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Construction of coupling-resurgent amplitudes
in quantum field theory

MANFRED STINGL™)

ABSTRACT. — We describe a formal solution with resurgent coupling-
constant dependence for the basic probability amplitudes of a strictly
renormalizable and asymptotically free quantum field theory. We briefly
review established facts about the form of the equations of motion and
the small-coupling expansions for these amplitudes, emphasizing that
operator-product expansions lead to resurgent-symbol formal represen-
tations of coupling dependence. We discuss why the resurgent symbols
cannot be used directly in the equations of motion, and present an answer
to this problem in the form of a quasi-perturbative expansion, based on
resummation of the resurgent symbols in their nonperturbative direction
through a sequence of rational approximants with respect to the coupling-
nonanalytic mass scale A. We sketch the distinctive mechanism, tied to
the ultraviolet loop divergences in the equations of motion, by which the
nonperturbatively modified zeroth quasi-perturbative orders (generalized
Feynman rules) establish themselves self-consistently, and emphasize that
it restricts formation of these zeroth orders rigorously to the finite set of
primitively divergent vertex functions.

RESUME. — Nous décrivons une solution formelle dont la dépendance
en la constante de couplage est résurgente pour les amplitudes de pro-
babilité de base d’une théorie quantique des champs strictement renor-
malisable et asymptotiquement libre. Nous passons brievement en re-
vue les faits établis sur la forme des équations du mouvement et les
développements a faible couplage pour ces amplitudes, en accentuant
le fait que les développements de produits d’opérateurs (“operator pro-
duct expansions”) ménent & des représentations formelles du type sym-
bole résurgent pour la dépendance par rapport au couplage. Nous in-
diquons pourquoi les symboles résurgents ne peuvent étre employés di-
rectement dans les équations du mouvement, et présentons une solution a
ce probléme sous la forme d’un développement quasi-perturbatif, basé
sur la resommation des symboles résurgents dans leur direction non-
perturbative & travers une suite d’approximations rationnelles par rap-
port & ’échelle de masse A (elle-méme non-analytique par rapport au
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couplage). Nous esquissons le mécanisme distinctif, lié aux divergences
ultraviolettes, par lequel les termes quasi-perturbatifs d’ordre 0 mod-
ifiés non-perturbativement (régles de Feynman généralisés) s’établissent
de fagon cohérente, et soulignons que cela restreint la formation de ces
termes d’ordre 0 rigoureusement a I’ensemble fini des sommets primitive-
ment divergents.

1. Generalities

This talk deals with quantum field theory (QFT), and more specifically
with the dependence of the probability amplitudes generated by QFT on the
coupling strength. The problem I would like to address is really only at the
outermost doorsteps of resurgence theory: the problem of how to construct
a formal solution to the equations of motion for those amplitudes, providing
a formal representation of their resurgent coupling dependence. I do think,
however, that such a construction is a necessary first step before one can
think of applying the more advanced concepts and techniques of resurgent
analysis that we owe to Jean Ecalle, and I hope to explain why already
this purely formal first step is nontrivial due to the peculiarly complicated
structure of the equations of motion.

At the end of this contribution, I have included only a few references
immediately pertinent to this formal solution. The reason is that the last
of these references [3]| already offers a detailed four-page bibliography on
the issues touched upon in this seminar, which it would be pointless to
duplicate; so I am assuming your permission in directing you to this source
for background information.

I will begin with a rapid review of some concepts, notations, and known
or generally accepted facts about the basic probability amplitudes of QFT
and their small-coupling expansions.

2. Small-coupling expansions of QFT vertex functions

In QFT, the amplitudes of interest are the so-called correlation functions:
scalar products, taking values in the complex numbers, over the Hilbert
space of the quantized-field system, and more precisely average or expecta-
tion values,

G (z1 - zn) o= ( ¢(z1) -~ @ (2n) D) (2.1)
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of products of N quantized-field operators ¢, at N different four-dimensional
spacetime points z;, in the physical vacuum state . (In keeping with
present-day usage in QFT, the z; will not be taken in Minkowski but in a
four-dimensional Euclidean space, and amplitudes and their equations will
be studied entirely in that Euclidean domain, with real-world Minkowskian
amplitudes to be regained only in the end, provided certain general condi-
tions are met, by analytic continuation in the fourth coordinate.) The set
of all Gn’s, with N € N, is the rough equivalent of the Schrédinger wave
function in quantum mechanics — it represents the complete information
about the system, and in particular all observable quantities of the QFT
can be extracted from them, such as the rest masses and quantum numbers
of particles, and the amplitudes for reactions between them.

In place of the G we will mostly consider the equivalent set of proper
vertez functions I'y, or their Fourier transforms I'y, which without going
into their formal definition may be characterized as the simplest building
blocks from which the full Gy or Gy may be pieced together purely al-
gebraically — by multiplication, inversion, and addition. (In particular, the
two-point vertex I'y is just the inverse, up to a minus sign, of the two-point
correlation Gy.) Each function

Ty (k1 kn; g% (1) 5 W)R (2.2)

depends on a set of N four-dimensional wave-number or momentum argu-
ments ky --- ky, obeying the restriction k; 4+ --- + ky = 0 due to transla-
tional invariance of the vacuum (2, so there are really only N — 1 indepen-
dent wave-number vectors. It also depends on a dimensionless renormalized
coupling constant g2, characterizing the strength of the interaction of the
quantized fields with each other and with themselves, and whose physical
values are real and positive: it is this dependence in which we will mainly be
interested in the following. The dots in (2:2) stand for possible dependence
on other variables, such as externally specified mass parameters, that we
will ignore (in particular, we will consider massless theories). Finally there
is dependence, both explicit and implicit through ¢2, on a parameter p, as
well as a label R, on which I will comment shortly.

