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Real cohomology groups of the space of nonsingular
curves of degree 5 in CP2(*)

ALEXEI G. GORINOV (1)

ABSTRACT. - We give a modification of V. A. Vassiliev’s method of cal-
culating cohomology groups of spaces of nonsingular projective complex
hypersufaces. Our construction is less "canonical" than V. A. Vassiliev’s
one, but in some cases it allows to simplify the calculations. We apply
our method to prove that the Poincaré polynomial of the space of homo-
geneous polynomials that define nonsingular quintics in Cp2 is equal to
(1+t)(1+t3)(1+t5)

RÉSUMÉ. - Nous considérons une variante de la méthode de V. A. Vas-

siliev du calcul des groupes de cohomologie des espaces d’hypersurfaces
projectives complexes non-singulières. Bien qu’étant moins « canonique »
que celle de V. A. Vassiliev, notre construction permet de simplifier les
calculs dans certains cas. On l’applique ensuite pour démontrer que le
polynôme de Poincaré de l’espace des polynômes homogènes qui définissent
des quintiques non singulières de CP2 est égal à (1 +t)(1 + t3)(1 + t5).

Annales de la Faculté des Sciences de Toulouse Vol. XIV, n° 3, 2005

1. Main result

Let us denote by Ils the space [)f all homogeneous polynomials C3 -+ C
of degree 5 and by P5 its subspace consisting of all nonsingular polynomials
(i.e. the polynomials, whose gradient is non-zero outside the origin).

THEOREM 1.1. - The Poincaré polynomial of P5 is equal to

(*) Reçu le 20 juin 2003, accepté le 3 décembre 2004
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A general method of calculating the cohomology of spaces of nonsingular
algebraic hypersurfaces of given degree was described in [2]. In particular,
the real cohomology groups of the spaces of nonsingular plane curves of de-
gree  4 were calculated there. In the present work, we apply a modification
of the same method to the case of nonsingular quintics in CP2.

Denote by 03A35 the space II5 B P5. By the Alexander duality, the coho-
mology group of P5 is isomorphic to the Borel-Moore homology (i.e. the
homology of the complex of locally finite chains) of E5:

where D = dimc (115) = 21 and 0  i  2D - 1. This reduction was used
first by V. I. Arnold in [1]. To calculate the latter group *(03A35,R) we use
a version of the spectral sequence constructed in [2]. It is described in the
following theorem.

THEOREM 1.2. - The spectral sequence for the real Borel-Moore ho-
mology of the space E5 is defined by the following conditions:

1. Any its nontrivial term E’ belongs to the quadrilateral in the (p, q)-
plane, defined by the conditions [1  p  3, 29  q  39].

2. In this quadrilateral all the nontrivial terms El look as is shown in
(1.1).

3. The spectral sequence stabilizes in this term, i. e. E1 ~ E~.

The proof of Theorem 1.2 will be given in Section 4.
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It follows from Theorem 1.1 that the Poincaré polynomial of the space
P5 coincides with the Poincaré polynomial of the group GL3(C). Recently,
C.A.M. Peters and J.H.M. Steenbrink proved the following general state-
ment (see [4]): let IId,n be the space of all homogeneous complex poly-
nomials of degree d in n + 1 variables, and let Ed,n be the subspace of
Ild,n consisting of polynomials that define singular hypersurfaces in cpn;
in this situation, if d &#x3E; 2, then the cohomological Leray sequence of the
map IId,n B 03A3d,n ~ (IId,n B 03A3d,n)/GLn+1(C) degenerates in the term E2.

I wish to express my deep gratitude to V. A. Vassiliev for proposing
the problem and stimulating discussions, to A. A. Oblomkov and A. V.
Inshakov, who explained me, how singular sets of plane quintics look like,
and to P. Vogel for useful discussions.

2. The method of conical resolutions 

Consider the following general situation: set k to be either R or C, and
suppose V is a vector space of k-valued functions on a manifold  and

E c V is a closed subset formed by the functions that have singularises of
a certain type. (Such a subset is often called a discriminant.) Suppose that
D = dimk V  oo. We want to calculate the Borel-Moore homology of E. In
order to do this we construct a resolution, i.e., a topological space 03C3 and a
proper map 7r : 03C3 ~ 03A3 such that the preimage of every point is contractible.
We are going to describe a construction of 03C3 via configuration spaces. Our
construction generalizes that from the article [2].

r

Remark 2.1. - The method described below can be extended with ob-
vious modifications to the case when V is an affine space. We assume V
to be a vector space, since, on the one hand, the vector case is somewhat
simpler, and on the other hand it is sufficient for the application that we
have in mind.

Suppose that with every function f ~ 03A3 a compact nonempty subset K f
of some compact CW-complex M is associated. In the sequel we shall be
interested in the case when M = C3 B {0}, V = Ils, E = 03A35. In this case it
is natural to set M equal to CP2 and Kf equal to the image of the set of
singular points of f under the evident map M ~ CP2.

In general, we suppose that the following conditions are satisfied:
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2022 If f ~ E, then for any 03BB ~ 0 we have K03BBf = Kf,
2022 The zero function 0 e E, and Ko - M.

2022 For any K C M set L(K) c V to be the subset consisting of all f such
that K C Kf. The previous three conditions imply that L(K) is a vector
space. We suppose that there exists a positive integer d such that for any
x E M one can find a neighborhood U 3 x in M and continuous functions
l1,...,ld from U to the Grassmannian GD-1(V) of (D - 1 )-dimensional
k-vector subspaces of V such that we have

for any x’ E U.

Remark 2.2. - One may ask a natural question: if we are dealing with
functions on some manifold M, why should we introduce some additional
space M? The problem is that for our construction it will be convenient
to associate with a singular function a compact subset of a compact CW-
complex. In the case when the manifold M itself is compact, we can assume,
of course, that M - M, and K f is the set of points where f has singularities
of some given type.

By a configuration in a compact CW-complex M we shall mean a com-
pact nonempty subset of M. Denote by 2M the space of all configurations in
M. Suppose that the topology on M is induced by a metric p. We introduce
the Hausdorff metric on 2M by the usual rule:

It is easy to check that if M is compact, then the space 2M equipped
with the metric p is also compact. Let us denote by B(M, k) the subspace
of 2M that consists of all configurations that contain exactly k elements.
For any subspace A c 2M we denote by A the closure of A in 2M . We have

B(M,k)=Ujk B(M,j).

PROPOSITION 2.3. - Let (Kj) be a Cauchy sequence in 2M, and let K
be the set consisting of the limits of all sequences (aj) such that aj E Kj for
every j. Then K is nonempty and compact, and limj~~ p(Kj, K) = 0.
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PROPOSITION 2.4. - Let (Ki), (Li) be two sequences in 2M. Suppose
that there exist limi-~ Ki, limi~~ Li, and denote these limits by K and L
respectively. Suppose also that Ki C Li for every i. Then K C L.

Suppose that Xl, ... , XN is a finite collection of subspaces of 2M satis-
fying the following conditions:

1. For every f ~ 03A3 the set K f belongs to some Xi .

2. Suppose that K E Xi, L E Xj, K ç L. Then i  j.
3. Recall that L(K) is the space of all functions f such that K C Kf. If

we fix i, then the dimension of L(K) is the same for all configurations
K E Xi . (We denote this dimension by di.)

4. Xi ~ Xj = Ø if i ~ j.
5. Any K E Xi B Xi belongs to some Xj with j  i.

6. For every i the space 7i consisting of pairs (x, K), x E K, K E Xi
is the total space of a locally trivial bundle over Xi (the projection
pri : Ti ~ Xi is evident). This bundle will be called the tautological
bundle2 over Xi.

7. Note that any local trivialization of 7i has the following form:

Here x is a point in some K E Xi, K’ belongs to some neighborhood
U ~ K in Xi, and t : K  U ~ M is a continuous map such that if

we fix K’ E U, then we obtain a homeomorphism tK’ : K ~ K’. We
require that for every K E Xi there exist a neighborhood U ~ K and
a local trivialization of 7i over U such that every map tK’ : K ~ K’
establishes a bijective correspondence between the subsets of K and
K’ that belong to Uji Xj.

Under these assumptions we are going to construct a resolution 03C3 of E
and a filtration on it such that the i-th term of the filtration is the total

space of a fiber bundle over Xi .

Note that due to condition 3, for any i = 1..., N there exists an evident
map K ~ L(K) from Xi to the Grassmann manifold Gdi(V), which is

continuous due to the last condition on page 4.

(2) For instance, if M = cpn and Xi consists of projective subspaces of M of the
same dimension, then this is just the projectivization of the usual tautological bundle
over some Grassmann manifold of Cn+1.
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Remark 2.5. - The rather strange-looking condition 7 follows imme-
diately from condition 6 in the following situation: suppose Xi consists of
finite configurations, and for all K, L, such that K E Xi, L C K there is an
index j  i such that L E Xj. In this case any trivialization of Ti fits.

Consider the space Y = UNi=1 i = UNi=1 Xi. Denote by X the N-th
self-join y*N of Y 3. Note that the spaces Y, y*N are compact. Call a
simplex A C X coherent if the configurations corresponding to its vertices
form an ascending sequence. Note that then its vertices belong to different
Xi (condition 2). Let A be a coherent simplex. Among the vertices of A
there is a vertex such that the corresponding configuration contains the
configurations that correspond to all other vertices of A. Such vertex will be
called the main vertex of A. Denote by A the union of all coherent simplices.
For any K E Xi denote by A(K) the union of all coherent simplices, whose
main vertices coincide with K. Note that the space A(K) is contractible.

Denote by 03A6i the union Uji UK~Xj A(K). There is a filtration on A:
Ø ~ 03A61 ~ ··· ~ 03A6N = .

0

For any simplex A C X denote by A its interior, i.e. the union of its

points that do not belong to the faces of lower dimension. Note that for
0

every x E X there exists a unique simplex A such that x E0.

PROPOSITION 2.6. - Let (xi) be a sequence in X such that limi-~ xi =
0

X. Suppose xi E Ai, x ~0394, where 0394i are coherent simplices, and suppose K
is a vertex of 0394. Then there exists a sequence (Ki) such that Ki is a vertex
of Ai and limi~~ Ki = K.

PROPOSITION 2.7. - All spaces , (K), 03A6i are compact.

Proof. - This follows immediately from Propositions 2.6 and 2.4. D

For any K E Xi denote by 8A(K) the union U, (k) over all maximal
subconfigurations 03BA E UjiXj,03BA ç K. The space A(K) is the union of all
segments that join points of ~(K) with K, and hence it is homeomorphic
to the cone over ~(K).

