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Extension of Bochner-Lichnérowicz formula
on spheres 

DOMINIQUE BAKRY (1), ABDELLATIF BENTALEB (2)

ABSTRACT. - Given a second order differential operator L, we define the
vector space of "intrinsic bilinear operators" associated with it. They are
constructed only from the operator L itself and the algebra structure given
by the product of functions. When the operator is symmetric with respect
to some positive measure, every positive quadratic form in this space
provides information on the spectrum of the operator. The positiveness
of a form relies only on the local structure of the operator.

The purpose of this paper to construct a sequence (Rk) of posi-
tive intrinsic quadratic forms on spheres (in this case, L is the Laplace-
Beltrami operator) which carry all the information on the spectrum. More
precisely, if f is an eigenvector of the Laplace-Beltrami operator associated
to the eigenvalue A and g is any smooth function, then, for the Riemann
measure J1,

Rk(f, 9)du _ B(A - Agi)... (À - Ak-1) 1 fgdp,
where 0, 03BB1, ..., Àk-1 are the k first eigenvalues of the Laplace-Beltrami
operator. This extends to the full spectrum the Bochner-Lichnérowicz
formula which gives on the sphere a sharp lower bound on the first non-
zero eigenvalue. An extension of this property is given for a family of
operators which extends the ultraspherical operator on the real line.

RÉSUMÉ. - On définit l’espace des formes bilinéaires intrinsèques as-
sociées à un opérateur L différentiel du second ordre. Ces formes sont
définies uniquement à partir de l’opérateur L lui-même et de la structure
d’algèbre sur les fonctions donnée par la multiplication. La positivité d’une
de ces formes ne dépend que de la structure locale de l’opérateur. Pour des
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opérateurs symétriques par rapport à une mesure positive, chaque forme
bilinéaire intrinsèque positive donne des informations sur le spectre de L.

Dans cet article, nous construisons une famille (Rk) de formes
bilinéaires intrinsèques sur les sphères (dans ce cas, l’opérateur L est
l’opérateur de Laplace-Beltrami) qui contient toute l’information sur le
spectre. Plus précisément, si f est un vecteur propre de l’opérateur de
Laplace-Beltrami de valeur propre À, et si g est une fonction lisse quel-
conque, alors pour la mesure Riemannienne J1, on a

où 0, 03BB1,..., 03BBk-1 1 sont les k premières valeurs propres de l’opérateur de
Laplace-Beltrami. C’est une extension à tout le spectre de la formule de
Bochner-Lichnérowicz, qui donne une minoration précise de la première
valeur propre non nulle. On étend ensuite cette propriété à tout une famille
d’opérateurs du second ordre qui est une extension multidimensionnelle
des opérateurs ultrasphériques en dimension 1.

1. Introduction

The famous Bochner-Lichnérowicz formula in Riemannian geometry as-
serts that on a Riemannian manifold of dimension n with Ricci curvature
bounded below by a constant p &#x3E; 0, the first non zero eigenvalue of the
Laplace operator is bounded below by pn/(n - 1), and this inequality is
optimal on spheres [3, 4, 8, 9]. This inequality is very simple to obtain: let
A be the Laplace-Beltrami operator on the smooth manifold M (which we
assume to be compact for simplicity), then, for any smooth function f on
M, if we compute 

we get

where |~f| is the lenght of the gradient of the function f computed ir

the Riemannian metric. Then, we may define the so-called iterated squarec
gradient by

It turns out (and this is the Bochner-Lichnérowicz formula) that this may
be computed from the Ricci tensor and is equal to

where Ric denotes the Ricci tensor, B7B7 f denotes the (symmetric) tensor
wich is the second covariant derivative of f, and IMI2 is the square of the
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Hilbert-Schmidt norm of the symmetric tensor M. Therefore, it is equivalent
to say that the Ricci tensor is bounded below by p or to say that, for any
smooth function f, 03932(f,f)  03C10393(f,f).