To calculate these functions dynamically, one needs two types of input:

(i) An action functional — an essentially classical object, although it may
include auxiliary terms necessary for quantization, and which in the QFT’s
of interest to particle physics has the rough structure

Sl = Sale] + 9053l + 95 Sale] - (2.3)

The Sy term is bilinear in the fields ¢ and by itself would describe a set
of noninteracting fields (a “free QFT”); it is in this term that externally
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specified mass terms, if any, would be present. The S3 and S; pieces, being
respectively tri- and quadrilinear, bring in the interactions among fields, and
are therefore preceded by one or two powers of a bare coupling constant, gq.

(ii) A renormalization scheme, denoted R in (2.2), which is a set of
prescriptions for dealing with the notorious problem of ultraviolet (UV)
divergences that arise when writing and solving naively the quantum equa-
tions of motion for the action (2.3). For this talk, as in almost all analytic
work on QFT these days, the dimensional schemes will be used, which reg-
ulate the UV divergences by calculating in an artificially reduced spacetime
dimension,

D =4-2¢ (e >0). (2.4)

Divergences in correlation or vertex functions can then be isolated as terms
with poles €7}, I € N, as the “dimensional regulator” ¢ is taken to its
physical value of zero, and can be compensated by including suitable coun-
terterms in the action (2.3) so as to define finite parts of amplitudes. An
important point about any such scheme is that it will always introduce, in
the manner to be made precise by eq. (2.9) below, an arbitrary “renormal-
1zation mass scale” p, to which we already referred in (2.2); thus renor-
malization initially creates a whole family of QFT’s differing by their p
values, and physical observables must evidently be sought among the class
of “renormalization-group invariants”, quantities independent of the arbi-
trary choice of pu.

A second point is that in the dimensional continuation (2.4), the bare
coupling go acquires a mass dimension

4—-D

[90] = 2 =&, (2-5)

whereas the renormalized coupling g? parametrizing the quantities (2.2) is
kept dimensionless by definition.

Given these two pieces of input, one may set up the quantum equations
of motion for the Gy or I' v, named after Dyson and Schwinger, which take
the schematic form

Iy = IQre +{93 O [T2, - Ty, 1~ﬂN+2]} ) (2.6)
N — ~ R
from S UV -—divergent integrals

for N € N. For each I'y there is a nonlinear interaction functional, @,
preceded by at least two powers of the bare coupling go, and consisting of
momentum-space integrals over products of I'’s up to I'y 1 (and, if an Sy
term is present in (2.3), to x4 2). This coupling of each I'y to the next
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higher ones is referred to as hierarchical, and one thus faces an infinite hi-
erarchy of coupled nonlinear integral equations for the basic amplitudes I'y
— a problem rather different from the finite sets of differential or difference
equations to which one is accustomed in classical dynamical systems, or
even in one-particle quantum mechanics, and it is this peculiarly involved
structure that renders the search for even purely formal solutions nontrivial.
The integrals in @ exhibit the UV divergences mentioned above at large
wave numbers and thus require definition, as the notation in (2.6) indicates,
through the renormalization scheme R. The first term in (2.6), the pertur-
bative zeroth-order or bare vertex I’ *** is nothing but the coefficient
in the corresponding Sy term of (2.3), and is therefore nonzero only for
N = 2,3, 4. Tt is thus specified by the essentially classical action, and in
this sense one may view the system (2.6) as describing the evolution of the
quantum-field amplitudes away from their classical limits through quantum
effects induced by the interaction.

Figure 1 shows, in the diagrammatic notation devised by physicists to
avoid the writing of such unwieldy systems, the beginnings of a typical
Dyson-Schwinger hierarchy — the three equations for I'n'swith N = 2, 3, 4,
denoted by blobs with N external legs (the D~! on the L h.s. of the first
equation is identical to —I'3). In each equation the r.h.s. starts with the

corresponding fg\?)p ert term, followed by interaction terms whose closed-
loop topology signals the presence of a momentum integration and which
together constitute the quantum-effects functional g2 ® 5 of eq. (2.6). These
“loop integrals” may be viewed as a direct expression of the superposition
principle of quantum theory — each loop term specifies a class of intermediate
states, labeled by some relative four-momentum, that can contribute to the
quantum effects of a given I'y, and the integration expresses the fact that
all these contributions have to be added up coherently. I will detail the
translation of a typical interaction term of Fig. 1 into an analytical integral
formula in sect. 3 below.

The simplest idea for generating a formal solution to the system (2.6)

is, of course, to iterate it around the zeroth-order terms fgs) et Since the
interaction terms are preceded by a g2 factor, it seems clear (we shall see the
loophole in this conclusion below) that each iteration step generates another
factor of g2, which the renormalization process R turns into g2, and so one
ends up with a formal power-series expansion in the renormalized coupling,
the perturbation expansion:

o0

o ({k}; ¢ Z PPt (ks ) (92 ()P - (2.7)
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Figure 1. — First three equations of a typical Dyson-Schwinger hierarchy
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The individual contributions to the order-p coefficient function I'® 7"
can be enumerated conveniently by the method of Feynman graphs, and
since (here I am simplifying a bit) the number of such graphs turns out to
grow like p! at large p, the perturbation expansion is found to be a divergent,
asymptotic series:

|f‘§5) pert| o {# of order-p Feynman graphs} o p! (2.8)
In favorable cases, where the coupling g2 (i) is sufficiently small at the
scales p dictated by the physics context, it may nevertheless exhibit low-
order semiconvergence good enough for accurate calculations of quantum
effects on observables. But even where this is not the case, the expansion
(2.7) has dominated (and restricted) the analytic treatment of QFT to an
extent that can hardly be overestimated.

