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Weighted Csiszár-Kullback-Pinsker inequalities
and applications to transportation inequalities (*)

FRANÇOIS BOLLEY (1), CÉDRIC VILLANI (1)

ABSTRACT. - We strengthen the usual Csiszàr-Kullback-Pinsker in-
equality by allowing weights in the total variation norm; admissible weights
depend on the decay of the reference probability measure. We use this re-
sult to derive transportation inequalities involving Wasserstein distances
for various exponents: in particular, we recover the equivalence between
a Tl inequality and the existence of a square-exponential moment. Then
we give a variant of the results obtained by Djellout, Guillin and Wu [5]
about transportation inequalities for random dynamical systems, in which
a sufficient condition is expressed in terms of exponential moments. An
unpublished result by Blower [1] about the perturbation of a T2 inequality
is also recovered and generalized.

RÉSUMÉ. - Nous généralisons l’inégalité bien connue de Csiszàr-Kullback-
Pinsker, en introduisant des fonctions de poids dans la variation totale ;
les poids admissibles dépendent de la décroissance à l’infini de la mesure
de référence. De cette nouvelle inégalité nous déduisons des inégalités de
transport faisant intervenir certaines distances de Wasserstein, retrouvant
en particulier l’équivalence d’une inégalité Tl et de l’existence d’un mo-
ment carré-exponentiel. En application de ces résultats, nous établissons
une variante des résultats de Djellout, Guillin et Wu [5] sur des inégalités
de transport pour des systèmes dynamiques aléatoires, sous une condition
plus naturelle et plus générale portant désormais sur des moments expo-
nentiels. Par la même occasion nous retrouvons et généralisons un résultat
non publié de Blower [1] relatif à la perturbation d’une inégalité T2.
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1. Introduction

Let X be an abstract Polish space, and let P(X) be the set of all Borel
probability measures on X; let d be a lower semi-continuous metric on X,
and let p belong to [1, +~). Whenever 03BC, 03BD belong to P(X), we define

e the Wasserstein distance of order p between J-L and v by

where 7r runs over the set of probability measures on X x X with marginals
03BC and v;

2022 the Kullback information of 03BC with respect to v by

by convention H(03BC|03BD) = +00 if 03BC is not absolutely continuous with respect
to v.

Both objects play an important role in a number of problems in proba-
bility theory, where they may be encountered under the names of Monge-
Kantorovich distances, or minimal distances, and relative entropy, or relative
H functional. More information can be found, together with many refer-
ences, in [11]. For various purposes it is of interest to investigate whether
they can be compared to each other. The most famous such inequality is
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the Csiszàr-Kullback-Pinsker inequality, which we shall denote CKP
inequality for short: if d is the trivial distance, i.e. d(x, y) = 1x~y, then

where "TV" stands for the total variation norm.

Another class of inequalities which has been studied at length is encoun-
tered under the names of Talagrand inequalities, transportation in-
equalities, or transportation cost-information inequalities; we shall
just denote it by Tp. By definition, a reference probability measure v satisfies
the Tp(À) inequality for some À &#x3E; 0 if

and it satisfies Tp if it satisfies Tp(À) for some À &#x3E; 0. In particular, CKP
inequality means that any reference probability measure satisfies Ti (4) when
d is the trivial distance.

We note right away that Wp  Wpl for p  p’, so that Tp inequalities
become stronger and stronger as p becomes larger. The cases p - 1 and
p = 2 are of particular interest.

The study of Tp inequalities is a rather old topic [9], which recently
received a new impulse. First, it was pointed out by Marton [7] and Tala-
grand [10] that these inequalities are a handy tool in the study of concentra-
tion of measure [6] ; in particular, Talagrand showed how to take advantage
of the good tensorization properties of inequality T2, to establish concentra-
tion in product spaces. At the same time, he established the validity of T2
for the Gaussian measure, which justifies the terminology of "Talagrand in-
equalities". On the other hand, recent developments of the theory of optimal
transportation led to new connections between these inequalities and other
classes of functional inequalities with a geometric content, in particular log-
arithmic Sobolev inequalities. For instance, the main result in [8] is that
a logarithmic Sobolev inequality implies a T2 inequality (and the converse is
also true under some convexity assumption). Various proofs and variants of
these results, together with a detailed discussion, can be found in [2, 8, 11].