This inequality is not by itself sufficient to produce the Bochner-Lichnero-
wicz lower bound, but if we recall that 0394f is the trace of B7B7 f, and that
for any n-dimensional symmetric matrix, we have |M|2  (1/n) (trace M)2,
then we get that a lower bound p on the Ricci tensor is equivalent to the
fact that

In fact, to get from this the lower bound on the non zero eigenvalues of -A,
let us introduce the Riemann measure /.1 and denote by (f) the integration
of a function f with respect to it. We know that -0 is symmetric with
respect to /.1, which means that

for any pair of smooth functions, from which we deduce that

for any smooth function f. Now, if we call R2 the positive quadratic form

and R2 ( f , g) the associated bilinear form. From what preceedes, we get, i

0394f = -03BBf, and for any smooth functions g,

and

From the first one we get that the eigenvalues of -A are positive, and
from the second one the fact that no eigenvalue lies between 0 and pn/ (n-1 ) .

If we replace A by a general second order differential operator L, with
no zero order term, we may follow the same construction, and define the
operators 0393 and r2, which are built only from L and the product of two
functions (we shall say later that those quadratic forms are intrinsic).

We may say that L satisfies a curvature-dimension inequality CD(p, n)
if, for any smooth function f,
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(Here, n does not need to be an integer and is only assumed to be
positive, and may be infinité). If L is symmetric with respect to some mea-
sure /.1, then the CD(p, n) inequality carries the same information as before
about the first non zero eigenvalue, but it says a lot more. For example, the
CD(03C1, oo) inequality implies the celebrated logarithmic-Sobolev inequality,
the gaussian isoperimetry, the property of concentration of measures, while
the CD ( p, n) inequality for finite n implies the Sobolev inequality, and there-
fore the compactness of the resolvant, upper bounds on the diameter, upper
bounds on the heat kernel, etc. [2].

Therefore, as we saw before, for the Laplace-Beltrami operator of a
Riemannian manifold, it is equivalent to say that the Ricci curvature is

bounded below by some constant p or to say that the (intrinsic) bilinear
form 03932(f,f) - 1 n(0394f)2 - 03C10393(f,f) is positive.

The purpose of this note is to show that, for any integer k, we may
construct on the n-dimensional sphere an intrinsic quadratic form defined
on smooth functions, say Rk(f, f ), which is positive (Vf , Rk(f, f)0), and
which is such that if 0394f = -Af, for any smooth function g, we have

where Ak = k(k + n - 1) is the kth eigenvalue of the operator -A. Those
inequalities are for each a kind of CD(p, n) inequality, but at an higher
order.

Therefore, the positivity of this sequence of operators Rk encodes the
full spectrum of the sphere. More precisely, the Rk are constructed on the
sphere by a recurrence formula only by means of algebraic manipulations
on the Laplace-Beltrami operator A of the sphere (see definition 3.1 be-
low). Assume that some elliptic operator L is defined on a smooth compact
manifold M, and that it is self-adjoint with respect to some measure fi-

nité measure . Let R (L) be the family of bilinear operators constructed
from L in the same way, replacing A by L. Then, if, for i - 1,..., n,
Ri(L)(f,f)  0 for any smooth f on the manifold, the spectrum of -L
must lie in 10, 03BB1, ... , 03BBn-1} U [Àn-1, ~[, where the Ài are the eigenvalues
of the spherical Laplace-Beltrami operator. (See proposition 2.2 in the next
section.)

We then extend this sequence of sharp inequalities to a family of oper-
ators which generalizes in dimension n the one dimensional operator which
is associated to the ultraspherical polynomials in dimension one.
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2. Intrinsic bilinear operators

In what follows, we shall adopt a naïve point of view which avoids all
problems which may occur on a non compact Riemannian manifold when
dealing with the spectrum of the Laplace-Beltrami operator.

Let M be a set and A be an algebra of real valued functions on M. To
fix the ideas, in most of the cases, M is a smooth manifold, and A is the set
of compactly supported smooth functions on M, or may be some other set
of smooth functions with a growth condition at infinity in the non compact
case.

We consider a linear operator L from A into A. If Q is a symmetric bilin-
ear application mapping A x A into A, we may define three new symmetric
bilinear applications, LQ ( f , g) , Q(f,Lg)+Q(g,Lf), Q (L f , Lg) .