(3) Recall that for any finite CW-complex Y and any k  1 the k-th self-join of Y
(denoted by y*k) can be defined as follows: take a generic embedding i : Y  Rn for
some very large (but finite) Q and define Y*k to be the union of all (k - l)-dimensional
simplices with vertices in i(Y) ( "generic" means that the intersection of any two such
simplices is their common face if there is any).
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Define the conical resolution a as the subspace of V x A consisting of pairs
( f , x) such that f E E, x E (Kf). There exist evident projections 7r : 03C3 ~ 03A3
and p : 03C3 ~ A. We introduce a filtration on 03C3 setting Fi - p-1(03A6i). The
space 03C3 is closed in E x A (this can be deduced from the last condition
on page 4). The map 7r is proper, since the preimage of each compact set
C ~ 03A3 is a closed subspace of C x A, which is compact.

THEOREM 2.8. - Suppose Xl, ... , XN are subspaces of 2M that satisfy
Conditions 1-7 of page 399. Then

1. 7r induces an isomorphism of the Borel-Moore homology groups of the
spaces a and 03A3.

2. Every space FiBFi-1 is a k-vector bundle over 03A6iB03A6i-1 of dimension
dimk(L(K)), K E Xi.

3. The space tPi B 03A6i-1 is a fiber bundle over Xi, the fiber being homeo-
morphic to A(K)B~039B(K).

Proof. - The first statement of the theorem follows from the fact that 7r
is proper and 03C0-1(f) = A(Kf), the latter space being contractible. To prove
the second statement, let us study the preimage of a point x E 03A6i B tPi-1
under the map p : Fi B Fi-1 ~ 03A6i B 03A6i-1. We claim that p-1(x) = L(K) for
some K E Xi.

Recall that each point x E tPi B tPi-1 belongs to the interior of some
coherent simplex A, whose main vertex lies in Xi . Denote this vertex by K
and denote the map 03A6i B 03A6i-1 ~ x ~ K ~ Xi by fi.

Now suppose f E L(K), or, which is the same, Kf D K. This implies
A(K) c A(Kf). So we have x E A(K) c A(Kf) and (f,x) E 03C3,p(f,x) = x,
hence f E p-1(x).

Suppose now that f E p-1(x). We have (f,x) E 03C3, hence x E 039B(Kf).
This means that x belongs to some coherent simplex A’, whose main vertex
is K f . But x belongs to the interior of A, hence A is a face of A’ and K
is a vertex of A’. But K f is the main vertex of A’, hence K C K f and
f E L(K).

So, we see that p-  (x) = L(K), K E Xi, and the second statement of
Theorem 2.8 follows immediately from the fact that the dimension of L(K)
is the same for all K E Xi (condition 3). In fact the bundle p : Fi B Fi-1 ~
03A6i B tPi-1 is the inverse image of the tautological bundle over Gd2 (V) under
the composite map x ’-4 K 1-+ L(K).
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We shall show now that the map f2 is a locally-trivial fibration with the
fiber A(K) B ~039B(K). This will prove the third statement of Theorem 2.8.

Denote by Xi the space consisting of all couples (L, K) such that L C
K, L E Uji Xj. Let P : Xi ~ Xi be the evident projection. We shall con-
struct a trivialization of f i : 03A6i B 03A6i-1 --+ Xi from a particular trivialization
of Ti that exists due to condition 7.

For any K E Xi let U and t be the neighborhood of K and the trivial-
ization of Ti over U that exist due to condition 7. For any K, K’ E U, x E K,
set tK’(x) = t(x, K’). Define a map T : P-1(K) x U ~ 2M by the following
rule: take any L C K, L E Uji Xj and set T(L, K’) equal to the image of
L under tK’. Due to condition 7, T(2022,K’) is a bijection between the set of
L E 2M such that L C K, L E Uji Xj, and the set of L’ e 2M such that
L’ ~ K’,L’ ~ ~ji Xj.

PROPOSITION 2.9. -

1. The map Ti : P-1 (K) x U -+ 2M x U defined by the formula Tl (L, K’)
= (T(L, K’), K’) maps P-1(K) x U homeomorphically onto P-1(U).

2. For any K’ E U we have L C M C K if and only if T(L, K’) C
T(M, K’ ) C T(K, K’ ) = K’.

This implies that Xi is a locally trivial bundle over Xi.

Proof. - The second statement is obvious. We have already seen that
the map Tl is a bijection. The verification of the fact that Tl and its inverse
are continuous is straightforward but rather boring. D

Now we can construct a trivialization of the fiber bundle fi :
03A6i B 03A6i-1 ~ Xi over the same neighborhood U ~ K as above: take any
x ~ f-1i(K) and any K’ E U. x can be written in the form x = 03A3j C1jLj,
where all aj &#x3E; 0, 03A3 03B1j = 1, Lj E Uki Xk, and exactly one Lj belongs
to Xi. Set F(x,K’) = 03A3k 03B1kT(Lk, K’). Again a straightforward argument
shows that F is a homeomorphism f-1i (K) x U ~ f-1i(U). Theorem 2.8 is
proved. D

Since every A(K) is compact in the topology of A, we have
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In all known examples the majority of configurations of singular points
are discrete (consist of finitely many points). To make the fibers of the bun-
dle 03A6i B 03A6i-1 ~ Xi as simple as possible, we introduce one more condition:

8. if K is a finite configuration from Xi, then every subset L c K is
contained in some Xj with j  i.

Note that if we are given spaces X1,...,XN that satisfy Conditions
1-7, we can construct another collection of spaces X’1,..., X’, that satisfy
Conditions 1-7 and Condition 8. Indeed, take the union UNi=1 Xi ~ 2M
and add all subsets of all finite configurations K E UNi=1 Xi; then take an
appropriate stratification of the resulting subspace of 2M .

We have the following two lemmas.

LEMMA 2.10. - If Condition 8 is satisfied, then for any i such that Xi
consists of finite configurations the fiber of the bundle fi : (03A6i B 03A6i-1) ~ Xi
over a point K ~ Xi is an open simplex, whose vertices correspond to the
points of the configuration K.

The proof is by induction on the number of points in K E Xi D

Note that in this situation the simplicial complex A(K) is (piecewise
linearly) isomorphic to the first barycentric subdivision of the simplex A
spanned by the vertices of K. The complex ~039B(K) is isomorphic to the first
barycentric subdivision of the boundary of A.

Moreover, denote by Afin the union of the spaces A(K) over all finite
K ~ UNi=1 Xi.

LEMMA 2.11. - If Condition 8 is satisfied, then there exists a contin-
uous map C : Afin ~ M*N that takes every K E A fin to an element

of the interior of the simplex 0394 spanned by the points of K. This map is
a homeomorphism on its image, and it maps A(K) (respectively, ~A(K))
homeomorphically on A (respectively, ~0394).

It follows from Lemmas 2.10, 2.11 that for any i such that Xi consists
of finite configurations, the fiber bundie 03A6iB 03A6i-1 is isomorphic to the
restriction to Xi of the evident bundle M*k B M*(k-1) ~ B(M, k), where k
is the number of points in a configuration from Xi. So we have
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where ±R is a local system (that will be described explicitly a little later).
Suppose now that the functions that form V are complex-valued. Recalling
that all complex vector bundles are orientable and applying statement 2 of
Theorem 2.8, we get

where di = dimc L(K), K E Xi.

3. Some further preliminaries

DEFINITION 3.1. - For any space X denote by F(X, k) the space of all
ordered k -ples from X, i. e. the space

The space B(X, k) defined on page 398 is the quotient of F(X, k) by the
evident action of the symmetric group Sk. We shall denote by (CP2,k)
the subspace of B(CP2,k) consisting of generic k-configurations (i.e. such
configurations that contain no three points that belong to a line, no 6 points
that belong to a conic etc.). The spaces P(CP2,k) are defined in a similar
way.

DEFINITION 3.2. - For any subspace Y c B(X, k) of some configura-
tion space denote by ±R the "alternating" system, i. e. the local system on
Y with the fiber R that changes it sign under the action of any loop defining
an odd permutation in a configuration from Y.

Throughout the text, P(X, ) stands for the Poincaré polynomial of
X "with coefficients in " i.e. the polynomial 03A3i aiti, where ai

dim(H’(X, )). In a similar way, we denote by P(X, £) the polynomial
03A3i aiti, where a2 = dim(H(X,)).

We shall consider only homology and cohomology groups with real coef-
ficients, and the fibers of all local systems will be real vector spaces of finite
dimension.

The following statement will be frequently used in the sequel:



- 405 -

THEOREM 3.3. - Let p : E ~ B be a locally trivial fiber bundle with
fiber F, and let ,C be a local system of groups or vector spaces on E. Then
the Borel-Moore homology groups of E with coefficients in  can be obtained
from the spectral sequence with the term E2 defined by the equality E2p,q =
Hp(B, q), where q is the local system with fiber q(F, |F) corresponding
lo the natural action of 03C01(B) on q(f,|F).

This is a version of the Leray theorem on the spectral sequence of a
locally trivial fibration. Let us describe the action of 03C01(B,x0) on the
fiber q|x0, where x0 is a distinguished point in B. Identify q|x0 with
q(F,|F), and set Fx0 = p-1(x0). A loop 03B3 in B defines a map f :
|Fx0 ~ |Fx0 covering some map f : Fxo ~ Fx0. Recall the construc-
tion of f. Consider a family of curves 03B3x(t),x E F that cover 03B3. Then we

can set f(x) = 03B3x(1),x E Fx0. The map  : |Fx0 ~ |Fx0 consists simply
of the maps x ~ f(x) induced by 03B3x.

The map f induces for every q a map * : q(Fx0,|Fx0) ~ q(Fx0,
|Fx0), which is exactly the map q|x0 ~ q|x0 induced by 03B3.

THEOREM 3.4. - Let E1 ~ B1, E2 ~ B2 be two bundles and 1, 2 be
local coefficient systems of groups or vector spaces on E1, E2 respectively.
Let f : E1 ~ E2 be a proper map that covers some map g : B1 ~ B2
(i.e., f is a proper bundle map). Suppose f : 1 ~ 2 is a morphism of
coefficient systems that covers f. Then the map f induces a homomorphism
of the terms E2 of spectral sequences of Theorem 3.3.