On the other hand, the works by Bobkov and Gôtze [3], and Djellout,
Guillin and Wu [5] suggest that there is still room for investigation in an
abstract Polish space setting, without any underlying geometric structure.
More precisely, given a reference probability measure v, one of the main
results proven in these references is the equivalence between
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1. v satisfies a Tl inequality;

2. there exists A such that et(f(x)-f(x e 12 2 for any

real t and Lipschitz function f with Lipschitz norm 1;

3. v admits a square-exponential moment, i.e. f ead(x,y)2 dv(x) is finite
for some 03B1 &#x3E; 0 and some (and thus any) y.

Notice how tractable is this criterium for Tl : for instance, the validity of
a logarithmic Sobolev inequality depends on subtle properties of the refer-
ence measure, which imply not only the existence of a square-exponential
moment, but also - among other features which are still poorly identified
- strict positivity, in a quantitative way which has not been made precise
so far (see however [4] for important progress in that direction). Djellout,
Guillin and Wu explored various applications of their result, including Tl
inequalities in path space for solutions of stochastic differential equations,
or Tl inequalities in large dimension for random dynamical systems under
adequate assumptions of weak dependence.

The purpose of this paper is twofold.

On one hand, we shall establish a generalization of the CKP inequality,
allowing for a weight in the total variation. How much weight is allowed will
depend on the decay of the reference measure. In that generalization, the
optimal constant 4 will be lost, but this will be more than compensated by
the gain of precision brought by the weight. In view of the large range of
applications of the usual CKP inequality, we do hope that this generalization
can be of interest in various contexts.

On the other hand, we shall point out that, instead of considering CKP
inequality as just a particular case of Tl, it is possible to establish many
general comparison results between Wp and H by studying the weighted
CKP inequality. In particular, we shall recover in a straightforward way
(and with improved constants) the above-mentionned result according to
which a square-exponential moment implies Tl. Then we shall establish a
variant of the result by Djellout, Wu and Guillin [5] about random dynami-
cal systems, in which assumptions are only expressed in terms of exponential
moments. Not only are these conditions easier to check, but they also allow
for more generality. Also, we shall establish weakened versions of Tl and T2
inequalities, in which the square-root on the right-hand side is replaced by
a combination of powers, and which are satisfied with quite a bit of gener-
ality, under just decay assumptions on the reference measure. Among them
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is a generalization of an unpublished partial result by Blower [1] about the
perturbation of T2 inequalities.

The plan of the paper is as follows. In section 2, we state our weighted
CKP inequality and derive from it various applications to the study of Tp
inequalities and their variants. In section 3, we give a detailed proof of the
weighted CKP inequality. Finally, in section 4, we show how our results can
be applied to the study of discrete-time processes.

2. Main results

Working in a Polish space is a natural assumption when handling Wasser-
stein distances, because it is sufficient to derive all the well-known and use-
ful properties of these distances, in particular their relation with the weak
topology [11]. However, for all the results in this section, no use will be
made of completeness or separability, and so we state the results with more
generality.

In the sequel, the notation ~(03BC-03BD) is a shorthand for the signed measure
~03BC2013 ~03BD.

THEOREM 2.1 (weighted CKP inequalities). - Let X be a measurable
space, let M, v be two probability measures on X, and let ~ be a nonnegative
measurable function on X. Then

Remark 2.2. - 1. The assumption X e~2 dv  +~ is always stronger
than the assumption fx e2~ dv  +oo, so thé inequality (i) above always
applies in more generality than (ii). Further note that if we choose cp =- 1 in
(ii), we recover the usual CKP inequality

with the non-optimal constant c = 2 instead of B/2. This shows that the
constants on the right-hand side of (ii) cannot be improved by more than
a factor B/2. Although we worked quite a bit to decrease this numerical
constant, it is likely that one can still do better, at least by replacing f e~2
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with f e03BB~2. Note though that the optimal constant V2 can be recovered by
writing our proof again in the particular case ~ - 1, as it shall be pointed
out in section 3.