Among those constructions, we shall distinguish the operation [L, Q] as
follows

The vector space of bilinear operations which closed under those three
operations and which contains the bilinear form Q0(f, g) = f g shall be called
the space of intrinsic bilinear operators: they are contructed only from the
operator L itself and the algebra structure. We shall call this space I(L).
Those bilinear applications are just the bilinear members of the Lie algebra
associated with L introduced by Ledoux [7].

We shall say that a element Q of I(L) is positive whenever, for each f
in A, one has Q(f, f)  0.

To understand the link between the positivity of such quadratic forms
and the spectrum of L, we shall assume that we are given on the set M a
measure space structure, that A is made of measurable functions, and that
a positive measure J.1 is given such that each élément of A is integrable with
respect to J.1. The basic assumption is that L is symmetric in L 2 (y), that is,
for each pair (f, g) in A2, one has

We shall moreover assume that f L f dp = 0, for any f in A. It is always the
case if A contains the constant functions and if L(1) = 0. We shall call this
measure J.1 a reversible measure associated to L. It needs not to be unique,
but this shall be the case under mild conditions when it exists.
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Those conditions are always fulfilled when L is the Laplace-Beltrami
operator of a Riemannian manifold if we choose for J.1 the Riemann measure,
but there are many other examples (we shall see some of those examples
later on).

Under those conditions, to each Q in I(L), one may associate a real
polynomial PQ which has the following property:

if f E A satisfies L f = -03BBf, then, for any g e A, one has

To see that, it is clear that it is the case for Q0(f, g) = fg, with PQ0 (03BB) =
1, and the polynomials associated to LQ( f, g), Q(Lf,g) + Q(Lg, f ) and
Q(L f, Lg) are repectively 0, -2APQ, À2 PQ.

In particular, P[L,Q](03BB) = 03BBPQ(03BB).
(Formally, we do not need the reversible measure y to associate those

polynomials to a Q in I(L) : it would be enough to describe exactly how the
quadratic form Q is constructed from the basic multiplication Qo.)

The main interest of those construction is the following:

PROPOSITION 2.1. - Assume that Q 2s a positive intrinsinc bilinear op-
erator. Then, for any eigen value 03BB of L in A, (i. e. there exists an non zero
element in ,A, such that L f = -Àf), then PQ(03BB)  0.

Proof. - It is straight forward. We write

Therefore, it is interesting to look for positive bilinear forms associated
to a given operator L. For example, we have

PROPOSITION 2.2. - Assume that, for some sequence 0  03BB1  À2, ...
 03BBk-1, there exists a sequence of intrinsic bilinear operators R1, ..., Rk
which are positzve (Ri(f, f)0, ~f E A, b’i = 1,..., k) and that PR, (l) =
03BB(03BB201303BB1)... (03BB-03BBi-1). If for some f ~ A, f ~ 0, we have L f = -03BBf, then
À E {0,03BB1,...,03BBk-1}~[03BBk-1,~].

Proof. - The proof of this proposition is straightforward. From the
previous proposition, we have PRi(03BB)  0, for any i = 1, ..., k, and the
conclusion follows by an easy induction. D
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In the next section, we shall show that it is precisely what happens for
the spherical Laplacian.

In fact, the positivity of R2 is exactly the CD(n - 1, n) inequality of the
sphere (1.1). The positivity of R2 has proven to carry a lot of important
information on the operator L, far beyond spectral properties. But up to
now, we do not see what kind of information on the operator L could be
deduced from the positivity of R3 (not to talk of the other ones) although
we have the feeling that it should carry similar properties. (See [7] for ex-
ample, where a similar analysis is carried in a case where no dimensional
information is involved.)

3. The spherical case

In what follows, we consider an n dimensional sphere (that is a sphere of
radius 1 in Rn+1), and it’s Laplace-Beltrami operator, which may be seen
as the usual Euclidean Laplacian acting in Rn+1 on functions which in a
neighborood of the sphere are constant on the radius.

The eigenvalues of the Laplace-Beltrami operator A are 03BBk =
-k(n + k - 1). The eigenvectors are the restrictions to the sphere of ho-
mogeneous harmonic polynomials in R’+’. We refer to [10] for a complete
analysis of the spectral properties of the sphere.

To define the sequence Rk of intrinsic bilinear operators acting on func-
tions, we shall proceed in the following way:

DEFINITIOR

where

we shall proceed by znductzon and set

(Recall that n is the dimension of the sphere.)