The map of the spectral sequences induced by f can be described ex-

plicitly in the following way. Let F(i)x be the fiber of Ei over x E Bi, (i)q be
the coefficient system on Bi from Theorem 3.3, i = 1, 2. Since f is a bundle

map, it maps F(1)x into F(2)g(x), and  maps |f(1)x into |F(2)g(x). The latter
map induces for any x E B1 a map q(F(1)x,|F(1)x) ~ q(F(2)g(x),|F(2)g(x)),
which can be considered as restriction to (1)q |x of a map f’q : (1)q ~ (2)q
that covers g. The desired map of the terms E2 of spectral sequences is just
the map *(B1,(1)q) ~ *(B2,(2)q) induced by f’.

Theorem 3.3 has the following corollary: 

COROLLARY 3.5. - Let N, N be manifolds, let p : N ~ N be a finite-
sheeted covering, and let  be a local system of groups on N. Then H*(N, )
= H*(N,p()), where p() denotes the direct image of the system ,C.
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If L is the constant local system with fiber R, then the representation
of 03C01 (N, x), x E N in the fiber of p(,C) is isomorphic to the natural action of
03C01 (N, x) on the vector space spanned by the elements of p-1 (x). In partic-
ular, if 7V is simply connected, we get the regular representation of G (the
group acts on its group algebra by left shifts).

Recall that any irreducible real or complex representation of a finite
group G is included into the regular representation. If the representation
is complex, this is obvious. In the real case it follows from Schur’s Lemma
and from the well-known fact that if R : G ~ GL(V) and S : G -+ GL(W)
are real representations of G, and Rc, Sc are their complexifications, then
dimR(Hom(R, 6’)) = dimC(Hom(RC, SC)), where Hom(R, S) is the space of
representation homomorphisms between R and S (i.e. operators f : V ~ W
such that f(R(g)x) = S(g)f(x) for any g E G, x E V).

The homological analogues of Theorems 3.3 and 3.4 can be obtained by
omitting all bars over H-es and fi-es. The cohomological versions of these
theorems can be obtained as follows: in Theorem 3.3 the action of a loop
-y is the inverse of the cohomology map induced by f : x ~ f(x), and in
Theorem 3.4 we have to suppose that 1 is the inverse image of f-2, i.e. that
the restriction of f over each point is bijective.

Neither in homological, nor in cohomological analogue of Theorem 3.4
we have to require that f is proper.

We shall also need the following version of Poincaré duality theorem:

THEOREM 3.6. - Let M be a orbifold of dimension n, and let  be a

local system on M, whose fiber is a real or complex vector space. Then we
have

where Or(M) is the orienting sheaf of M.

The following lemma allows us to calculate real cohomology groups of
the quotient of a semisimple connected Lie group by a finite subgroup with
coefficients in arbitrary local systems. We shall use this lemma several times.

When this does not lead to a confusion, we shall use the symbol R to
denote the constant sheaf with fiber R.

LEMMA 3.7. - Let G be a connected and simply connected Lie group.
Let GI be a finite subgroup of G, and let  be a local system on GIGI.
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The cohomology group H*(G/G1, ) is trivial if  ~ R and the action of
03C01 (G/G1) ~ G1 on the fiber of L is irreducible.

Proof. - If we apply Corollary 3.5 to the covering G ~ G/G1, we obtain

where f-i are coefficient systems corresponding to irreducible representations
of CI that are included into the regular real representation. Recall that in
fact all real irreducible representations of a finite group are included into
the regular real representation.

But H*(G,R) = H* (G/G1, R), since every cohomology class of G is
CI-invariant; therefore all the groups H*(G/G1, i) for i ~ R are zero.
D

After Theorem 3.3 on page 405 we gave an explicit construction of lo-
cal systems that appear in the Leray spectral sequence of a locally-trivial
fibration. However, in many interesting cases we have a map that is "al-
most" a fibration, say the quotient of a smooth manifold by an almost free
action of a compact group etc., and we would like to know, what the Leray
sequence (which is defined for any continuous map) looks like in this case.
It turns out that in the case of a quotient map the sheaves that occur in
the Leray sequence can be explicitly described (at least for some actions of
some groups).

Let us fix a smooth action of a Lie group G on a manifold M. A sub-
manifold S C M is called a slice at x E S for the action of G iff GS is open
in M, and there is a G-equivariant map GS ~ G/Stab(x) such that the
preimage of Stab(x) under this map is S. Here GS is the union of the orbits
of all points of S, and Stab(x) is the stabilizer of x.

If G is compact, a slice exists for any action at every point x E M:
provide M with a G-invariant Riemannian metric and set S equal to the
exponential of an c-neighborhood of zero of the orthogonal complement of
Tx(Gx) for any sufficiently small c. (Here Gx is the orbit of x.)

THEOREM 3.8. - Suppose that G is connected and simply connected,
and for any x E M the group Stab(x) is finite. Let C be a local system on
M. If there exists a slice for the action of G at every point x ~ M, then for
any i the sheaf Hi on M/G generated by the presheaf U ~ Hi(p-1(U), )
is isomorphic to p() 0 Hi(G, R), where p : M ~ M/G is the natural
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projection, p() is the direct image of , and Hi(G, R) is the constant

sheaf with fiber Hi(G, R). Moreover, if  = R, then p() = R.

Note that the sheaf H0 is canonically isomorphic to p() for any .

Proof. - Let us first consider the case L = R. We have to show that for
any i the sheaf HiR is constant with fiber isomorphic to Hi(G, R). Let S be
a slice for the action of G at x E M. It is easy to show that S is invariant
with respect to Stab(x) and GS is homeomorphic to G  Stab(x) S, which
is the quotient of G x S by the following action of Stab(x) : g(gi, xi) -
(g1g-1, gx1) for any g E Stab(x), g1 E G, x1 E S. This implies easily that
for any x’ E MIG a local basis at x’ is formed by open sets U ~ x’ such
that p-1 (U) contracts to p-1 (x’). Hence the canonical map px’ : HiR (x’)~
Hi(p-1(x’), R), where HiR(x) is the fiber of HiR over x, is an isomorphism.

Note that for any x E M the action map Tx : G ~ Gx,Tx, (g) = gx
induces an isomorphism of real cohomology groups (the existence of a slice at
x implies that Gx is homeomorphic to G/Stab(x), and, since G is connected,
and Stab(x) is finite, the real cohomology map induced by G ~ G/~stab(x)
is an isomorphism). Let 03C3 : M/G ~ M be any map, such that p 0 a ==
I dM/G. Now for any i, y E Hi(G, R) define the section sy of HiR as follows:
sy(x’) = P-1x’ O (T*03C3(x’)-1(y).

Let U be a neighborhood of x’ such that p-1 (U) contracts to p-1 (x’). It
is easy to check that for any y E Hi (G, R) there is a y’ E Hi(p-1(U)) such
that sy coincides on U with the canonical section of HiR over U defined by y’,
so all maps x’ r--+ sy(x’) are indeed sections. It follows immediately from the
definition that the section sy is nowhere zero if y ~ 0. Setting y equal to the
elements of some basis of Hi(G, R), we obtain dim(Hi(G,R)) everywhere
linearly independent sections of HiR, whose values span HiR(x’) for any x.
Hence the map (x’, y) ~ fx’ (y) establishes an isomorphism between HiR
and Hi (G, R). The theorem is proved in the case, when ,C = R.

Now suppose that the system L is arbitrary. Note that for any open
subset U of MIG there is a natural map (the ~-product)

This gives us a map

Due to the existence of a slice at each point of M, the groups H0L (x’),
HiR(x’), HiL(x’) are canonically isomorphic to H0(p-1(x’),L), Hi(p-1(x’),
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R),Hi(p-1(x’),L) respectively (for any x’ E M/G). Under this identifica-
tion the restriction of the map (3.1) to the fiber over a point x’ E M/G is
the cup product map

Now take some x E p-I(X’). The action of 03C01(p-1(x’)) ~ Stab(x) in the fiber
of L|p-1(x’) splits into a sum of irreducible representations, hence L|p-1 (x’)
can be decomposed into a sum L = ~Lj such that the action of 03C01 (p-1 (x’))
on a fiber of each Lj is irreducible. Note that the map (3.2) respects the
decomposition of L into a direct sum. Applying Lemma 3.7 to each Cj,
we see that (3.1) is an isomorphism. We have already shown that HiR is

constant with fiber isomorphic to Hi(G, R). The theorem is proved. D

Remark 3.9. - There exist evident versions of Theorem 3.8 and Lemma

3.7 for non necessarily simply connected Lie groups, but we shall not need
them in the sequel.

The following three lemmas will be frequently used in our calculations
(see [2], [3] for a proof):

LEMMA 3.10. - The group *(B(Cn,k),±R) is trivial for any k 
2, n  1.

LEMMA 3.11. - The group * (B (Cpn ,k), ±R) for n 1 is isomorphic
to H*-k(k-1)(Gk(Cn+1),R), where Gk(Cn+1) is the Grassmann manifold
of k-dimensional subspaces in Cn+1.

In particular, the group *(B(CPn,k), ±R) is trivial if k &#x3E; n + 1.
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LEMMA 3.12. - If k  2, then the group H*((S2)*k,R) is trivial in all
positive dimensions, where (S2)*k is the k-th self-join of S2.

Consider the space CB{1, - 1} and the coefficient system f- on it that
changes its sign under any loop based at 0 that passes once around 1 or -1.
Let f be the map z I---t -z and let f : L~L be the map that covers f and
is identical over 0.

PROPOSITION 3.13. - The map f acts on the groups H1(CB{1, -1},L),
H1(CB{1,-1},L), and 1(CB{1, - 1, f-) as multiplication by -1.

Consider B(C*, 2), i.e. the space of pairs of points in C B {0}. It is a fiber
bundle over C*, the projection p : B ( C * , 2) ~ C* being the multiplication
of complex numbers. The fiber is homeomorphic to CB{1,-1}, and the
action of the generator of 03C01 (C*) is z ~ -z. The fiber p-1(1) contracts
to the character "8" . Denote by b, c the loops in p-1 (1) based at {±i} and
represented schematically on Figure 1; note that they correspond to the
circles of the "8". Denote by a the loop t ~ {ie03C0it, -ie03C0it}.

Consider the following three local systems on B(C*, 2) (the fiber of each
of them is R) :

1. 41 changes its sign under a and does not change its sign under b and
c.

2. 42 changes its sign under b and c and does not change its sign under
a.

3. A3 changes its sign under all loops a, b, c.

Let f be the map B(C*, 2) ~ B(C*, 2) induced by the map z ~ 1/z and
let f Ai ~ Ai, i = 1,2,3 be the maps that cover f and are identical over
the fiber p-1 (1). Note that we have A3 = =bR.