2. Let us discuss very briefly the sharpness of the orders of magnitude in
the above inequalities. When J-L is very close to v, the Kullback information
can be approximated by a weighted squared L2 norm, which shows that it
is natural to expect a term in H(03BC/03BD) (as opposed to another power of
H) in the right-hand side. On the other hand, consider the situation when
X = Rn, and the reference measure v is the standard Gaussian distribution;
choose ~(x) = 03B4|x| for b  1/B/2. Then the left-hand side of inequality (ii)
will be typically O(n) as n ~ oo, while the right-hand side will be typically
O (n) . If V (x) = b 03A3 |xi|/n, then the left-hand side will be typically O (n) ,
while the right-hand side will be typically O(n3/2). These examples suggest
that Theorem 2.1 still leaves room for improvement for problems set in large
dimension. As we shall see in Section 4, this loss of a O(n) factor will put
limitation on the validity of measure concentration inequalities that can be
deduced from Theorem 2.1 in large dimension.

We postpone the proof of Theorem 2.1 to the next section, and now list
two consequences.

COROLLARY 2.3. - Let X be a measurable space equipped with a mea-
surable distance d, let p  1 and let v be a probability measure on X.

Assume that there exist xo E X and ce &#x3E; 0 such that e03B1d(x0,x)P d03BD(x) is

finite. Then

where

COROLLARY 2.4. - Let X be a measurable space equipped with a mea
surable distance d, let p  1 and let v be a probability measure on X. Assum

that there exist xo E X and ce &#x3E; 0 such that e03B1d(x0,x)2p dv(x) is finite
Then 
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where

Particular case 2.5. - When X is bounded, a simpler bound holds:

where diam(X) := sup{d(x,y); x,y ~ X}.

Since the proofs of these results are very similar, we only give the proof
of Corollary 2.4.

Proof of Corollary 2.4. - On one hand it is known [11, Proposition 7.10]
that

on the other hand the second part of Theorem 2.1 yields

This concludes the argument. ~

We now focus on some particular cases of interest, namely for p = 1 and
p = 2 under assumptions of exponential moments of order 1, 2 and 4.

COROLLARY 2.6. - Let X be a measurable space equipped with a mea-
surable distance d, let v be a reference probability measure on X, and let xo
be any element of X. Then

(i) If X e03B1d(x0,x) dv(x)  +~ for some a &#x3E; 0, then there is a constant

C such that
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(ii) If X e03B1d(x0,x)2 dv(x)  +~ for some a &#x3E; 0, then there is a constant

C such that

In particular, v satisfies Tl.

(i i i) If Xe03B1d(x0,x)4 dv(x)  +~ for some a &#x3E; 0, then there is a con-

stant C such that

Remark 2.7. - Part (ii) of this corollary contains the result that the
existence of an exponential moment of order 2 implies a Tl inequality; ac-
cording to [3], the converse is true, so this criterion is optimal. To compare
these various results in practical situations, it is good to keep in mind the
following elementary lemma:

LEMMA 2.8. - Let X be a measurable space equipped with a measurable
distance d, let p  1 and let v be a probability measure on X. Then the
following three statements are equivalent:

1. there exist xo E X and a &#x3E; 0 such that e03B1d(x0,x)p dv(x) is finite;
2. for any xo E X, there exists a &#x3E; 0 such that e03B1d(x0,x)p d03BD(x) is

finite;

3. there exists 03B1 &#x3E; 0 such that  e03B1d(x,y)p d03BD(x) dv(y) is finite.