The tendency to regard “the sum of the series” as synonymous with the
exact solution of QFT was temporarily reinforced when it was proved in the
1970s that in (typical representatives of) the so-called superrenormalizable
QFT’s — model theories mostly living in spacetime dimensions D < 3 — the
perturbation expansions, while divergent, are nevertheless summable, i.e.
associated with unique, sectorially analytic functions of g2. (Reconstruction
of those functions has then been done by various, essentially classical meth-
ods, such as Padé approximants in D = 1 or Borel-Laplace transform in
D = 2 and 3.) The superrenormalizable QFT’s possess a special simplicity
in that the N = 2 functions G (and, if Lorentz-scalar fields are present,
the N = 1 functions G’l) are the only “primitively divergent” ones: it is
only these that develop their own characteristic UV divergences and call for
specific counterterms, whereas all UV divergences occurring in higher Is
can always be identified as contributions to such a Gy appearing in a loop
integrand; so renormalizing the G basically renormalizes the whole system.
(As an additional simplification, UV divergence turns out to be present in
only a few low perturbation orders p, in contrast to realistic QFT’s where
it must be dealt with for all p). In such theories, then, the perturbation
expansion, while divergent, still essentially encodes “the whole truth”.

Unfortunately, the direction suggested by these results turned out to be
misleading. In the realistic, four-dimensional QFT’s relevant to present-day
particle physics, which are “strictly” or “marginally” renormalizable rather
than superrenormalizable, the perturbation expansion is known not to be
summable; it does not permit unique reconstruction of amplitudes. Among
the obstacles that have been identified, the most serious are the so-called
infrared renormalons, classes of perturbation terms that produce, in the
Borel transform with respect to g2, an infinite sequence of poles on the real
positive Borel axis. Now this fact alone, as I learned from Jean Ecalle at
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this conference, would not nowadays be regarded by the resurgence theorist
as precluding resummation; the technique of “uniformizing averages” does
still allow one in such cases to construct a Laplace transform adapted to
the natural context in which the series arises. But my point here is that
for the QFT perturbation series such an effort is really unnecessary — the
infrared renormalons are an entirely spurious phenomenon, artefacts of an
illegitimate restriction of the small-coupling expansion, which simply dis-
appear when the more general coupling dependence possible in the strictly
renormalizable theories is taken into account consistently.

To identify this more general coupling dependence, one may start by
asking what the fundamentally new ingredients are that distinguish the
strictly renormalizable, realistic QF'T’s from the superrenormalizable ones
and may be responsible for more involved coupling structure. Inspection
shows that there is really only one such feature: not only the I's but also
the I's and 'y functions are now primitively divergent, and require their
own renormalizations through counterterms. Since these evolve, through
quantum effects, from the go S3 and g3 Sy terms of the action (2.3), it is
plausible that this entails also a renormalization of the bare coupling gg, a
renormalization usually written in the form

g (e) = p* - g*(p) Zo (9% (1), €) - (2.9)
—— —— N ———rt’
dimension 2¢ dimensionless dynamical
and finite scale factor

Since g2 has mass dimension 2 ¢, we can connect it to the renormalized g2,
which is finite as ¢ — oo and dimensionless by definition, only by splitting
off a power 2¢ of some mass scale u, and since the theory so far has no
distinguished scale, it is at this point that we get saddled with the arbitrary
mass p that we noted already in eq. (2.2). Finally, we need a dynamically
determined scale factor Z,, the coupling-renormalization constant, whose &
dependence is adjusted, order by order in a perturbation expansion in g2,
to cancel UV-divergent quantum effects on the coupling, and keep g2 finite.

Now since observable quantities predicted by a QFT are not supposed
to depend on the arbitrary choice of the mass u, we find ourselves forced
to readjust the renormalized coupling g? every time we change p so as to
keep the observables constant: our g2 has become a “running” coupling,
dependent on y. Indeed the modern way of encoding the coupling renor-
malization (2.9) is by specifying the function describing this running, the
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renormalization-group (RG) beta function,

d
Bla)) = ngiolw) = —eg = o ¢°~ P &° = F2g" = 54

scheme-independent

Its perturbative expansion is found to have, apart from a term —¢ g that
goes away in the removal-of-regulator limit ¢ — 0, a leading term —fq g°,
whose coefficient By depends only on the number and symmetry properties
of the fields in the theory . Also, Gy turns out — like the (3; of the next-
to-leading term, but unlike the 3, with n > 2 - to be independent of the
renormalization scheme R adopted. Let me state without elaboration that
it is the sign of this one number, Gy, that controls a deep structural property
of the theory: the QFT is “asymptotically free”, that is, its coupling g2 (1)
tends to zero slowly like an inverse logarithm at large scales u, exactly if
Bo > 0. We will from now on restrict attention to the strictly renormalizable
and asymptotically free theories, since the non-abelian gauge theories that
form the backbone of present-day particle physics belong to this class.

Strictly speaking, the commonly used notation g2 (1) is nonsensical —
the dimensionless g2 cannot possibly be a function of a single dimensionful
variable. There must still be some other, fixed mass scale by which the
u can be divided in order to build a dimensionless quantity. Indeed it is
straightforward to see that eq. (2.10) implies the existence of such a scale:
write it as du/p = dg /B (g) and integrate over any interval [y, ua] of
the p scale. You find that the quantity

g (p) dd
g
A = pexp / 3(9) (2.11)
g1
is the same at any u; and po and therefore y-independent: the so-called RG-
invariant mass scale. (It still depends, through the lower integration limit
g1 as well as through the higher 3, coefficients in 3 (g'), on the scheme R
adopted.) It is in this remarkable object — a scale nowhere visible in the
classical action, but which the theory has created spontaneously through
the regularization of its UV-divergent quantum effects — that the above-
mentioned compensation takes place between direct u dependence and the
indirect one through g (¢): dimensionful observables of a classically massless
QFT must be expressed in terms of A.

It is important to realize that the invariant scale (2.11) is not just a
whimsical theoretical construct but has considerable observational signifi-
cance: the QFT of the structure of the proton and neutron, Quantum Chro-
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modynamics (QCD), does have mass terms in its action (2.3) for the two
types of fermion fields (“up quark” and “down quark” fields) that form the
nucleons, but those masses are known to be orders of magnitude too small
to explain the measured nucleon masses. The latter, and therefore almost
all of the rest mass in the material world around us, are therefore to about
99 percent of the type of eq. (2.11).