PROPOSITION 3.14. -

2. For i = 1, 3 the map fi* acts identically 3(B(C*, 2), Ai) and acts on
H2(B(C*, 2), Ai) as multiplication by -1.
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Note that a lifting of the generator of 03C01(C*) is given by: 03B3{a,b} (t) -
{ae03C0it, be03C0it}, where la, b} E p-1 (1).

This statement follows immediately from Theorems 3.3 and 3.4.

4. The spectral sequence for plane quintics

In this section we give a proof of Theorem 1.2. Set V = 03A05, 03A3 = 03A35.
In the sequel, by a conic we shall mean any curve of degree 2 in Cp2. We
shall say that points x1,..., xk ~ Cp2 are in general position, if among
these points there are no 3 points that are on the same line, no 6 points
on a conic, no 10 points on a cubic, etc. A line l C Cp2 is said to be

nontangential to an algebraic curve C, if l n Q consists of deg C points. By
definition, lines l1,..., lk C Cp2 are in general position, if the elements of
Cp2V corresponding to l1,..., lk are in general position.

4.1. Configuration spaces

PROPOSITION 4.1. - The configuration spaces X1,..., X42. that consist
of the following configurations satisfy Conditions 1-7 and Condition 8 (see
pages 399 and 403). The number indicated in brackets equals the dimension
of L(K) for K lying in the corresponding Xi.

1. One point in CP2 (18).

2. 2 points in Cp2 (15).

3. 3 points in Cp2 (12).

4. 4 points on a line (11).

5. 5 points on a line (10). 

6. 6 points on a line (10).

7. 7 points on a line (10).

8. 8 points on a line (10).

9. 9 points on a line (10).

10. 10 points on a line (10).

11. A line in Cp2 (10).
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12. 4 points in Cp2 not on a line (9). (Any three of them may belong to
a line though.)

13. 4 points on a line + a point not belonging to the line (8).

14. 5 points on a line + one point not belonging to the line (7).

15. 6 points on a line + one point not belonging to the line (7).

16. 7 points on a line + one point not belonging to the line (7).

17. A line in Cp2 + a point not belonging to the line (7).

18. 5 points in CP2 such that there is no line containing 4 of them (6).

19. 4 points on a line + 2 points not belonging to the line (5).

20. 5 points on a line + 2 points not belonging to the line (4).

21. 6 points on a line + 2 points not belonging to the line (4).

22. A line in Cp2+2 points not belonging to it (4).

23. 3 points on each of two intersecting lines such that none of the points
coincides with the point of intersection (4).

24. 6 points on a nondegenerate conic (4).

25. A configuration of type 23 + the point of intersection of the lines (4).

26. 6 points not belonging to a (possibly degenerate) conic such that there
is no line containing 4 of those points (3).

27. 4 points on a line + 3 points on another line such that none of the 7
points coincides with the point of intersection of the lines (3).

28. 5 points on a line I1 + 3 points on l2 B ll, where l2 is a line ~ l1 (3).

29. A line + 3 points of some other line, none of which coincides with
the point of intersection of the lines (3).

30. 4 points on a line + 4 points on some other line such that none of
the 8 points coincides with the point of intersection of the lines (3).

31. The union of two lines in CP2 (3).

32. 7 points on a nondegenerate conic (3).

33. A nondegenerate conic (3).
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34. 4 points on a line + 3 points in general position not belonging to the
line (2).

35. A configuration of type 23 + a point not belonging to the union of the
lines (1).

36. 6 points on a nondegenerate conic + a point not belonging to the
conic (1).

37. A configuration of type 35 + the point of intersection of the lines (1).

38. 4 points A, B, C, D E Cp2 in general position + 4 points of inter-
section of a line l not passing through A, B, C, D and two (possibly
degenerate) conics passing through A, B, C, D and not tangential to l
(1).

39. 3 points A, B, C E Cp2 in general position + 6 points of intersection
of 3 lines AB, BC, AC and a (possibly degenerate) conic not passing
through A, B, C, and not tangential to the lines AB, BC, AC (1).

40. 10 points of intersection of 5 lines in Cp2 in general position (1).

41. A line in Cp2+ 3 points’ in general position not belonging to the line
(1).

42. The whole CP2 (0).

Proof. - Condition 1 follows from the following observations: 1. the sin-
gular locus of a curve defined by the product of two polynomials is the union
of the singular loci of the curves defined by those polynomials and the in-
tersection points of the curves; 2. the singular locus an irreducible curve of
degree 5 consists of 1 to 6 points in general position; 3. all possible singular
sets of curves of degree  4 are described in [2]. Note that some spaces Xi
contain (or consist of) configurations that are not singular loci of curves
of degree 5. We introduce them to make sure that Conditions 5 and 8 are
satisfied.

The verification of Conditions 2, 4 and 8 is straightforward.

Condition 3 will be deduced below from the following lemma.
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LEMMA 4.2. -

1. Let XI, ..., xk, k  6, be several points in general position in CP2.
Then the complex dimension of the space L({x1, ..., xk}) (which con-
sists of polynomials of degree 5 that have singularities at all points
XI, ..., xk and maybe elsewhere) is equal to 21 - 3k.

2. Let ll, l2 be two distinct lines in Cp2. Suppose that
a) x1 X2, X3 ~ l1 B l2,
b) y1, y2, Y3 ~ l2 B l1,
c) A ~ l1 U l2.
Then there exists exactly one cubic passing through all the points
xi, yj, i, j = 1, 2, 3 and having a singularity at A.

3. Let Q be a nondegenerate conic in CP2, and suppose that x1, ...,x6 ~
Q, A et Q. Then there exists exactly one cubic passing through xi, ..., X6
and having a singularity at A.

4. If a curve of degree 5 has three singular points on a line, then it

contains the line. If a curve of degree 5 has six singular points on a
nondegenerate conic, then it contains the conic.

5. Consider a point A E CP2 . For any d define Lxd (A) (respectively,
Lyd (A), Ld (A), Md (A)) as the linear space of homogeneous polynomi-
als f of degree d such that u 0 (respectively, a y = 0, ~f ~z = 0,
f - 0) at every point of the preimage of A under the natural map
C3 B {0} ~ Cp2. Suppose that l is a line in CP2, x1, x2, x3, x4 E
l, YI, Y2, Y3 ~ l, and suppose that YI, Y2, Y3 are not on a line. Then

dimc (n4i=1M4(xi))~(~3i=1Ly4(yi))~(~3i=1Ly4(~))~3i=1Ly4(yi)) = 2.

Remark 4.3. - Statement 5 of Lemma 4.2 implies that the thirteen hy-
perplanes M4 (xi), i = 1, ... , 4, Lx4 (yi), Ly4 (yi), Lz4 (yi), i - 1, 2, 3 intersect
transversally.

Let us prove the first statement of the lemma. Suppose that x1, ...,x6
are points of Cp2 in general position. It suffices to prove that 18 linear condi-
tions on the space Ils that define the space L({x1, ...,x6}) are independent.
Suppose they are not, then dimC L(x1,...,x6}) 4. Choose a point x’
such that x1,..., X6, x’ are in general position. The space L({x1, ..., x6, x’})
would be then of dimension  1, which is impossible, because no curve of
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degree 5 can have 7 singular points in general position (if the curve is irre-
ducible, this follows from [5, exercise 3, §2 of Chapter III], otherwise this is
trivial) .

The statements 2, 3., 5 can be proved in an analogous way. The state-
ments 4 follows from Bezout’s theorem. 1)

Let us prove now that the spaces Xi introduced in Proposition 4.1 satisfy
Condition 3. The case of Xl and X2 is evident. If we have a configuration
K that consists of three points in CP2 that do not belong to any line, then
using the first statement of Lemma 4.2, we get dimc L(K) = 21- 9 = 12. If
K c CP2 consists of three points on a line l ~ CP2, then due to statement
4 of Lemma 4.2, any function f E L(K) has the form f - gh, where g
is a fixed linear homogeneous function, and h is a polynomial that defines
a curve that intersects in every point of K and maybe elsewhere. Using
statement 5 of Lemma 4.2, we obtain dimc L(K) = 15 - 3 = 12. We have
thus proved that dimc L(K) = 12 for any K ~ X3.

The case of X4 can be considered in an analogous way.

If a curve of degree 5 contains five singular points on a line, then this
curve is defined by a polynomial of the form f 2g, where f is a polynomial
that defines the line, and g is a polynomial of degree 3. This gives the di-
mensions of all spaces L(K), K ~ X5.,..., X11, X14,..., X17, X20,..., X22.

Consider a configuration K E X 12. If no three of the points of K are
on a line, we have dimc(L(K)) = 21 - 12 = 9 by statement 1 of Lemma
4.2. If K contains 3 points on a line l, then, due to statement 4 of Lemma
4.2, every f E L(K) has the form f - gh, where g is a fixed polynomial of
degree 1, and h is an arbitrary polynomial of degree 4 that defines a curve
that has 3 fixed intersection points with and a fixed singular point outside
l. Using statement 5 of the same lemma (the transversality of intersection),
we see that the dimension of L(K) is equal to 15 - 3 - 3 = 9. The same
argument gives the dimensions of L(K),K E X13, X19, X34, X18, X26.

Note that if l1, l2 are two distinct lines in CP2, Xl, X2, X3 E l1Bl2 YI, Y2, Y3
~ l2B l1, A ~ l1 U l2 , then statement 2 of Lemma 4.2 implies that

3 3 

dimc M3 (xi)) n (M3(yi)) n Lx3 (A) n Ly3 (A) n Lz3 (A) = 1,

which means that nine hyperplanes M3 (xi), M3 (yi), i = 1, 2, 3, Lx3 (A), Ly3 (A),
and Lz3 (A) intersect transversally. This gives the dimensions of L(K), K ~
X23, X25.,X35,X37. The same argument works for X24, X36, except that we
apply statement 3. of Lemma 4.2 (instead of statement 2).
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It is easy to see that for any K E X27,..., X31 the vector space L(K)
consists of polynomials of the form f2g2h, where f, g are some fixed poly-
nomials of degree 1 that define two distinct lines, and h is an arbitrary
polynomial of degree 1. Analogously, for any K E X32, X33 the space L(K)
consists of polynomials of the form f 2g, where f is a fixed polynomial of de-
gree 2 that defines a nondegenerate conic, and h is an arbitrary polynomial
of degree 1.