Moreover,

Remark 2.9. - The following two results can be deduced from the equiv-
alence between the existence of an exponential moment of order 2 and a Tl
inequality:
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1. Let 03BC be a probability measure on a Polish space X, satisfying Ti.
Then so does any probability measure v == h03BC, where h is a 03BC-almost
surely bounded measurable function on X.

2. Let 03BC be a probability measure on Ilgd satisfying Tl. Then so does its
marginal (via orthogonal projection) on any hyperplane of R d

Remark 2.10. - Part (ii) also generalizes the perturbation result

proven by Blower, who showed in [1] that an inequality of the form

W2  C(H1/2 + H1/4) holds true when v is bounded from above and below
by constant multiples of a reference measure vo satisfying T2. Indeed if vo
satisfies T2, then it also satisfies Tl, so it has a finite square-exponential
moment, and so does v if it is bounded above by a constant multiple of vo.

Remark 2. 11. - Let v be a reference probability measure having finite
exponential moments of order p; how far is it from satisfying Tp? The pre-
ceding results indicate that the answer is very different for p = 1 and p = 2.
If Tl is not satisfied, this means that the decay of v at infinity is not fast
enough, and the Tl inequality usually fails for large values of the Kullback
information. On the contrary, if T2 is not satisfied, this is not necessarily
just for a question of fast decay (remember that T2 implies strict positivity), 
and the T2 inequality usually fails for small values of the Kullback informa-
tion. In particular, it is no wonder that we did not manage to recover T2
inequalities with our arguments taking into account only the decay of v.

3. Proof of the main inequalities

We shall now present detailed proofs of the main inequalities in Theo-
rem 1.

Proof of Theorem 2.1. - Without loss of generality, we assume that 03BC is
absolutely continuous with respect to v, with density f. We set u := f - 1,
so that

we note that u  -1 and  u dv = 0. We also define

so that
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We note that h  0.

We start with the proof of inequality (i), splitting the weighted total
variation as

We shall estimate both terms separately, first bounding the first term
(u  4) in (3.2). By Cauchy-Schwarz inequality,

On the other hand, from the elementary inequality

(a consequence of the fact that h(v)lv is nondecreasing) we deduce

Combining this with the nonnegativity of h and (3.1), we find

Since the function t ~ e2Vt is increasing and convex on [1/4, +00) we
can write

In other words,
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if we plug this into (3.3), we conclude that

We now turn to the estimate of the second term (u &#x3E; 4) in (3.2). By
applying the Young-type inequality

with w = u(x) and 03B6 = V(x) - Z, where Z is a nonnegative constant to b(
chosen later, we find

on {u( x) &#x3E; 4}. By integration, we deduce

where

By Cauchy-Schwarz inequality again,

Finally, from the inequality

we deduce
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Our conclusion is that, for any constant Z  0,

We now choose Z in such a way that

in other words,

Plugging this into (3.6), we conclude that

Now inequality (i) follows from (3.4) and (3.7) upon noting that 1+k 
3 and 2k 1 ·
2 2

We next turn to the proof of (ii). Although the decomposition (3.2)
and the same kind of argument would also lead to the result, we prefer to
proceed as follows.

Since h(o) = h’(0) = 0, by Taylor’s formula with integral remainder, we
can write

and thus
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On the other hand, by Cauchy-Schwarz inequality on (0,1) x X

thus

where

We decompose the numerator as follows:

From the convexity inequality

(a well-known consequence of (3.5), see for instance [6, eq. (5.13)]) and
Jensen’s inequality, in the form

we deduce that the right-hand side of (3.9) is bounded above by

Plugging this into (3.8), we conclude that
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where H stands for H(03BCB03BD) and L for log e~2 dv.
The preceding bound is good only for "small" values of H. We now

complément it with another bound which is relevant for "large" values of
H. To do so, we write

where we have successively used Cauchy-Schwarz inequality, the inequalit3
|u|  1+u+1 on [-1, +~) (which results in |u| |03BD  03BC+03BD), and finally (3.10)
and (3.11).