In the physical spacetime dimension of ¢ = 0, we now find by using

(2.10),

A = pexp {_253)92 1+ O(gg)}} ) (2.12)

the prototype non-analytic coupling dependence that escapes representa-
tion by even a divergent power-series expansion around g? = 0. Let me
stress that (2.12) is really nothing but a turned-around form of (2.10) and
therefore a direct expression of coupling renormalization. Since the latter,
as we emphasized above, is the only fundamentally new ingredient in the
strictly renormalizable theories, it is plausible already at this point that
the “strongly nonperturbative” quantity (2.12) will be the only fundamen-
tally new building block, in addition to the powers (g?)? of the perturbative
expansion (2.7), in the coupling dependence of realistic QFT amplitudes.

Although in what follows we will occasionally refer to the quantity (2.12)
by the established epithet of “exponentially suppressed as g> — 0+ be-
cause of its exponential factor, it is significant that this factor never appears
alone, as do exponentially small factors in many other mathematical and
physical contexts, but only in combination with dimensionful factors p so
as to form the invariant mass (2.12). The term “exponentially suppressed”
therefore only applies in a purely formal and unphysical limit — the limit
where we imagine g2 tending to zero while keeping the u factor constant.
In physics, there is no way of achieving this, since the two quantities are
correlated by construction so as to keep the product (2.12) invariant. The A
scale of Quantum Chromodynamics — not to speak of the one of electroweak
theory which is a thousand times larger — has nothing exponentially small
about it; it is a massive real-world presence.

How does A appear in the correlation or vertex functions? An answer
is contained in an asymptotic expansion introduced even before the invari-
ant mass scale had been identified, the operator-product expansion (OPE).
To explain this notion in the simplest case, consider the two-point correla-
tion, eq. (2.1) at N = 2. The central idea here is to expand the product
@ (x1) @ (x2) of field operators over the basis set

{Of") () /i =1,---,1(n)} := set of all local operators at x

2.13
(elementary or composite) of mass dimension n (O = 1), (2.13)
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where x = %(ml + z2), and to use translation invariance of the vacuum
state €2. The result is an expansion,

oo l(n)

Ga(on, m2) = D 3 W (a1 — 225 6% ) - (2,07 (0)Q), (2.14)

n=01i=1

in terms of “vacuum condensates”, the vacuum averages of the basis opera-
tors. Thus the basic hypothesis underlying the OPE is one of completeness of
the set (2.13) of local operators in the space of field-operator products clus-
tering around z. To my knowledge, there is at present no rigorous proof of
this completeness statement; indeed since the “composite operators” (prod-
ucts of elementary fields and their spacetime derivatives at the same point
x) are singular objects, requiring their own UV renormalizations beyond
those of the primitively divergent correlations, much work may be needed
to even clarify with respect to what topology or metric such a complete-
ness statement may hold. At present, the belief of physicists in the OPE is
therefore based more on the good success of certain semi-empirical appli-
cations of it. However, even apart from such applications, there is a degree
of plausibility to it, since in a theory based on a finite number of fields as
basic degrees-of-freedom, it is difficult to see what basis elements should be
available for the expansion of products around a point other than the set of
all local composites at that point.

The essential property of (2.14) is that the “Wilson coefficients”, wn),
are objects perturbatively calculable as formal series in g2. Indeed then = 0
term, containing the identity (’)§0) = 1l and thus the vacuum norm (2, ) =
1, is nothing but the perturbation expansion of Gs:

w0 = glrert) (2.15)

Thus the OPE is an explicit display of things that are lacking in the pertur-
bation series and come in addition to it. Moreover, since the basis operators
Og") and their vacuum condensates have increasing mass dimensions n, it
is no surprise that the essential spacetime dependence of Wi(") turns out to
be of the form [(x; — x2)?]% ~!, apart from logarithmic corrections coming
with the higher perturbation terms. Actually, in the scalar correlations to
which we restrict ourselves here for simplicity, only even-n terms occur, so
we may from now on write 2n instead of n and state that the corresponding

coefficients f/i(n) for the Fourier-transformed two-point vertex I'; behave as
Vi o (k) (2.16)

Now in a massless theory the only mass scale available for the vacuum con-
densates is the RG-invariant A of (2.11/12) — they cannot be powers of the

— 669 —



Manfred Stingl

arbitrary u, since this would make observable particle masses, determined
by poles of G4 or zeroes of I'y in the k2 plane, proportional to u. Therefore

(@, 02" (0)Q) o A" ox (77 )" (2.17)

Combining these insights, we may write the OPE for the Iy amplitudes as
_ o0 oo 11,2 n n
—Ty (ks g% 1) = K* ) [Z an, p @P} (7&) e Fost . (2.18)
N e’

n=0 Lp=0
AZ\"
*(3)

The formal small-g? expansion for the strictly renormalizable theory there-
fore takes the form known as a resurgent symbol, a double expansion in
terms of powers and of “exponentially small” factors. The symbol’s support
is on the equidistant points

(n=0,1,2,---), (2.19)

S =
" B
a property it shares with many of the resurgent symbols arising as formal
integrals of ordinary differential equations.

(I have again been simplifying a bit: actually there are extra fractional
n B1

powers, (g2) % ) in (2.18) that arise from the 3; term of (2.10). This
does not, of course, place the expansion (2.18) outside of resurgence theory;
it merely says that the singularities of its Borel-major transform are not
of the simplest type. Also, the a, , coefficients in truth are not strictly
constant with respect to k2 but have a weak k? dependence through terms
[In (k2 / u?)]9 with ¢ < p, the type always associated with perturbative
developments.)