Consider a configuration K E X38 and f E L(K). It follows from state-
ment 4 of Lemma 4.2 that f = gh, where g is a polynomial of degree 1, and h
is a polynomial of degree 4 that has singularities at four points A, B, C, D in
general position outside the line l defined by g. This implies that h = hlh2,
where hl, h2 are polynomials of degree 2 that define two conics QI, Q2 pass-
ing through A, B, C, D. f must also have singularities at four points on l,
hence each of these four points belongs to exactly one of the conics QI, Q2.
It follows that f is defined by K up to multiplication by a nonzero constant.

Analogously it can be proved that for any K E X39, X40 and any
f E L(K), f is defined by K up to nonzero constant. The cases X41, X42.
are trivial. Thus, we have proved that the spaces Xi satisfy Condition 3.

Let us prove now that these spaces satisfy Conditions 6 and 7. Recall
that the spaces Xi satisfy Condition 8. This implies (see p. 6) that for
the spaces Xi consisting of finite configurations Condition 7 follows from
Condition 6. Consider some Xi that consists of finite configurations. It is

immediate to check that the number of elements in all configurations from
Xi is the same. Denote this number by k. Set Mk = {(x,K)|x E CP2,
K C CP2, #(K) = k, x E K} (here and below, for a finite set K we denote
by #(K) the cardinality of K). It is easy to see that Mk is the total space
of a fiber bundle over B(CP2,K) (with projection (x, K) ~ K). The triple
(Ti, Xi, pri) is the restriction of this fiber bundle to Xi -

Thus, all spaces Xi that consist of finite configurations satisfy Conditions
6 and 7.

Now consider, for instance, the space X31. Note that if G is a Lie group
that acts smoothly on a smooth manifold M and a E M, there exist sub-
manifolds 5’ G M, S’ c G such that

1. a E S, e E S’ (e is the unit element of G),

2. S’ is transversal to Stab(a) at e,

3. S’a c M is a submanifold that intersects S transversally at a (here
S’x = {gx|g E S’}),
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4. the map S x S’ ~ M, defined by (a’, g) ~ ga’, g E S’, a’ E S is a
diffeomorphism onto an open neighborhood of a in M.

Set M = X31, G = PGL(CP2). The action of G on M is transitive, so
for any K E X31 the above remark gives us a neighborhood U ~ K and a
diffeomorphism r : U ~ S’, S’ C PGL(CP2) such that for any K’ E U we
have r(K’)K = K’. Now for any x E K and K’ E U, set t (x, K’) = r(K’)x.
It is clear that the map (x, K’) ~ (t(x, K’), K’) is a local trivialization of
731 over U. This trivialization satisfies Condition 7, since all spaces Xi are
invariant under PGL(CP2).

Local trivializations of the tautological bundles over the spaces XII, X17,
X22, X41, and X33 can be constructed in the same way.

However, this method does not work for X29, because the action of
PGL(CP2) on this space is no longer transitive. But we can proceed as
follows. Consider K E X29. We have K = KI U K2, where KI is a line,
and K2 consists of three points of another line. Denote by B’ the space
of all configurations in CP2 consisting of three points on a line. Let U1
(respectively, U2) be neighborhoods of KI in X11 (respectively, of K2 in
B’) such that the bundle (T11,X11,pr11) is trivial over Ul , (73, X3, pr3) is

trivial over U2, and for every Ki E U’1, K’2 ~ U2 we have K1 n K2 = Ø. For
j - 1, 2 let tj : Kj x Uj ~ CP2 be a map such that the map (x,K’j) ~
(tj(x,K’j),K’j), x E Kj,Kj E Uj is a trivialization of the corresponding
tautological bundle over Uj. Set U = {K’1 U K’2|K’1 ~ U1, K2 E U’2}, and
for any K’ - Ki U K2 E U set t (x, K’ ) equal to tj (x, Kj), if x E Kj,j =
1, 2. It is clear that U is an open neighborhood of K in X29 and that the
map (x,K’) ~ (t(x, K’), K’) is a trivialization of (729, X29, pr29) over U.
It follows from the construction of t that for any fixed K’ E U, the map
x H t(x, K’) establishes a bijective correspondence between the subsets of
K and K’ that belong to Uj29 Xi (Due to Condition 8, this needs to be
checked only for maximal finite subconfigurations of K (which belong to
X28, X21, X16, X10) and for nondiscrete subconfigurations (which belong to
X11, X17, X22).)

We have shown that the spaces Xi satisfy Conditions 6 and 7. It remains
to verify Condition 5.

Let us begin with the following three lemmas.

LEMMA 4.4. - Denote by 03A0d the vector space of all homogeneous poly-
nomials c3 -+ C of degree d. The map IId B {0} ~ 2Cp2 that takes a

polynomial to the projectivization of the set of its zeroes is continuous.
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COROLLARY 4.5. - The subspace of 2CP2 consisting of all zero sets of
homogeneous polynomials of some fixed degree is closed.

Remark 4.6. - In the case of real polynomials, the analogous map to
the real projective plane is neither everywhere defined nor continuous on its
domain of definition.

For any f E IId B {0} denote by [f] the image of f under the natural
map 03A0dB{0}~(03A0dB{0})/C*.

LEMMA 4.7. - Suppose we have a sequence (Ki), Ki E 2CP2, and a
sequence (fi), fi ~ IId B {0}, and suppose that fi has a singularity at ev-
ery point of Ki. If K E 2CP2, f ~ 03A0dB {0} are such that limi~~ Ki =
K, lim [fi] = [f], then f has a singularity at every point of K.

LEMMA 4.8. - Suppose we have sequences (Li) and (Mi) in 2CP2 and
suppose that K E 2CP2, K = limi~~(Li U Mi). Then there exist a sequence
of indices (ij) such that K = (limj~~ Lij) U (limj~~ Mij).

Proof of Lemma 4.8. 2013 Choose a sequence (ij) such that there exist
limi~~Li, limi~~Mi, and denote these limits by L, M respectively. Let
p be a metric that induces the usual topology on CP2, and let p be the
corresponding Hausdorff metric on 2CP2. If A, B, C, D E 2CP2, then p(A U
B, C U D)  p(A, C) + p(B, D). This implies that (Mij U Lij, M U L) 
(Mij, M) + (Lij, L). Hence M U L = limj~~(Mij U Lij) = limi~~(Mi U
Li) = K. D 

Now the verification of Condition 5 becomes straightforward in all cases
except X38,X39,X4o. Consider, for instance, K E X30. We have K =
limi~~Ki, since ail Ki E X30, they can be represented as Ki =
(Ki n ll) U (Ki n li2), where li1, li2 are lines. Due to Lemma 4.8, we can
suppose that K = (limi~~(Ki FI li1)) U (limi~~(Ki ~ li2)). Using Corollary
4.5, we can suppose that the sequences (li1), (li2) converge. Applying Propo-
sition 2.4, we see that K is.a configuration of the form ( 4 points on a line
l1)~( 4 points on another line). All such configurations belong to ~30i=1 Xi.

However, this argument does not work for X38, X39, X4o. Let us see, what
happens in these cases. Consider, for instance, K E X3g . Using Lemma 4.7,
we see that K is included into the singular set of some polynomial f of
degree 5. If this singular set is discrete, there is nothing to prove: due to
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Conditions 1 and 8, if a subset of a discrete singular set consists of  8
elements, then this subset belongs to ~38i=1 Xi. Otherwise we can do the
following.

We have K = limi~~ Ki, where ail Ki are of the form (Qi1 ~Qi2) U (Qi1 n
li) U (Qi2 n li), Qi1 and Qi2 are conics, li are lines. Applying Lemma 4.8 and
Corollary 4.5, we can assume that

and that the sequences (Qi1), (Qi2) and (li) converge. Denote the limits of
these sequences by Ql, Q2 and l respectively.

f can have the following nondiscrete singular sets: a line of multiplicity
2, two double lines, a double line + a triple line, a double nondegenerate
conic. Let us consider all these cases.

A double line. In this case we have the following possibilities:

1. QI = ml U m2, Q2 = ml U m3, where ml, m2, m3, are 4 pairwise
distinct lines. limi~~(Qi1~Qi2) is included into a configuration of the form (3
points on m1) {the point m2~m3}. Thus, K is included into a configuration
of the form (the points l n ml, l n m2, l ~m3 and m2 n m3)U(3 points on
ml). Such a configuration is a subset of a configuration from X34 or X2o .

2. QI = l ~ m, where m ~ l, and Q2 contains neither l nor m.

limi~~(Qi1 n li) consists of one or two points on 1. Hence K is included
into a configuration of the form (Q2 n l ) U (Q2 n m)~(2 points on l ) , which
contains 6 points.

3. Q1 - m~l, Q2 contains neither nor m. K = (m n l) U (Q2 n l) U
(Q2 n m), hence K contains  5 points.

A triple line. In this case K is included into a configuration of the form
(a line)+(a point). Hence K is a subset of a configuration from X8 or X16.

A line of multiplicity  4. K is a subset of a configuration from X8.

Two double lines or a double line + a triple line. K is a subset of the
union of 2 lines and #(K)  8. All such configurations belong to ~30i=1 x

A double nondegenerate conic. We have that QI = Q2 is nondegenerate.
limi~~(Qi1 ~Qi2) is included into a subconfiguration of the form (4 points
on Qi), limi~~(Qi1 n li) = limi~~(Qi2 n li) contains 1 or 2 points on Ql.
Thus, K is included into a configuration from X24. 
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We have checked Condition 5 for X38. The spaces X39, X40 can be con-
sidered in a similar way.

Proposition 4.1 is proved. D

Now we apply Theorem 2.8 and Lemmas 2.10, 2.11 to construct a conical
resolution a and a filtration 0 C FI C ... C F42. = 03C3. The spectral sequence
(1.1) is the sequence corresponding to this filtration.

Most of the columns of the sequence (1.1) can be investigated in essen-
tially the same way as in the case of nonsingular quartics considered in [2].
We shall only discuss the columns that need a somewhat different argument.

4.2. Column 38

Let X38 be the space of all configurations of type 38 (see Proposition
4.1). From Lemma 2.10 we get

where the local system -4-R is described in Definition 3.2.

X38 is naturally fibered over the space B(CP2, 4) of generic quadruples
{A, B, C, D} C CP2. Let us denote by Y the fiber of this bundle, i.e. the
space of all configurations from X38 such that the points of intersection of
the conics are fixed.

LEMMA 4.9. - The term E2 of the spectral sequence of the bundle
X38 ~ B(CP2 4) is zero.

The proof will take the rest of the subsection.