Then, the main result of this paper is the following:

THEOREM 3.2. - Let m be the Riemann measure of the sphere and Rk
be defined as in definition 3.1. Then,
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1. For each pair of smooth function g, and each eigenvector f solution
of 0394f = -Àf, one has

witl

2. For each k, Rk is positive.

Remark. - For the radial functions on the sphere (i.e. functions wich
depends only on the distance to some given point), this result was already
obtained in [1], where it may be seen as a result on ultraspherical operators
on the unit interval on R. In this case, through a change of variables, the
operator may be seen as

on the interval [-1, ], and the operator Rk(f,f) = ak(1 - x2)k(f(k))2.
The vector space generated by the k lowest eigenvalues of L is the space of
polynomials of degree less than (the eigenvectors are precisely the ultras-
pherical polynomials), and Rk is precisely 0 on the space generated by the
first k - 1 eigenvectors. A bit of algebraic computations in this case shows
that this is the unique intrinsic bilinear operator satisfying this property,
up to some constant, and which is in each argument a differential operator
with degree less than k.

It is remarkable that the same construction, whith the same values of the
coefficients, still produce positive bilinear maps on the spheres. Moreover,
if we compare Rk to R2, one has the feeling that the coefficients -yk should
appear as the ratio of the dimensions of some fiber bundles of symmetric
tensors. We had been unable to give such an interpretation.

Proof. - (of Theorem 3.2). The first assertion is easy to prove by induc-
tion. If Q is an element of I(L) associated with the polynomial PQ, then it
is a direct consequence from the definitions that

and that i
, then

Therefore, if Pk denotes the polynomial associated to Rk, we have
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Assume that, for q  k,

then we get

and the result is the consequence of the obvious identities

The formula is clearly true for Ro and Rl, since Po = 1 and Pl (À) - 03BB,
and this proves the first part.

The second assertion is more delicate and shall require some steps.

First, we shall compute an explicit formula for Rk, and to do so we
shall use a specific system of coordinates on the sphere. Since everything is
invariant under rotations, it is enough to prove the positivity of the Rk’s on
the upper half sphere.

Let X E Sn be on the unit sphere in the Euclidean space Rn+1, and let
x be its orthogonal projection on R’ (removing the last coordinate of X to
fix the ideas). Then, x belongs to the unit ball of R’ and this unit ball shall
be our local system of coordinates for the upper half-sphere (as well as for
the lower one, in fact). In this system of coordinates, the Laplace-Beltrami
operator has a simple form

In all what follows, we shall denote gij the associated cometric in those
coordinates, that is gij = Óij - xixj.

For a multindex I = (i1,...,ik) ~ {1,..., n}k, and a smooth function
f defined on the unit ball, let DI(f) denotes the partial derivative along
those coordinates 

Then, D kf shall denotes the symmetric k-tensor whose coordinates are
DkI(f) in this system of coordinates.
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If M is a symmetric k-tensor (like Dkf), with k ) 2, TM shall denote
it’s contraction along two of it’s indices, with respect to the metric g’3. This
operator gives a symmetric k - 2 tensor. In our system of coordinates, for
a multi (k - 2)-index J = (i1,...,ik-2), and if Ji j denotes the k-index
obtained by concatenation of J and (ij), this writes

(We use here the Einstein convention about the summation over repeated
indices) .

Since M is symmetric, it is irrelevant to know on which indices we have
made the contraction, and here we have chosen the first coordinates.

By convention, we shall write TM = 0 if k = 1 or k = 0.

Moreover, if M is any tensor of order k, we shall denote by |M|2 it’s

norm in the metric g, i.e.

the sum running over all pairs of multindice
and for such a pair,

Similarly, we shall denote M . N for the bilinear form associated to this
quadratic norm.