A crucial property of expansion (2.18) follows directly from the fact,
emphasized above, that the “exponentially small” factors never appear in
isolation but always in the form of powers of the invariant-mass combina-
tion (2.11), and that as a result the coeflicients must follow the pattern
(2.16): the resurgent symbols in g2 automatically become large-momentum
expansions in powers of A? / k2. This tight linkage between coupling and mo-
mentum dependences has nontrivial consequences. Not the least of these is
that “physical” singularities of G’s with respect to k? arguments — branch
lines at timelike k2 associated with the possibility of scattering and reac-
tion processes — translate into complex-g2-plane branch lines, the so-called
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t’Hooft singularities, whose form does not allow for a finite sectorial open-
ing angle, as g — 0+, in the region of g2 analyticity. Again I think such
phenomena are not alien to resurgence theory, but they do mean that here
one is dealing from the outset with one of the more complicated situations
for which some of the theorems and techniques usually based on sectorial-
analyticity hypotheses may need to be adapted.

An interesting side-aspect of representation (2.18) is that it leads to a
reformulation of the question of completeness for the OPE. Although resur-
gent symbols like (2.18) already represent a much larger class of functions
than, say, the Borel-summable power series of superrenormalizable theories,
we cannot at present (to my knowledge) exclude the possibility that they
still miss certain terms in the vertex functions. Such terms then would have
to be what resurgence theory calls rapidly decreasing functions, objects de-
creasing faster than any exponential as g> — 0+. (One of the few things
that can be said is that the aforementioned t’Hooft singularities in the g2
plane do not necessarily entail such non-uniqueness; a counterexample is
offered in ref. [3].) This would mean that there are missing terms in the
OPE, i.e. that the expansion of operator products in the basis (2.13) is
incomplete. If on the other hand we accept completeness of the OPE as
plausible, we are led to expect that the symbol (2.18), and analogous small-
g2 expansions for the other vertex functions, will be summable into unique
resurgent functions of the coupling. As far as I can see, this linkage, whose
underlying mechanism is still completely in the dark and all the more in-
triguing, is not yet widely appreciated. The idea seems to be widespread
that the A of (2.12) is just one among many possible coupling dependences.
By contrast we emphasize here that it is quite likely, and certainly compat-
ible with known facts, that the resurgent symbols of type (2.18) account for
the totality of the strongly nonperturbative coupling dependence.

3. Presummation of resurgent symbols

The OPE represents a deep structural statement, but it is not a replace-
ment for a dynamical theory. The latter must, in some way or other, proceed
from exact equations of motion like (2.6). It is then natural to ask, why not
go ahead and insert the resurgent-symbol formal series into those equations
to determine their coefficients, as one would do when solving differential
equations? It is again a peculiarity of QFT that this standard procedure
turns out to be impossible.

To understand why, take a look at a typical loop-integral term in one
of the interaction functionals ®x of egs. (2.6), namely, the term marked (2
C) in Fig. 1 on the r. h. s. of the N = 2 equation. Its analytic expression
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is developed in Fig. 2 below: the small and large circles translate into bare
and full three-point vertices respectively — each carrying one factor of go,
which makes for the overall g3 in (2.6) —, while the two heavy lines translate
into two-point functions G (“propagators”) at four-momenta q and k — g
adding up to the conserved total momentum & flowing through the equation.
The closed-loop topology, finally, translates into the instruction to integrate
over the “loop momentum” ¢ of the intermediate configuration.

It is essential that the integration should run over all of ¢ space, and
therefore also over the points ¢ = 0 and ¢ = k where the momenta in the
G, and T3 functions of the integrand vanish. We saw that as a result of the
tight linkage between the A? and momentum dependences, the resurgent
symbols of type (2.18) for these functions are unavoidably large-momentum
expansions — here, expansions in powers of A% /¢% and A%/ (k — ¢)%. But
such expansions obviously cannot be used in integrals extending down to
¢> = 0 and (kK — ¢)? = 0, where their errors become arbitrarily large
and indeed lead to arbitrarily strong infrared divergences. If one were to
use them blindly, in the vague hope that our dimensional regularization
(2.4) may regulate these errors too, one would meet disappointment: the A2
terms in (2.18) would produce contributions to the loop proportional to the
parameter integrals

1
dx
/ gn—2+e (1 — g)ym—2+e (m,n € N), (3.1)
0

and we would need arbitrarily large negative €’s to regulate all of these, while
UV regularization requires us to keep € > 0. There is, of course, nothing
surprising about this; one simply has been using an approximation in a
context where its validity breaks down. It is clear that simple perturbation
theory would never run into this problem — since it knows no A scale, it
does not know of the n > 1 terms in (2.18), but only of powers of g2 (1)
which for the momentum integration are mere constant parameters.

In what follows I describe an answer to this problem that is probably
not unique. Also, in its present form it is heuristic and formal, and not yet a
rigorous mathematical construction. I do think, however, that it is workable,
and that in principle it provides a coherent and systematic framework in
which to address certain questions inherently beyond the domain of applica-
bility of the perturbation expansion. On the mathematical side, I hope it can
lead to interesting conjectures and perhaps be of some help in identifying
worthwhile research problems.
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all q space

Figure 2. — Term (2 C) from first equation of Fig. 1 and its analytic expression

The starting point is to recognize that in order to have a formal re-
presentation of I'y’s that can be determined dynamically from the inte-
gral equations, one obviously needs at least a partial continuation-through-
resummation of the resurgent symbol, namely a resummation of its “non-
perturbative direction”, the n summation proceeding in powers of (A% / k%)
at fixed p. This will automatically provide a continuation of k? dependence
down to the region k? ~ 0, so that the representation can sensibly be used
in the loop integrals of the dynamical equations. The net result will be a
quasi-perturbative expansion,

Iy =Y W (A) (g7, (3.2)
p=0

which looks like a perturbation series, except that the coefficients (exempli-
fied here for the case (2.18) of a two-point vertex),