Denote by L the space of all lines not passing through any of the four
points A, B, C, D in general position in CP2. For any such line l denote by
Z the space of conics passing through A, B, C, D and not tangential to l.

The space Z is homeomorphic to (,S’2 minus 2 points)= C*.

Y is fibered over L with fiber B(Z, 2) = B(C*, 2).



- 421 -

LEMMA 4.10. - The Borel-Moore homology group of the fiber Y of the
bundle X38 ~ (CP2,4) can be obtained from the spectral sequence of the
bundle Y ~ L, whose term E2 is as follows:

Proof. - Recall that B(C*, 2) is a fiber bundle with base C* and fiber
CB{1, 20131}. Let us study the restriction of the coefficient system ±R to
the fiber B(C*, 2) of the bundle Y ~ L. This system changes its sign,
when one of the points passes around zero (and the other stands still). This
corresponds to the fact that if we fix all points in the configuration except
the points of intersection of the line and one of the conics, we can transpose
those points. On the contrary, a loop that transposes two conics, transposes
two pairs of points and does not change the sign of the coefficient system.
We see that the loops of the fiber do not change the sign of the coefficient
system, and some loop that projects onto the generator of 03C01(C*) (and hence
any other such loop) does. So ±R|B(C*, 2) is the system Al of Proposition
3.14. We have 2(B(C*,2), A1) = 3(B(C*,2), A1) = R.

The space L is homeomorphic to C2 minus the union of three complex
lines in general position. We have i(L) = R3 if i = 2,3, i(L) = R if
i = 4 and Hi (L) = 0 otherwise. We shall complete the proof of Lemma 4.10
in the following two lemmas.

LEMMA 4.11. - Let l (t) be a loop in L that moves a line l = l(0) around
one of the points A, B, C, D. Let Z be the space of conics passing through
A, B, C, D and not tangential to l. We can identify Z with C* (choosing
an appropriate coordinate map z : Z ~ C*) in such a way that the map
Z ~ Z induced by l(t) can be written as z ~ 1/z. If moreover A = (1, 0),
B = (-1,0), C = (0,1), D= (0,-1),l(t) = {x = 03B1(t)}, 03B1(t) = 1 + 03B5e203C0it,
where é == 2 ~3 - 1, then the conics ql - {xy = 0} and q2 = {x2 + y2 = 1}
are preserved, and the points of intersection of ql and l are fixed, while the
points of intersection of q2 and l are transposed.

Proof. - Denote by Q the space of conics passing through A, B, C, D.
These conics can be written as follows:

Such a conic is tangential to l(t) if and only if
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Note that if t = 0, then 03B1(0) = 2 ~3, and the condition (4.3) becomes
simply a2 = b2. The map ft : Q ~ Q that carries the conics tangential to l
to the conics tangential to l(t) can be written as

If 03B1(t) is as above, ~(03B12/(03B12-1) changes its sign, so the map f1(a,b) =
(-a, b). The desired coordinate z E C* is z = (b + a)/(b - a). Note that
Z(ql) = 1, z(q2) = -1, z(-a,b) = 1/z(a, b). The conics ql and q2 are pre-
served under any map ft. The points of intersection of q1 and are clearly
fixed. The statement concerning the points of intersection of q2 and can
be verified immediately. Lemma 4.11 is proved. D

Now we can describe the action of 03C01(L) on the Borel-Moore homology
of the fiber B(Z, 2) = B(C*, 2) of the bundle Y -+ L.

The covering map of coefficient systems ±R|B(C*,2) ~ ±R|B(C*,2)
induced by the loop considered in Lemma 4.11 is minus identity over the
configuration {1, -1} E B(C*,2). This implies that the fiber of the coeffi-
cient system over the pair, say fi, 2013i}, is mapped identically.

Applying Proposition 3.14, we obtain immediately that the correspond-
ing map Hi(B(Z, 2), ±R) ~ Hi(B(Z, 2), ±R) is the identity for i = 3 and
minus identity for i == 2.

Thus, the 3-d line of the sequence (4.2) contains the Borel-Moore homol-
ogy of L with constant coefficients. In order to obtain the 2-nd line we must
calculate the Borel-Moore homology of L with coefficients in the system C
that changes its sign under the action of any loop in Cp2V that embraces
exactly one of the lines corresponding to the points A, B, C, D.

LEMMA 4.12. - Let L be the complement in Cp2 of four complex lines
in general position. Let f : L ~ L be the restriction to L of the projective
linear map that transposes two of these lines and preserves the other two,
and let :L ~ C be the map that covers f and is identical over some point
of L that is fixed under f. Then

a) the Poincaré polynomial of L with coefficients in L equals t2, and

b) the map f multiplies by -1 the groups H2(L,L) and 2(L, L).

Note that if f is the identity over some fixed point of f, then it is the
identity over any other fixed point; this follows from the fact that the set of
fixed points of f is connected.



- 423 -

Proof of Lemma 4.12. - Identify L with the space C2 B ({Zl = 0}~{z2 =
0} U {Zl + Z2 = 1}). Consider the map p : L ~ C B {1},p(z1, Z2) = Zl + Z2.
Set A1 = p-1(U1(0)),A2 = p-1(CB {0,1}), where U1(0) is the open unit

disc.

The space A1 is homotopically equivalent to the torus {(z1,z2)~z1| =
1 3, |z2| = 1 3}. The loops in Al defined by the formulas t ~ 1 3(e203C0i, 1) and
t ~ 1 3(1,e203C0i) act non-trivially on the fiber of L, which implies that the
cohomology groups H*(A1, L) are zero.

The restriction plA2 is a fibration. The restriction of f- to the fiber

p-1(1 2) in nontrivial, hence Hi(p-1(1 2), L) is isomorphic to R if i = 1 and is
zero otherwise. Define the loops 03B1 and (3 in the space C B {0,1} as follows:
a : t ~ 1-1 2e203C0it,03B2:t ~ 1 2e203C0it. It is easy to check that both of them induce
the identical mapping of p-1(1 2) (hence the space A2 is in fact homeomorphic
to the direct product C B {0,1} x p- 2 Note, moreover, that a lifting of
a into A2 changes the sign of C, while a lifting of /3 does not. Now it is clear
that the Poincaré polynomial P(A2, L) is equal to t2 and that the inclusion
A 1 n A2 = p-1(U1(0)B{0}) C A2 induces an isomorphism of 2-dimensional
cohomology groups with coefficients in L.

Now consider the cohomological Mayer-Vietoris sequence corresponding
to L == Al U A2. Its only nontrivial terms will be

The map on the right is an isomorphism, hence so is the map on the
left. So we have P(L, ,C) = t2.

The map f preserves each fiber of p. Moreover, using the Künneth
formula and Proposition 3.13, we obtain that f acts on the groups
H*(A1 n A2, L) as multiplication by -1. Since the boundary operator
commutes with f, we obtain the statement of the lemma concerning the
group H2(L, L). The statement about the Borel-Moore homology group
follows from the Poincaré duality and the fact that f preserves the orienta-
tion. D

Lemma 4.10 follows immediately from Lemma 4.12. ~

To complete the proof of Lemma 4.9 we must calculate the action of
03C01((CP2,4)) on the Borel-Moore homology groups of Y obtained from
the spectral sequence (4.2). This will be done in the following three lemmas.
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LEMMA 4.13. - A loop 03B3(t) in (CP2,4) that belongs to the image of
03C01((CP2,4)) under the evident map (CP2, 4) ~ (CP2, 4) induces the
identical map of the fiber Y and of the coefficient system +R|Y over it.

Note that 03C01((CP2,4)) ~ Z3 (because (CP2, 4) is diffeomorphic to
PGL(CP2), which is the quotient of SL3 (C) by its center).

Proof of Lemma 4.13. 2013 We can represent every 03B3 E 03C01((CP2,4))
as follows: ’Y( t) = {A(t), B(t), C(t), D(t)}, where A(t),...,D(t) are some
paths in CP2 such that for any t the points A(t), B(t), C(t), and D(t) are
in general position. If we have a 03B3 that comes from 03C01((CP2,4)), we
have A(0) = A(1), ..., D(0) = D(l). Denote by Yt the fiber of the bundle
X38 ~ (CP2, 4) over 03B3(t). Note that for any t there exists a unique
projective linear map M(t) that carries A(O) to A(t), B(O) to B(t), C(O) to
C(t) and D(0) to D (t) . This map induces maps ft : Y0 ~ Yt. The map f1 is
clearly identical. Moreover, if we have a configuration K E Yo, then the curve
in X starting at K and covering -y is t ~ M(t)K. Since M(l) = IdCP2, 03B3
does not transpose any pair of points from K. The lemma is proved. D

LEMMA 4.14. -

1. A loop ’Y E 03C01((CP2,4)) transposing the points A and B induces a
bundle map f, : Y ~ Y. This map is covered by a map 1 : ±R|Y ~
±R|Y.

2. The corresponding map f 1 of L into itself is obtained from the pro-
jective linear map of CP2 that transposes the points A and B and
fixes C and D.

3. Let l be a line in L that is preserved under f 1. The restriction of
fl to the fiber over l is the map B(C*, 2) ~ B(C*, 2) induced by
z ~ 1/z. The restriction of f l to this fiber is minus identity over the
pair {i, -i}.

4. The map fIB(Z,2) acts on the group H3(B(Z,2),±R|B(Z,2)) as
multiplication by -1 and acts on the group H2(B(Z, 2), ±R|B(Z,2))
as the identity; here B(Z, 2) is the fiber of the bundle Y ~ L over
some line in L that is preserved under f1.

Proof. - Proceeding as in the proof of Lemma 4.13 we obtain bundle
maps ft : Y0 ~ Yt. The map f, : Y0 ~ YI == Yo is induced by the projective
linear map that fixes C and D and transposes A and B. Note that the map
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fi : ±R|x ~ ±R|x, where x E Y, fi (x) = x is just the map induced by the
loop t ~ ft(x). Now let A, B, C, D be the following points of the affine plane
C2 C CP2: A = (1,0), B = (-1,0), C = (0,1), D = (0,-1). Set l = oo.
Then the map f1 is induced by the linear map with matrix

This map preserves the line l = ~ and transposes the conics tangential
to l. Identify Z with C*, and choose a coordinate z E C* such that the
induced map can be written as z ~ 1/z. Note that the conics in the pair
corresponding to fi, -i} are transposed, and the pair itself is preserved.
Thus, the loop -y transposes 3 pairs of points over this pair, and hence the
fiber of the coefficient system ±R|B(Z, 2) is multiplied by -1.