Combining this with (3.12), we obtain

From the elementary inequality

we get

where

This concludes the proof. ~

Remark 3.1. - If ~ ~ 1, we can replace the inequality (3.10) by just
f d03BC = 1; then the first part of the proof of (ii) becomes a proof of the usual
CKP inequality, with the sharp constant ~2.
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4. Application to random dynamical systems

Let now be given a Polish space X, an arbitrary element xo E X and a
set of conditional Borel probability measures (Pk(· |xk-1))xk-1~Xk-1,k1,
depending on xk-1 = (x1, ... , xk-1) E Xk-1 in a measurable way. We

interpret xo as the (deterministic) initial position of a random dynamical
system (Xk)kEN, with values in X, and Pk( |xk-1) as the law of Xk, knowing
that Xo - xo and (X1 , ... , Xk-1) = xk-1. The question is whether it is

possible, knowing some nice bounds on the conditional probability measures,
to get a Tl inequality for the law pn of (Xi,... Xn ) on X’, with a nice
dependence on n.

Let us first assume that all the conditional probability measures satisfy
a Tl inequality, say with a uniform constant. In the context of independent
random variables, it is rather easy [6, p. 122] to show that pn satisfies Tl (À)
for 03BB-1 = O~n), and that this is sharp in general. Now we want to know
whether the same behavior is generic for dependent random variables. Some
results in that direction have been obtained by Marton and by Rio; they are
summarized and slightly improved in [5]. In those references it is shown that
if each Pk(· |xk-1) satisfies Tl (03BA) for some fixed r, &#x3E; 0, and the random
dynamical system is weakly dependent, in the sense that the future does
not depend too much on the present, then the answer is positive. See [5,
Section 4] for precise assumptions. For instance, a sufficient condition is that
the dynamical system is Markovian and that the map

is L-Lipschitz from X to P(X), equipped with the WI distance, uniformly
in k, for some L  1.

In the present section, we shall establish a variant of this result under a
different set of assumptions, which seems to be easier to check in practical
situations, because it is expressed in terms of exponential moments with
respect to a given origin point (which we chose, arbitrarily, as the starting
point of the dynamical system). What will make our argument work (in
a very straightforward way) is the simple and explicit dependence of the
constants in Theorem 2.1 upon n when X is replaced by X n .

In the sequel we consider a Polish space X, equipped with a measurable
distance d, xo an arbitrary element in X, and (Pk(· |xk-1))xk-1~Xk-1, k1
a family of Borel probability measures on X, depending on

xk-1 := (xl, ... , xk-1) E Xk-1 in a measurable way. For all n  1, we
define the probability measure pn on xn by
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and equip Xn with the distance D defined by

There is an important difference with the above-mentioned works, namely
the choice of the distance on the product space X n : instead of D2, they con-
sider the distance 

While D2 is often more natural than Dl, the latter is better adapted
for arguments involving tensorization and Lipschitz functions. Of course,
D1  ~D2, so the distance D2 is stronger than Dl for each finite n, but
does not behave similarly in the asymptotic regime n ~ +00. Accordingly,
if we try to deduce natural concentration estimates from our results, we
typically obtain

for any n  1 and any Lipschitz function ~ on X with Lipschitz norm 1.
The fact that this bound does not go to 0 as n ~ oo is probably linked to
Remark 2.2 (2).

THEOREM 4.1 (Tl inequalities for random dynamical systems). - With
the above notation, assume the existence of ao &#x3E; 0, a sequence (zk)k1 in
X and f amilies of nonnegative numbers (03B3k)k1, (03B2j)j1 with

such that for all k  1, xk-l E Xk-1,

Then, there exists 03BB &#x3E; 0 such that for all n  1, pn satisfies Tl (03BB/n).
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Particular case 4.2. - Consider a homogeneous Markov chain on X with
transition kernel P(dy|x). Assume the existence of (xo, y0) ~ X x X, ao &#x3E; 0,
j3  03B10 and C  +~ such that

Then there exists 03BB &#x3E; 0 such that for all n  1, pn satisfies Tl (03BB/n).