N o0 A2 n
I‘S\Zj’) = a resummation of Z Cn,p (ﬁ) ) (Cn,p X Gn,p) (3.3)

n=0
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contain the nonanalytic coupling dependence (2.12) that cannot be ac-
counted for by the power series. It is not necessary to devise such resum-
mations for all p: all one needs to do to get started is to have one for the
p = 0 terms, the zeroth quasi-perturbative orders

) oo A2 n
I’S\?) = resummation of {C0,0 + Z ©n,0 (74?3) }

n=1

_ fg\(;)pert + f‘gg) nonp (34)

They are easier to deal with because this series is likely to possess a finite
radius of convergence: by (2.14), the growth of the coefficients ¢, ¢ is mainly
controlled by the growth in the number [ (n) of local composite operators of
mass dimension n, and that number — in contrast to the number of Feynman
diagrams contributing to the perturbative coefficients ¢o , — grows “only”
exponentially:

len, 0 o< {#1(n) of local operators of (3.5)
mass dimension2n} < (const.)” '
Once these n-resummed zeroth orders f‘g\?) have been determined or at least
systematically approximated, we may entrust to the dynamical equations
themselves the job of generating the p > 1 quasi-perturbative corrections
fs\';) by iteration around these nonperturbatively improved starting solu-
tions, rather than around the L@ pert>g of perturbation theory.

From the point of view of resurgence theory, there are two extra moti-
vations for this quasi-perturbative strategy that deserve mention:

(i) By keeping the n = 0 (perturbative) and n > 1 (nonperturbative)
parts together in one function at each p, one avoids the production of spuri-
ous Borel-plane singularities that arise separately in both parts and cancel
in their sum. The “infrared renormalons” mentioned earlier are of this type;
their presence in the perturbative Borel-minor transform is entirely due to
the illegitimate omission of the nonperturbative terms.

(ii) Model studies indicate that the quasi-perturbative expansion (3.2),
viewed as a series in g% with A treated formally as an unrelated parameter, is
Borel summable in the conventional sense (without averaging techniques).
I have allowed myself to present such a model-amplitude study, which also
illustrates point (i), in sect. 2.4 of ref. [3]; this model may also be of inter-
est because it allows the quasi-perturbative resummation to be carried out
completely in terms of a class of functions — the polylogarithms — that have
attracted interest also in other mathematical contexts.
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The practical construction of the 1:‘53) functions, in the scheme described
here, is done by the classical method of rational approximants with respect to
A? — simply because rational approximants have proven themselves in other
physics contexts to be a robust tool for continuing germs of analytic func-
tions beyond a finite convergence radius. The asymptotic-freedom property
of the theory fixes the relative degrees of their numerator and denominator
polynomials in advance; thus for the 2-point vertex functions we have the
approximating sequence

. Fr (R2) L ”r A2)r+1 NI (g2 A2

—F[Q’O)(k')z Go ( )2 +<~+l( ) _ Y2 (K2, A®) (3.6)
(K2)7 + -+ 7 (A7) ALY (k2, A2)

characterized by their denominator degrees r = 0, 1, 2,--- These, as well

as their inverses G5 (k), are automatically also rational with respect to the
momentum variable k2, which allows them to be handled in the loop terms
of the integral equations. For the higher I'n’s depending on more than one
scalar momentum argument, the analogous property is not automatic; for
these one therefore relies on an additional analyticity assumption which
allows e.g. the three-point function 1:{(30) (three scalar variables from two
independent momentum vectors) to be written as a triple Cauchy integral

P(81,52, 83)
/dsl/d*/“‘“‘ CETNSICETYOICET YO N
C C C

plus analogous terms depending on only two or one of the variables. (Here
C is a denumerable set of real or complex-conjugate paths in the s planes.)
Discretization of such a representation leads to approximants of the form

NI (82, 83, k3; A2)
AT k2, A2) AT k2, A2) AT (K3, A2)

o k2, k2, k2) = (3.8)

with a numerator polynomial N3 and a factorizing denominator polynomial,
which mirrors the factorizing structure of the Cauchy denominator. We do
not write the corresponding approximants for T4, with six scalar momentum
arguments besides the A? variable, but we anticipate the remarkable fact,
discussed in the next section, that one does not need to specify any zeroth-
order approximants for N > 5 functions.

There are two noteworthy features to these fk, 0) approximants:

(i) Calculability: this property may be marginal from a conceptual point
of view but is nevertheless very important for the working physicist. The
loop integrals arising upon iteration of the coupled integral-equations sys-

tem around the f‘g\r, % can be evaluated by the existing and well-developed
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techniques of loop computation, since their integrands, while more complex
than those of perturbation theory, are still rational in momenta.

(ii) Self-consistency: at any given level r, the set {f‘g:, 0 } are capable
of self-reproduction in the coupled integral equations (2.6), up top > 1
quasi-perturbative corrections f%’ P) that are simultaneously generated in
the process, provided a finite set of algebraic self-consistency conditions are
imposed on the coefficients of the approximants. It is this property that
is decisive in establishing the quasi-perturbative series (3.2) as a formal
solution to the equations of motion. The property is not trivial, since at
first sight the g2 factor in front of the interaction functionals ®y of (2.6)
seems to ensure that only terms with at least (g%)!, but not with (¢?)°, can
be generated.