We have proved the first three statements of Lemma 4.14. The fourth
statement follows immediately from Proposition 3.14. D

Now we can easily obtain the map of the sequence (4.2) induced by fi.
The third line of the sequence (4.2) contains the groups Hi(L, H3), where H3
is the constant local system on L with the fiber H3(B(Z, 2), ±R|B(Z, 2)).
Since the map fi multiplies the fiber of H3 by -1, it multiplies H4 (L, H3) ==
E14,3 by -1. The second line of the sequence (4.2) contains the groups
Hi(L, H2), where H2 is the local nonconstant system on L considered in
Lemma 4.12. Due to Lemma 4.14, fi acts identically on the fiber of the sys-
tem H2 over some point of L. We obtain from Lemma 4.12 that -y multiplies
H2(L, H2) = E12,2 by -1.

It is easy to see that the action of 7rl ((CP2, 4)) on E2,3 and on E3,3
of the sequence (4.2) is nontrivial and irreducible. 

Hence the action of 03C01((CP2,4)) on H*(Y,±R|Y) is nontrivial and

irreducible in any dimension. Recall that the universal covering space of
(CP2, 4) is SL3(C), and the group 03C01((CP2,4)) contains a normal sub-
group isomorphic to Z3 = 03C01((CP2, 4)), the quotient being isomorphic
to 64. Lemma 4.9 follows immediately from Lemma 3.7. In fact, setting
G = SL3(C),G1 =(the subgroup of SL3(C) generated by e2 303C0iI (1 is the
identity matrix) and the (complexification of the) motions of a regular tetra-
hedron) in Lemma 3.7 we obtain that the group H*((CP2, 4), L) - 0 if
the action of 7rl ((CP2, 4)) on the fiber of C is nontrivial and irreducible.
By Poincaré duality H*(B(CP2, 4), L) is also zero for any such L.
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4.3. Column 39

Recall that we denote by X39 the space of configurations of type 39. We
have

X39 is fibered over the space (CP2, 3) of all generic triples of points
f A, B, CI, A, B, C E Cp2.

LEMMA 4.15. - The term E2 of the spectral sequence of the bundle
X39 ~ (CP2, 3) looks as follows:

and the differentials E28,6 ~ E26,7 and E212,5 , E210,6 are non zero.

The proof will take the rest of the subsection.

If we fix three lines AB, BC, AC, then the intersection points of AB and
BC with the conic can be chosen arbitrarily. The space of conics passing
through these 4 points and not tangential to AC is homeomorphic to (S2
minus three points): we have to exclude 2 tangential conics and the conic
consisting of the lines AB and BC.

Thus, the fiber Y of the bundle X39 ~ B(CP2, 3) is itself a fiber bundle
over B(C*, 2) x B(C*, 2) with fiber (S2 minus 3 points). Denote the latter
fiber by Z. The space Z can be identified with C*B{1}.

LEMMA 4.16. - The term E2 of the spectral sequence for the Borel-
Moore homology of the bundle Y ~ B(C*, 2) x B(C*, 2) looks as follows:

Proof. - If we fix all points in a configuration from X39 except the points
of intersection of the conic and the line AC, then we can transpose these
two points, hence the restriction of ±R to (,S’2 minus 3 points) is nontrivial,
We have Hi (Z, d=R) = R if i = 1, and 0 otherwise.
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That is why the only nontrivial line in the spectral sequence of the
bundle Y ~ B(C*,2) x B(C*,2) is t he first one; it contains the groups

H*(B(C*,2) x B(C*, 2), H1), where H1 is the system with the fiber Hl (Z,
±R|Z) corresponding to the action of 03C01(B(C*, 2) x B(C*, 2)). The fiber
of H1 is R, and, as we shall see, every element of 03C01(B(C*,2) x B(C*,2))
multiplies the fiber of RI by d=l. So we can apply the Künneth formula,
and we get

H* (B(C*, 2) x B(C*, 2), H1) = H* (B(C*, 2), B1) 0 H* (B(C*, 2), B2), (4.6)

where BI, B2 are the restrictions of H1 on the first and the second factors of
B(C*, 2) x B(C*, 2). To calculate 61 we fix an element in the second factor
of the product B(C*, 2) x B(C*, 2) and study the action of the loops in the
first factor on the group Hl (Z, ±R|Z).

We set A = (0 : 1 : 0), B = (0 : 0 : 1), C = (1 : 0 : 0). Set AC - 00, so
that the points of the type (z : w : 1) belong to the affine plane C2 C CP2,
and the spaces B(C*, 2) consist of pairs of nonzero points on the coordinate
axes. Now fix the pair of points {(0,i), (0,-i)} on the y-axis. Denote by
Q the space of conics passing through (i, 0), (-i, 0), (0, i), and (0, -i) . Note
that the fiber Z over this quadruple is the subspace of Q that consists of the
conics that are not tangential to 4C = oo and are not equal to the union
AB U AC. Note also that the conics from Q have the form

Set z = (2a - b)/2a + b). This identifies the space Z c Q with CB{0,-1}.

In the following two lemmas we identify the space B(C*, 2) x B(C*, 2)
with the space of configurations in C2 that consist of two nonzero points
on the x-axis and two nonzero points on the y-axis.

LEMMA 4.17. - Consider the following loop in the space B(C*, 2) x
B(C*, 2): 03B3(t) = {(a(t), 0), (1/a(t), 0), (0, i), (0, -i)}, where a(t) is a simple
curve in CB{0} such that 03B1(0) = i, 03B1(1) = -i. Then 03B3 induces the identical
map of Z, and for any q E Z, 03B3 fixes both points of 03B3 n 00.

LEMMA 4.18. - Consider the following loop in the space B(C*, 2) x
B(C*, 2) : 03B3(t) = {(ie03C0it, 0),(-ie03C0it, 0),(0,i),(0,-i)}. The map Z ~ Z in-
duced by ’"’( can be written as z F--* 1/z. This map preserves the conics ql = xy
and q2 - x2 + y 2 + 1. Both points of ql n ~ are fixed, and the points of
q2 n ~ are transposed.
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The proof of these lemmas is an exercise in analytic geometry. D

Now we shall use Lemmas 4.17 and 4.18 to calculate the action of

03C01(B(C*,2) x B(C*,2)) on the Borel-Moore homology of the fiber of the
bundle Y -+ B(C*, 2) x B(C*, 2).

Let us note that the loop ’Y considered in Lemma 4.17 can be viewed as
the loop in the fiber of the bundle B(C*, 2) over 1 (recall that on page 410
we defined a structure of a fiber bundle over C* on the space B(C*, 2), the
projection being the multiplication of complex numbers). We obtain from
Lemma 4.17 that such ’Y induces the identical map of the space of Z, and
for any q E Z, 03B3 fixes both points of q n oo. So 03B3 transposes two points in a
configuration from Y. Thus, the system ±R|Z is multiplied by -1, and -y
acts on the group H1(Z, ±R|Z) as multiplication by -1.

Now let ’Y be the loop from Lemma 4.18. Note that it can be identified
with the loop a from Proposition 3.14. Applying Lemma 4.18, we obtain
that this loop transposes the tangential conics. Identify the space Z of non-
tangential conics with C* taking the coordinate z as in Lemma 4.18. The
map g : Z ~ Z induced by 03B3 is z ~ 1/z. Due to Lemma 4.18, the loop
-y transposes the points of intersection of q2 and AC. This implies that
the map g : ±R|Z ~ ±R|Z induced by 03B3 is identity over 1 = z(q2) (it
transposes two pairs of points).

Now introduce another coordinate w on Z, w = (z - 1)/(z + 1). This
identifies Z with C B {1, -1}. Since we have w(1/z) = -w(z), the map
g : Z ~ Z can be written as w ~ -w. The map g is identity over
0 = w(1). Applying Proposition 3.13, we obtain immediately that the map
* : H1(Z,±R|Z) ~ Hl (Z, ±R|Z) is minus identity.

So we see that the restriction of the local system H1 to the first fac-
tor of B(C*, 2) x B(C*, 2) is in fact the system A3 of Proposition 3.14
(it changes its sign both under the action of the loops of the fiber of
B(C*, 2) ~ C* and under the "middle line"). Due to Proposition 3.13,
we have P(B(C*, 2), A3) = t2(t+1). Lemma 4.16 follows now from formula
(4.6).

Now we shall study the action of 03C01 ((CP2, 3) on the group H* (Y, ±R|Y).
The fundamental group of B(CP2, 3) equals 63 (since F(CP2, 3) is simply-
connected). We shall describe the map of the sequence (4.5) induced by the
transposition of the points A and C.
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LEMMA 4.19. -

1. Let 03B3 be a loop in (CP2, 3) that transposes the points A and C.
Above we represented Y as a fiber bundle over B(C*, 2) x B(C*, 2),
the projection being defined as follows: Q ~ (Q n AB, Q n BC), where
Q is the conic that corresponds to an element of Y4. The map induced
by 03B3 preserves this structure of a fiber bundle on Y.

2. The corresponding map h : B(C*, 2)  B(C*, 2) ~ B(C*, 2) B(C*,2)
is the transposition of factors. (Recall that the first (respectively, the
second) factor in this product is identified with the space o f pairs o f
nonzero points on the x- (respectively, the y-) axis.)

3. Identify the space B(C*, 2) x B(C*, 2) with the space of configurations
in C2 that consist of two nonzero points on the x-axis and two nonzero
points on the y-axis. Let Z be the fiber of Y ~ B(C*, 2) x B(C*, 2)
over the point {(i, 0), (-i, 0), (0, i), (0, -i)} (this point is clearly fixed
under h). The map Z ~ Z induced by 03B3 is identical, and the points
of intersection of each conic q E Z with the line AC are transposed
by 03B3. Hence a loop corresponding to the movement of any q E Z from
this fiber transposes four pairs of points and acts identically on the
coefficient system =bR over this fiber.

Proof. - Since 03C01((CP2,3)) = S3, any two loops that transpose A
and C define the same map H*(Y, ±R) ~ H*(Y, ±R). Recall that A = (1 :
0 : 0), B = (0 : 0 : 1), C = (0 : 1 : 0) E CP2. Set A(t) = (1 2(1 + ei03C0t) :
1 2(1 - ei03C0t) : 0), C(t) = (1 2(1 - ei03C0t) : 1 2(1 + ei03C0t) : 0), B(t) = B. Set 03B3(t) =
{A(t), B(t), C(t)}. Denote by Yt the fiber of the bundle X39 ~ (CP2, 4)
over 03B3(t). There exists a projective linear map that carries A into A(t), C
into C(t) and fixes B. It can be chosen so that its restriction to the affine
plane C2 = CP2 B AC will be the linear map with matrix

(in appropriate coordinates).