PROPOSITION 3.3. - For any smooth function in the unit ball of Rn,

where [k/2] denotes the integer part of k/2, and the ak are defined by in-
duction frorra a’ = 1 and 

(A simple verification shows that those two formulae are compatible and
that the operation which raises the first and the second index do commute. )

Proof. - The proof of this fact is not entirely easy and requires some
computations. We shall proceed by induction on k. The formula ils clearly
true for k = 1, since R1(f,f) = |Df|2.
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Then, let Qk,q(f, f ) be the bilinear map defined by

Our main task shall be to compute

We begin by an elementary lemma 

LEMMA 3.4. - Let X be the operator 03A3ixi, and I be a multindex
of lenght k. Then XD’ - DkI(X - kId).

In what follows, and to simplify the notations, X(k) shall denote the

operator X - kId.

Proof. - First, we observe that, for any index i, X Di == DiX - Di. The
general case follows immediately by induction. D

First, we compute [A, Qk,q].
First, for a k-symmetric tensor M, and for q  [k/2], we shall rewrite

|TqM|2 as

where the sum runs over all pairs of multindices I = {i1, ..., ik} and J ==
{j1,...,jk}, and

(Here, the contraction Tq acts on the first 2q indices.)

Then, we introduce the Riemannian connection ~ on symmetric tensors.
The inverse metric gij may be written in this coordinates as

where |x| ( is the Euclidean norm of the vector x. We shall use the usual

notation to raise and lower indices using the metrics gij and gij, and use
again the Einstein convention on the sum over repeated indices. Then, in
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this coordinate system, and for a multindex I = fil, ..., ikl, the tensor 17M
(symmetric or not) may be written as

(If the tensor M is not symmetric, we have to be a little careful in the
previous notation, and I ~{j}B ir denotes the multindex where the index

j has replaced the index ir at place r.)
Since ~ is the Riemannian connection, ~g = 0 for the two tensors gij

and gij, and we have

We first compute the first term

LEMMA 3.5. -

Proof. - Let I = fil, ..., ikl be a multiindex of lenght k and iI denotes
the concatenation of i and I.

We have then

the sum running over all pairs of multiindices (I, J).
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Using the formula above for ~Dkf, this sum decomposes as A - 2B + D,
where

For simplicity, for a (k - 1)-multündex I let us write MI instead of
Dk-1IX(k-1) f, and let us denote by M the corresponding tensor. To com-
pute the B term, we notice that

and therefore

We have then to decompose this sum again according to the fact that l  2q
or l &#x3E; 2q. Each term with l  2q gives rise to Tq Dk+ 1 f . Tq-1M, and each
term with l &#x3E; 2q gives rise to Tq+1Dk+1f· TqM.

The C term is a bit more complicated. First, we observe that

Then

Each term of the sum with l and l’ less than or equal to 2q gives
|Tq-1Dk-1X(k-1)|2.

Then, each term with l  2q and l’ &#x3E; 2q or l &#x3E; 2q and l’  2q also gives
|Tq-1M|2.

The same is true for the terms with l &#x3E; 2q, l’ &#x3E; 2q with l ~ l’, but the
terms with 1 = l’ &#x3E; 2q give n|Tq-1M|2, since then we have

We get the final result summing up all those quantities. D

The next step is to compare Tq~i~iDkf to TqDk~f. This is done in
the following lemma.
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LEMMA 3.6. -

Proof. - To do this computation, we commute separately both terms.

First, from the definition of B7i, and for a multiindex I, we have thanks
to lemma 3.4

Then, we have

which may be seen directly or from the fact that B7igjl = 0.

With those two identities, we get

From this, we may compute ~i~iDI = gij~i~jDI, and we get

In order to compute DIA, it is easier notice that

which allows us to decompose A into

where Ao is the usual (Euclidean) Laplacian, and gives



- 175 -

Since Ao commutes with DI, one gets easily, using again lemma 3.4, we
have

This gives the result. D

From this, writing [~,Dk] for ’7i V’Dk- Dk~, we get the following

COROLLARY 3.7. -

Proof. - To see that, we use lemma 3.6, and we decompose as before
according to the position of 1 and 1’ with respect to 2q. If 1 x 2q, let Î be
the index coupled with l in the contraction Tq, that is Î = 1 + 1 if is odd
and Î= l - 1 if 1 is even.

Each of the terms with l  2q, l’  2q, l’  l gives rise to

If l’ = l, this give
Each of the terms wit: q also gives

The terms witl

It remains to compute the last term, which comes from

). In the core of the proof of lemma 3.6,
we have computed Dk~.