4. Self-consistency of the generalized Feynman-rules

I must naturally be brief here about the technical details of this self-
consistency result, and will therefore concentrate on the one essential math-
ematical element that makes it possible. Since during iteration we are now
feeding into the @5 the f‘g(, 0) approximants with their ubiquitous A-scale
terms, rather than the old I'(®)Pert’s  their loop integrals become capable
of producing terms in which ultraviolet divergence, %, and the noninteger
power (A?)~¢ appear as factors. In these terms, then, the ezact RG identity

I'r; é (A?)~¢ = % [1+ O(g elne) (4.1)

applies, whose r.h.s. is rigorously independent of g?(u) and therefore of
1, and finite as ¢ — 0 with the scheme-independent value of 1/ ;. This
identity follows [1] by combining the exact representation (2.11) of A with
an exact integral representation of g2 derived (from (2.9), (2.10), and the
UV-finiteness condition for g2 (1)) in 1973 by t’Hooft:

g° (1) d(glz)
¢ = u?% g% (u) exp 0/ 7Tt ex @D (4.2)

where . 5
x(g") = Bo+ Big? + —ﬁ(g,g5=0)‘ 43)

While a combination of known RG results, the identity (4.1) has nontrivial
consequences in our context because
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(i) one factor of g2 gets “eaten”: inspection shows that this is due to
the behavior (A%)=% o 1/g? (at all €) inherent in (2.11). Therefore terms
of zeroth order in g2 can be established despite the overall prefactor of g2.
One might say the “mistake” of perturbation theory is to overlook precisely
this possibility: since perturbation theory misses the A scale, it can never
produce the combination (4.1);

(ii) one factor of % gets “eaten”: inspection shows that this comes from
the nonperturbative vanishing as ¢ — 0 of the Z, factor of (2.9), a property
inherent in (4.2) and also known to t'Hooft thirty years ago. This exact
property seems to have been sitting in the QFT archives as an oddity,
since perturbation theory, which treats the Z,, by expansion in g2 with UV-
divergent coefficients, never gets confronted with it. In the nonperturbative
environment discussed here, it appears naturally and acts in an interesting
way: the compensation of UV divergence for the zeroth-order terms now
proceeds through (4.1), rather than by the artifice of counterterms. Thus
renormalization, while still basically perturbative — it depends upon the
perturbative calculability of the 8 function, and upon the property of our
approximants not to produce worse-than-perturbative UV-divergence — is
found to “work along a different route”.

To briefly demonstrate the workings of (4.1) in the simplest case, con-
sider again the two-point (N = 2) equation. On the one-loop level (first it-
eration), we replace the arguments in ®, by their zeroth-quasi-perturbative-
order approximants I'l""9). Concentrate on the (2C) term of Fig. 1 as ex-
plained in Fig. 2. The input to the loop consists, first, of expression (3.6)
which we now write in the partial-fraction form

(4.4)

o _ o g2 2 - Coy1 A*
B LR D Dy
s=1 8

(More precisely, we need its inverse, é[; 0)). Second, due to the hierarchical
coupling, we need to put in the zeroth-order three-point vertex, approxi-
mated by (3.8), whose coeflicient sets we denote by

(€} for NI, {9} for Al (4.5)

Upon feeding these into the loop and evaluating it by standard techniques,
one finds that since a Ag] (k%) denominator from (3.8) comes outside the
integral, the term can be written in a form resembling (4.4), namely
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2 k? 2 2 K 2
1+ g5 Ro F,e k*+ g5 R: F’€ A

g [ (8]

e 1 k2+79s+1A2

(4.6)

where the R; functions contain the {¢, n} and {£} sets of parameters poly-
nomially, are UV-divergent (contain poles %), and are otherwise “weakly”
(i.e. logarithmically) k*-dependent near ¢ = 0. It is clear that this form
becomes possible because of the “Cauchy structure” of (3.8), with its fac-
torizing denominator.

For comparison with the input (4.4), we need to isolate the residues in
(4.6) by the “subtraction”

k2
Ri <K—25 6) = RZ (—191;7 6)

+ [Ri (i—z, 5) — R; (-, 5)] . 4.7)

It turns out (and is familiar to the practitioner of QFT perturbation theory)
that this also isolates the UV divergences, which are now contained in the
first r. h.s. term of (4.7): in a renormalizable QFT, UV divergence is always
located in a few low-order Taylor terms of the loop integrals with respect
to external momenta. The result is

k2 1
iR (7 £) = 98 £ (00 [ ({6, b (€D) + O]
+ g2 [Taylor remainderl (4.8)
UV finite

(The first two of the “subtraction points”, ¥9 and 9, remain arbitrary but
will not influence the determination of zeroth orders). In the first term, use
of the exact identity (4.1) shows that there is really no coupling dependence
left. If term (2 C) of Fig. 1 were the only contribution to the ®5 functional
(this situation would actually occur for a fermionic two-point vertex), it
would therefore be possible to reproduce the postulated zeroth order (4.4)
by imposing the algebraic self-consistency conditions,

Ns+1 = Yst1 (s =1,-+-,7) (4.9
Cs:(ssO‘i‘”B%Xs({C’n}’ {f}) (SZO,"',T‘+1) (410)
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If there are more terms in ®,, the conditions still take this form, but with
the meaning of {£} now expanded to include the coefficient sets of the other
2- and 3-point vertices appearing in those terms.

Condition (4.9), in the notation of (3.6) and (3.8), enforces Al = Al
and this type of condition — a direct consequence of the hierarchical coupling
— keeps reappearing in the next higher vertex equations of Fig. 1: for a
given type of field ¢ in the correlation functions, the same denominator
polynomial Al at the momenta k? of all external legs of that type, is
present in all zeroth-order vertices at level r. Looking back at (3.7), we see
that beyond the context of rational approximation, this means that the same
set C of contours is involved in the momentum analyticity of all zeroth-order
functions — a strong structural statement.

On the other hand the Taylor remainders in (4.8) are UV finite, so in
these the ¢ — 0 limit can be performed straight away. The special combi-
nation (4.1) now does not form; the prefactor of g2 remains in isolation, and
we must decide about how to treat its dependence on our basic resurgence
variable, g2. But since we have opted for a quasi-perturbative expansion
(3.2), our only consistent choice is to use (2.9) as expanded in powers of g2.
On the one-loop level at which we are working, this amounts to using

9% =91+0(@")] (¢=0). (4.11)

This somewhat clumsy dichotomy in the treatment of g2 is connected to
the different treatments we have applied to the “n direction” at p = 0 (all-
orders resummation) and the “p direction” (plain Taylor expansion) of the
resurgent coupling dependence. The net result may be written

ry = 0% + 1Y + 0(gY), (4.12)

where O (g*) stands for terms from higher loop orders; thus we have the
beginnings of expansion (3.2) established.