Remark 4.3. - If Condition (4.1) is satisfied for some choice of
(xo, y0, 03B10, 03B2, C), then f or any 03B1’0  03B10 and (x’0, y’0) E X x X we can

find 03B2’ E [03B2, a), C’  +~ such that Condition (4.1) is satisfied for
(x’0 y’0, 03B1’0 03B2’, C’). Thus the choice of reference points xo and yo is arbi-

trary : for instance, if X = Rd, we can choose 0 for both, and the condition
becomes

Proof of Theorem 4.1. - Let 03B1 := ao - 0. Since 03B1  ao, by assumption,

In particular,

Here z’ = (zo,..., zn); note that 03B1 + 03B2k  03B10 for all k, and in particular
we can repeat the argument with n - 1 in place of n. Using an induction
argument, one easily shows that

In particular,

and we conclude by applying the results presented in section 2. ~
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As examples of application we now consider the following two particular
cases:

EXAMPLE 4.4. - Let (Xi) be a Markovian dynamical system on a Polish
space X, with transition kernel P(· lx) such that

(i) P(· |x) satisfies T1(03BB) for a constant À independent of x;

(ii) the map x~ P( ’ Ix) is L-Lipschitz from X to P(X), equipped with
the WI distance, with L  1.

Then there exist a &#x3E; 0 and 03B2  a such that for any x0, y0 ~ X, there
exists  +00 such that

for all x ~ X. In particular the hypotheses of Theorem 4.1 hold in view of
the Particular case 4.2.

EXAMPLE 4.5. - Let (Xk)k~N be a dynamical system on R d such that
the hypotheses of [5, Theorem 4.1] hold, that is, with the notation intro-
duced above,

(i) there exists some constant À such that

for all k  1, xk-1 in (Rd)k-1 and all probability measures v on Rd;
+~

(ii) there exist some nonnegative numbers aj such that L aj  1 and

j=l

Then the assumptions of Theorem 4.1 also hold for this system.
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This last example shows that our assumptions are not less general than
those in [5]. Note carefully that when we apply Theorem 4.1 to this system,
we do not recover such a strong conclusion as in [5] because of the choice of
distances on product spaces (D2 instead of Di).

Since the proofs for both Examples 4.4 and 4.5 are similar, we only study
the second example.

Proof of the assertion in Example 4.5. In a first step we prove that

for any k  1, xk-1, zk-1 in (Rd)k-1, Zk in Rd, 03B5,03B4 &#x3E; 0 and a  03BB2, we havefor any k  1, xk-1, zk-1 in (Rd)k-1, zk in Rd, 03B5, 03B4 &#x3E; 0 and a  03BB2 we have

Indeed, the probability measure Pk(· |xk-1) satisfies Ti(A) and the map
y ~ |y - zk| is 1-Lipschitz, so by the Bobkov-Gôtze formulation of the Ti
inequality (see [3, Theorem 1.3] and [5, Section 1]) we have

for any a  03BB2, zk ~ Rd and xk-1 ~ (Rd)k-1.
Let then E be some positive number. Integrating the inequality

and using (4.3) lead to
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Recall the Kantorovich-Rubinstein formulation of the WI distance [11,
Theorem 1.14] :

This and Assumption (ii), with n-1 = zn-l, imply

Thus for any positive number l5

and by Cauchy-Schwarz inequality we can bound this quantity by

This concludes this first step.

In the second step, we build the sequence (Zk) by the following in-
duction process. Let Zl be arbitrary in Rd; assuming that we have defined
zk-1 = (Zj 1... zk-1), we let

Then
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thanks to Jensen’s inequality and again the Bobkov-Gôtze formulation of
the Tl inequality, which is satisfied by Pk(· |zk-1).

Now we choose é E (0,1) and 8 &#x3E; 0 in such a way that

for instanc an - 1 will do. Then

the assumptions of Theorem 4.1 can be checked to hold for

and
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