A simple computation then gives

LEMMA 3.8. -

To sum up those results, let aq be a sequence of coefficients, with akq = 0
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Then, let

To simplify the notations, we set

We obtaii

Now, if the coefficients ak satisfy the two recurrence formulae given ir
3.2, then it is a simple computation to see that

This completes the proof of proposition 3.3. D

It remains to show that all the Rk are positive.

To see that, at some given point x, let Sk be the space of symmetric ten-
sors of order k, on which we consider the Euclidean metric that we already
considered, which comes from the Riemannian metric at point x, that is, if a
symmetric tensor S has coordinates SI, where I varies along all multiindices
of lenght k, 

where I = {i1,...,ik}, J = fil, ... ,. and gI,J = nk i j Similarly,
we denote by S· ,S’’ the scalar product of two symmetric tensors in this
space.

If S’ is a symmetric k - 2 tensor, we may consider the symmetric k-
tensor JS’ = gij 8S’, where 8 denotes the symmetric tensor product. More
precisely, for any multiindex I = {i1,..., ik}



- 177 -

the sum running over all permutations a of k elements.

Then, we may consider the subspace JSk-2 of Sk, the image of Sk-2
under J. For any tensor ,S’ E Sk, let 03C0(S) be it’s orthogonal projection over
JSk-2. We have

PROPOSITION 3.9. - For any smooth function f and at every point x,
in our system of coordinates

Since by our recurrence formulae 3.2 it is clear that ak0 is positive, the
proof of the theorem shall follow immediately from this proposition.

Proof. - To understand this identity, we shall compute 03C0(S’) for any

symmetric tensor S, and show that it is a linear combination of the JqTqS,
where q ranges from 1 to [k/2].

To see that, let us first recall the operator T, which maps Sk into Sk-2 :

We begin by a lemma.

LEMMA 3.10. -

1. If S E Sk and S’ E Sk-2, we have

2. On Sk, one has

Proof. - The first assertion comes directly from the definitions.

For the second one, we have, for any symmetric tensor S of order and

any mulitindex I

We have to decompose this sum in différent terms.
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1. If {03C3(1),03C3(2)} = {1,2}, then we obtain n,S’I. There are 2k! such
terms.

2. If a(l) E {1, 2} and u(2) e {1, 2}, or if 03C3(1) ~ {1, 2} and if a(2) E
{1, 2}, we get SI. There are 4kk! such terms.

3. After symmetrization, all the other terms give (JTS)I. There are
k(k - 1)k! such terms.

a

From this we get immediatly by induction:

COROLLARY 3.11. - On Sk, and for q = 1,..., [k/2],

with

We shall set in the following Aq = Bkq = 0 for q &#x3E; [k/2] . From the corollary,
we have

COROLLARY 3.12. - If S E Sk,

where

Proof. - We check that, for any tensor S’ E Sk-2, one has

But we have
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The previous corrollary gives immediately that

Now, if we set 03B1k0 = 1, we observe that the coefficients cxq follow the
same recurrence relation than the coefficients aq (second line of the formula
3.2), including for q = 1, and this completes the proof of proposition 3.9.
Il

4. An Extension

In this section, we shall produce another example of an operator L acting
on the algebra of smooth functions on the unit ball for which there exists a
sequence of positive bilinear applications Rk whose associated polynomials
are 03BB(03BB - 03BB1) ... (À - 03BBk-1) , where the Ai’s are the eigenvalues of -L. This
operator plays in dimension n the same rôle that the ultraspherical generator
in dimension 1.

Let B be the unit ball in Rn, and let q be a parameter larger that n. We
define Lq as

This operator is reversible with respect to the measure defined on the
unit ball by

which is finite as soon as q &#x3E; n - 1.

The ball is a manifold with boundary, which is at a finite distance if we
equip it with the metric inherited from the spherical metric. Therefore, if
we have to consider L as a self adjoint operator, we shall impose Neumann
boundary conditions. (In fact, a more precise analysis shows that this oper-
ator is essentially self adjoint as soon as q &#x3E; n + 1 but this is irrelevant for
our purpose.)