The mechanism seen here at work in the self-consistent generation of
A-rational terms may now be applied to the next higher (N > 3) vertex
equations. It is obvious from (4.1) that this mechanism is not only tied to
the presence of loop integrals (and therefore a pure quantum effect) but also
to their renormalizable UV divergences (and therefore a pure quantum-field
effect). This has some noteworthy consequences:

First, in higher iterations it turns out that the iteration or loop order
I and the quasi-perturbative order p, which in pure perturbation theory
coincide, are now no more identical: an [-loop term of g2 &y is found to
contribute to all quasi-perturbative orders I'"?) with p < I. In particular,
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the self-consistency equations of type (4.10) receive corrections involving
higher powers of 1/ 3,

1 1
(s = 050 + = XU=1 4 — X{=2 ., (4.13)
0 ﬁo

arising through eq. (4.1) from the combination of a (g2)!, present in front of
any l-loop contribution, with the “maximally divergent” portions, contain-
ing (% A"Qe)l, of the [-fold momentum integrals. Thus the self-consistency
conditions determining the parameters of the rational approximants get
themselves refined in successive loop orders. While expansion (4.13) does
not create new problems of principle — the maximally divergent parts are
known from RG arguments to form, at large [, only a geometric subseries
with finite convergence radius of the total, factorially divergent ! expansion
—, the fact that at present we can calculate only in low orders [ is definitely
the most unsatisfactory theoretical aspect of and practical restriction on the
method at this time.

Second, and perhaps most remarkably, it is now straightforward to see
that the formation of zeroth quasi-perturbative orders FE\T,’ 0 s rigorously
restricted to the few primitively divergent functions with N = 2, 3, 4. This
follows from the fact that in the N > 5 functions which are not primitively
divergent, the number of g2 prefactors in front of a loop contribution is
always larger (by at least one, the difference increasing with N) than the
number of %A‘Qs factors produced, so that the mechanism of eq. (4.1)
can produce only p > 1 quasi-perturbative corrections, but no p = 0
contributions. This finiteness result, which now truly justifies referring to
the FE\T,‘O) as generalized Feynman rules, is one of the few exact statements
that can be made about the method at present. It is all the more remarkable
as it does not invoke any of the so-called decoupling approximations that
are usually found necessary to truncate the infinite hierarchy (2.6) to a
finite and tractable problem; it only relies on the privileged role conferred
upon the primitively divergent functions by a mechanism operating from
UV-divergent loops. (The decoupling approximations, to be sure, may still
be useful strategies for dealing with the resummation of the p series, which
this talk will stop short of considering).
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Our considerations may be summed up in the statement:

At any level r of rational approximation and any loop or-
der [, the quasi-perturbative expansion, with zeroth orders
I‘%’ 9 for N < 4 determined by self-consistency conditions
of type (4.9) and (4.13), and with p = 1 ... [ corrections
generated by [-fold iteration, provides a formal solution to (4.14)
the coupled equations of motion up to corrections of or-
der I + 1, with resurgent coupling dependence arising from
the dependence of coefficients I'" ) on the nonperturbative
mass scale A.

5. Closing Remarks

I will skip completely a discussion of the existing application to QCD
[2], which is restricted to the r = 1 and [ = 1 levels, deals only with
the self-consistency problem of zeroth orders, and was intended mainly as a
demonstration of technical feasibility. I would however like to briefly mention
two types of problems which are inherently out of reach for ordinary per-
turbation theory but which the partially resummed, nonperturbative zeroth
orders allow one to address in a coherent framework. The first is the calcu-
lation of qualitative changes in the zeroth-order particle spectrum, governed
by the G functions of the theory, such as shifts from perturbatively mass-
less to massive excitations. The second is the generation of structures in the
I's and 'y functions whose symmetries differ from those in the ['(0)pert (and
therefore in the essentially classical action). These two effects, known respec-
tively as dynamical mass generation and dynamical symmetry breaking, can
both be produced in principle from the coupled equations of motion, and
in an analytically transparent way, through the self-consistent formation of
A-rational terms discussed above.

On the mathematical side, several of the problems arising in the context
of QFT coupling dependence will by now be evident. As for “foundational”
issues, quite apart from the specific formal solution described here, it would
be urgent to know more about the questions (interrelated, as we have seen)
of the completeness of the OPE and the summability of the correspond-
ing resurgent symbols. In particular, it would be highly desirable to have
sufficient summability conditions, analogous to the Nevanlinna-Sokal cri-
terion for functions with ordinary Borel-summable expansions, that allow
for the less-than-sectorial analyticity domains produced by the t’Hooft sin-
gularities. In the context of the formal solution discussed here, it would
be important to have the conjecture of ordinary Borel summability for the
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quasi-perturbative expansion (3.2) confirmed or elucidated, to procure bet-

ter justification of the rational approximation for the 1"58) ’s, and to have the
essentially geometric character of the series of type (4.13) established more
rigorously. These zeroth-order self-consistency equations, by the way, are in
themselves an interesting area of study — they represent a kind of simpli-
fied algebraic image of the complicated integral-equations system with its
nonlinearities and hierarchical couplings, and the fact, emphasized above,
that they form a strictly finite set may make them a less intimidating, more
well-delineated object of investigation. A full description of the resurgent
structure of QFT amplitudes with respect to the coupling is still a distant
goal. On all these problems, physicists are likely to be in need of help — as
you know, and as David Hilbert knew already a hundred years ago, physics is
really much too difficult for the physicists. That observation, then, provides
also my final apology for treating you to this heuristic mélange.
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