i) The similarity solutions satisfy

for x &#x3E; 0 and n  0; therefore

(ii) More generally, if F(03B6) is entire, then

and the function F is determined by the initial condition at t = 0.

The proof follows immediately from (3.18) and (3.26).
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Further Remarks.

The general case, when F is not entire, is very interesting and rich in
consequences, for both finding an initial time when specifying an initial
condition determines F uniquely, and for the study of backwards evolution
(in the sense of analytic continuation for t less than the initial time). These
issues however will not be pursued here.

Remark 3.3. - If n is not an even integer, boundary conditions deter-
mine the exponentially small terms. Indeed:

fo

Formula (3.39) follows by substituting p/(l - p) = r in (3.18) for x = 0
and using a formula for an Eulerian integral of the first kind [16].

Remark 3.4. - The existence of a maximal order of increase of exponen-
tial terms implies that a solution asymptotic to a given power series in a
sector large enough is unique. This type of property insures uniqueness also
in the general results of O. Costin and S. Tanveer in [11], [12].

For the heat equation, since the largest possible exponent is of order
x2 (see (3.10)) then the requirement that a solution be asymptotic to a
power series on a sector larger than arg x E [0, 03C0/4] implies uniqueness of
the solution. (Intuitively, exponential terms are not small after continuation
in x beyond 1 arg x 03C0/4.)

4. The Airy Equation

Consider the simplest third order evolution equation: the Airy Equation

4.1. Formal solutions

Consider power series and exponential-power series solutions of the Airy
equation (4.1) in the limit of §1.3.

The considerations on the structure of formal solutions are very similar
to the case of the heat equation, and are not repeated here.
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Power solutions are superpositions of

The series (4.2) terminates if n e N and diverges otherwise.

The largest order of increase of solutions are the exponentials of x3/2;
the distinguished exponentials are

and there are exponential-power series solutions of the form

The series (4.2) and (4.3) are formal solutions of similarity reduction
equations: substituting

equation (4.1) becomes the ordinary differential equation

which, for each n, links the series îcn to the exponential series ûn;±. Inverse
Laplace transform of (4.4) gives

with solution a combination of hypergeometric functions of the form

for appropriate constants A, B (see §6.5.3 for the definition of 2F1).
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Next, considering solutions of the Airy equation which go to 0 as x -
+~, they can be expressed by inverse Laplace transform after the proper
normalization x3/2 == y. Substituting u(x, t) = v(y,t) equation (4.1) be-
comes 

which after inverse Laplace transform v(y, t) = ~~ e-qyV(q, t)dq gives

As in the case of the heat equation, solutions of (4.7) can be expressed
as superpositions of similarity solutions; in fact, for n a negative integer
(not a multiple of 3) formulas (4.5) can be written in terms of elementary
functions.

5. A nonlinear example

Consider the simple first order, nonlinear evolution equation

whose general solution is given implicitly by

where P is an arbitrary tunction.

Consider the formal solutions of (5.1) in the limit of §1.3.

A simple analysis shows that the maximal order of a power series solution
is x: u = x t + o(x) ; other series solutions may start with any lower power:
u = cxn + ... (with Rn  1). -

Let us focus on the distinguished power series. Substituting u - + v
(where v is assumed much smaller than x), we get

Since v « x, then vx « 1 (if v is in a good class), therefore the linear
part of (5.3) contains the largest terms, which by solving gives v - 1 t 03A6 (x t)
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(with 4) « 1). Successive perturbations give, iteratively, the series solution

which can be viewed as a "nonlinearization" of the formal and actual so-

lutions 1 t 03A6 of the linear part, generalizing the same phenomenon seen for
ordinary differential equations.

Exponential terms can be included in the function 03A6 (which is the same
as in (5.2)); so there are clearly no distinguished exponentials.

6. Appendix

6.1. Appendix 1

From (3.16), (3.17) and Watson’s Lemma we have

which yields (3.21).

6.2. Appendix 2

From (3.16), (3.17) we have

where

where the last equality follows by Hankel’s formula for r-functions [16].
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6.3. Appendix 3

(i) Assuming the integrand of (3.26) is analytic along ~ = ei03B8R+, it

follows that F(03B6) must be analytic on the path ( = q/(1 - tq), (q E ei03B8R+)
which is the arc At,o of the circle centered at -1/ (2t) + i cos03B8/(2tsin03B8)
passing through the origin and the point -l/t which lies in the upper half-
plane for 03B8 &#x3E; 0, respectively in the lower half-plane for 0  0.

(ii) Assuming in addition that the solution UF is defined for all t  to
(for some to &#x3E; 0) it follows that F is analytic in the region bounded by
At0,03B8 and the x-axis (possible excluding a finite number of singular points).

(iii) Assuming (i) and (ii) for all 0 E (0, ()o] (possibly excepting a discrete
set of points), this entails that F is analytic in the outer region bounded by
At,03B80 and the x-axis (possible excluding a finite number of singular points).

6.4. Appendix 4

Each term ft-2m-2 is a finite sum and it will be shown that the series

converges if for all t &#x3E; to &#x3E; 0 if F(03B6) is analytic on the disk |03B6 -t- 1 t0|  1 c
In view of §3.5.1 we need to consider 03A3m0 Fmu[e]-2m-2. BY (3.22), (3.11)

the superposition of the corresponding formal series is

which is a series of finite sums (by (3.11))

and using the duplication formula for r-fûnction (see (6.3) )

This series cannot be reordered in an asymptotic way. It will however be
shown that it converges absolutely for t large enough.
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Doing for the moment a formal calculation, the change of the order o.
summation gives

and with the notation: 03A6r(03C4) = 1 r!F(r)(03C4) it follow

and using (6.5)

where substituting 03BE = t(l - tq) gives

Clearly the series converge absolutely, justifying thus the calculation
above, if the Taylor series of F at the point. - t , 

converges absolutely, for aIl ç on the line of integration c + iR, which follows
if F is analytic on the disk centered at = t and radius exceeding 1 c. This
holds for all t &#x3E; to if the positive numbers c and to are such that F(() is
analytic on the disk 1 ( + 1 t0| 1 c (such a to and c always exist since F was
assumed analytic at ( = 0). In particular, the series converges absolutely
for all t &#x3E; 0 if F is analytic on the half-plane R03B6  0.
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6.5. Appendix 5: Some formulae

6.5.1 Duplication formula for the r-function:[16]

6.5.2 Laplace and Inverse Laplace transformations

and conversely,

6.5.3 The extended hypergeometric function 2Fl
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