In what follows, we shall restrict our attention to the case where q  n,
although it would be interesting to find similar results for n - 1  q  n.
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If we want to describe the eigenvectors of this operator, it is simpler to
notice that the operator Lq maps polynomials into polynomials, and more-
over polynomials of degree less than k into polynomials of degree less than
k. Therefore, we may choose the space of polynomials to be the algebra A.

PROPOSITION 4.1. - The eigenvalues of Lq are exactly 03BBqk=-k(q+k-1).
The eigenspace associated to 03BBkq is the space Hk of polynomials of degree less
than k which are orthogonal in L2(03BCq) to polynomials of degree less than
k-1.

Proof. - To compute the eigenvalues of Lq, we first observe that, if I is
a multiindex of lenght k, then

This comes immediately by induction from the case k = 1.

Since Lq is symmetric with respect to the measure 03BCq, it maps the space
Hk into itself. Let À be an eigenvalue of the restriction of Lq to Hk, and P
an eigenvector. There exists a multindex I of lenght such that DI P is a
constant c different from 0. Then, we write

For this operator, we may also find a sequence Rqk of intrinsic positive
quadratic maps associated to the polynomials 03BB(03BB - À§) ... (A - 03BBqk-1). In
fact, we shall recopy exactly theorem 3.2, and just change everywhere n
to q.

PROPOSITION 4.2 , and, for any

where

Then,

2. For each k, Ri.: is positive.
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Proof. - The proof of the first assertion in theorem 3.2 was a purely
algebraic computation and nothing is changed if we replace n by q every-
where.

For the second assertion, let us first begin by the case where q is an
integer larger than n. Then, let f be a function on the unit ball of R q 
which depends only on the first n coordinates. If we compute it’s spherical
Laplacian, in our system of coordinates, we get exactly Lq f . Therefore, Lq
is the spherical Laplacian of dimension q acting on the functions depending
only on the first n coordinates. We may then apply our main theorem 3.2
without any further computation.

To ge beyond the case where q is an integer, we first prove the extension
of proposition 3.3:

PROPOSITION 4.3. - For any smooth function in the unit ball of R’,

where [k/2] denotes the integer part of k/2, and the ak,q are defined by
induction from a’ 0 = 1 and

Proof. - We first observe that, from the definition of Rie, it is clear

that Rie is a rational expression with respect to q. It is also the case for the
formula proposed for Rie. From what we have just seen, those two formulae
coincide when q is an integer larger than n, since then we just apply the
proposition 3.3 to functions on the unit ball of Rq depending on the first n
coordinates.

Therefore, those expression coincide for all q. D

It remains to prove that the Rie are positive. For this, we may not just
extend the expression of Rk as an orthogonal projection identity, since this
has no meaning for a non integer q.

This shall be done in the next lemma

LEMMA 4.4. - Let E be an Euclidean space of dimension n and define
the norm ITP MI2 as in formula 3.3 for symmetric k-tensors M over E.
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for p  1. Then, for any q  n, and any symmetric k-tensor M,

Proof. - Up to a change of coordinates, we may as well suppose that
gij = Óij. Then, we imbed E into E = E x R, on which we put the standard
Euclidean metric ij = 03B4ij. The tensor M shall be extended to a symmetric
k-tensor M which is such that MI = MI if all the components of the
multindex I are less than or equal to n, and 0 otherwise.

We chose gij to be ôzj if i, j  n, and gn+1,n+1 = q - n, all other

coefficient being 0.

For the new metric g, and for a symmetric tensor M on E, we have
TqM = TqM.

Then, for a symmetric k-tensor M on E, we set JM == 9ij O M. Let M
be the orthogonal projection of M over the subspace of the tensors of the
form JM, where M ranges over all symmetric k - 2 tensors over E.

In fact, if we look at the proof of formula 3.9, which gave the case q = n,
we see that the only place where the parameter n appears is formula 3.5.
There, n comes from gijgij = n. Here, we have replaced gij by a matrix
which is not the inverse of gij, but which satisfy gij gij == q.

From this, following the same argument, it is easy to see that we have,
for symmetric k-tensors M,

and this formula leads to the explicit computation of 03C0(M), and hence of
|M-03C0(M)|2. ~

This complètes the proof of the positivity of the bilinear maps R%. D
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