This map induces a map ft : Y0 ~ Yt . In particular, the map f1 is

induced by the transposition of the axes in C2. The first and the second
statements of the lemma follow immediately. To prove the third statement

(4) Note that there are three ways to represent Y as a fiber bundle over B(C*, 2) x
B(C*, 2); instead of the lines AB and BC we could have taken any other two of the lines
AB, BC and AC.
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note that the fiber Z over the point {(i,0),(-i,0),(0,i),(0,-i)} consists
of conics of the type ax2 + bxy + ay 2+ a. Such conics are preserved, if we
change x and y, and their points of intersection with AC == oo are clearly
transposed. D

The map fi induces the identical map of the fiber Z over some "diagonal"
point of B (C * , 2) x B (C * , 2) and acts identically on the restriction of the
coefficient system :i:R to that fiber.

In general, suppose we have a connected space A and a local system
on A x A with fiber R, and suppose that every element of 03C01(A x A)
multiplies the fiber of C by 1 or -1. Let L1,L2 be the restrictions of C
to the first and the second factor, and let f : A x A ~ A x A be the
transposition of factors. Suppose that f : L ~ L is the map that covers
f and is identical over some point of the type (x, x), x E A. Then, the
map of H*(A x A, L) = H*(A, Li) 0 H*(A, L2) into itself can be written as
a 0 b ~ (-1)deg(a)deg(b)b~a.

Applying this to our situation, we obtain that 03B3 acts identically on
the group H4(B(C*,2) x B(C*,2), H1) = E 4, 2 1, and multiplies the group
H6(B(C*, 2) x B(C*, 2), H1) = E26,1 by -1.

We have P(B(CP2, 3), R) = t12, ((CP2, 3), ±R) = t6. This gives us
the 5-th and the 7-th lines of (4.4).

Let us calculate ((CP2, 3), S), where S is the local system corre-
sponding to the 2-dimensional irreducible representation of S3. It is easy to
show that P((CP2, 3)) = (1 + t + t2)(1 + t). Applying Corollary 3.5 (see
page 405) to the covering (CP2, 3) ~ (CP2, 3), we obtain

P(F(CP2, 3)) = P(B(CP2, 3), R)+P(B(CP2, 3), ±R)+2P((CP2, 3), S),
since the regular representation of 83 contains one trivial, one alternating
representation and two copies of the 2-dimensional irreducible representa-
tion. Thus, p(Ê(Cp2 3),S) - t2(1 + t2 and by the Poincaré duality we
obtain ((CP2, 3),S) = t8(1 + t2).

It remains to prove that the 6-th line of the Leray sequence corresponding
to the fibration X39 -+ B(CP2, 3) is as in (4.4) (i.e., the action of S3 in
H5(B(C*, 2) x B(C*, 2), H1) = R2 is irreducible), and that the differentials
E28,6 ~ E26,7 and E212,5 ~ E 2 are non zero.

To this end note that the group SU3 acts almost freely on X39 (via
SU3 ~ SU3/e2 303C0iI&#x3E;  PGL(CP2), where I is the identity matrix). Apply
Theorem 3.8 setting M = X39,G = SU3, L = ±R|X39. From the Leray



- 431 -

sequence of the map M ~ M/G (and from the fact that the cohomological
dimension of M/G is clearly imite) we obtain that either H*(M, L) = 0 or
dmax-dmin  8 (here dmax, (respectively, dmin) is the greatest (respectively
the smallest) i such that Hi(M, L) ~ 0).

By the Poincaré duality, we have either H* (M, L) = 0 or d’max-d’min  8
(here d’max (respectively, d’min) is the greatest (respectively, the smallest) i
such that Hi(M, L) ~ 0. Obviously, neither one of these statements holds
if the action of ,3 in H5(B(C*, 2) x B(C*, 2), H1) = R2 is reducible or

any of the differentials E28,6 ~ E26,7, E212,5 ~ E210,6 is trivial. Lemma 4.15 is
proved. D 

4.4. Nondiscrete singular sets

We are going to show that the columns of the spectral sequence 1.1

corresponding to all nondiscrete singular sets are zero. The columns 11 and
33 are considered in exactly the same way as in [2].

PROPOSITION 4.20. 2013 Let l be a line in CP2, A1,...,Ak, k  0 be

points not on l, m be an integer &#x3E; 1. Denote the union of all simplices
in (CP2)*(m+k) with the vertices in A1,...,Ak and m vertices on l bg
A(l, m, A1,..., Ak). The space (l, m, A1,..., Ak) has zero real homology
groups modulo a point. If k &#x3E; 0, this space is contractible.

Proof of Proposition 4.20. 2013 If k = 0, the statement of the proposition
follows from Lemma 3.12. If k &#x3E; 0, the space 039B(l, m, A1, ... , Ak) is con-

tractible, since this space is a union of simplices that all contain the vertex
A1. D

Using this proposition, we can easily prove that ~039B(K) has zero real ho-
mology groups modulo a point if K E Xi, i =17, 22, 29, 41. Let us consider,
for instance, the case i =41. Consider a configuration K consisting of a line
l and 3 points A, B, C outside such that the points A, B, C do not belong
to any line.

Note that ~039B(K) = L1 U L2 U L3 U L4, where L1 = 039B(l + A + B),
L2 = A(l+B+C), L3 = 039B(l+A+C), L4 = ~k 039B(k), where k runs through
the set of all configurations of type "A, B, C+ 4 points on l". Using Lemma
2.11 (see page 403), we conclude that L4 is homeomorphic to the space
039B(l, 4, A, B, C), which is contractible due to Proposition 4.20.
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The intersections Li n L2, L2 n L3,Ll n L3 are all spaces of the form
A(l + a point not on l ) . The intersection Li n L2 n L3 is just 039B(l). All
these ’ spaces are contractible. Now, the intersections Li n L4, i == 1,2,3
are the unions of all 039B(k), k running through the set of all configura-
tions of type "the points (A, B) (resp., (B, C), (A, C)) outside l + 4 points
on 1" . These spaces are homeomorphic to the space 039B(l, 4, 2 points outside l)
and are contractible due to Proposition 4.20. Analogously, the intersections
L1~L2~ L4, L2 n L3 n L4, L1~L3~ L4 are all homeomorphic to spaces of
type A(l, 4, a point outside l) and are also contractible. Finally, the quadru-
ple intersection LI n L2 n L3 f1 L4 is the union of all 039B(k), for all k = "4
points in l" , which is homeomorphic to l*4 = 039B(l, 4, 0).

So we see that the spaces Li, i = 1,..., 4 have zero real homology groups
modulo a point, and so do all their intersections. This implies that real
homology groups of their union 8A(K) modulo a point are also zero.

Let us now consider the case K = l1~l2, where l1, l2 are two lines (column
31). Here aA(K) is the union L1 U L2 U L3, where Li for i = 1,2 is the union
of the spaces 039B(k), where k runs through the set of configurations of the
type "li+3 points on the other line", and L3 is the union of A(K’), for K’
running through the set {K’ C II U l2|#(K’) = 8, #(K’ n li)  4, i = 1,2}.

First note that the intersection LI n L2 is the union of the spaces 039B(k),
where k runs through the space of configurations of the type "3 points on
II B l2, 3 points on l2 B ll, the point of intersection" . It follows from Lemma
2.11 that L1 n L2 is contractible.

The space L1 admits the following filtration 0 C A(ll ) C Mi C M2 C
M3 C M4 C M5 C M6 = Li. Here Mi, i = 1,..., 5, is the union of all 039B(k),
where k C K is a configuration of type 16, 17, 21, 22, 28 respectively.

The space M1B039B(l1) is fibered over l2 B ll , the fiber over a point A being
homeomorphic to A (11, 7, A) B Zi7. This fiber has trivial real Borel-Moore
homology. The space M2 B Mi is fibered over l2 B ll , the fiber over a point A
being homeomorphic to A(ll + A)B~039B(l1 +A), whose Borel-Moore homology
is also zero.

The space M3 B M2 is fibered over the space B(l2B ll , 2), the fiber over a
pair {A, B} being homeomorphic to 039B(l1, 6, A, B) B (A(ll, 6, A) ~039B(l1, 6, B)).
This space also has zero Borel-Moore homology.

The spaces M4 B M3 and M6 B M5 are considered in the same way as
M2 B Mi. The space M5 B M4 is fibered over B(l2B l1, 3). The fiber over
{A, B, C} is homeomorphic to the space A(ll, 5, A, B, C) B (A(ll, 5, A, B) U
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A(l1,5, B, C)UA(ll, 5, A, C)), whose Borel-Moore homology groups are zero.
This implies that Li (and also L2) have zero real homology groups modulo
a point.

Now consider the space L3. Let L’3 (respectively, L"3) be the union of all
A(K’) for K’ running through the set {K’ C l1~l2|#(K’) = 8, #(K’~l2) =
5,#(K’ n il) = 4} (respectively, {K’ C il U l2|#(K’) = 8,#(K’ n ll ) =
5, #(K’ n l2) = 4}). It is easy to see that all spaces Lg, L"3, L’3 ~ L"3, L’3 U L"3
are contractible. The space L3 B (Lg ~L"3) is the union of 039B(K’)B~039B(K’) for
K’ running through the set of configurations that consist of 4 points on l2 Bll
and 4 points on II B l2. Using Lemma 2.11, we get H*(L3B (Lg U L"3), R) =
H*-7(B(C, 4) x B(C, 4), ±R x ±R) = 0. Hence the real homology groups
of L3 modulo a point are zero.

We have also LI n L3 = L"3, L2~L3 = L’3, L1~L2~L3 = L’3 n L"3. These
spaces are all contractible. This completes the proof that real homology
groups of 9A (K) modulo a point are zero, when K is the union of two lines.

The fact that the last column of the sequence (1.1) is zero is proved
exactly in the same way as in the case of plane cubics in CP2, see [2,
Section 4].

4.5. End of the proof of Theorem 1.2

We have now proved the first two statements of Theorem 1.2. In order to
complete the proof of the theorem, it remains to show that the differential

E12,35 ~ E11,35 of the spectral sequence (1.1) is zero. This can be done as
follows (cf. [2, Lemma 6]).

Let S be the image of 03A35B {0} under the evident map 115 B {0} -+ C p 2o
and let ci E H2 (Cp20 , R) be the first Chern class of the tautological bundle
over Cp20. Since the fundamental class of any irreducible algebraic hyper-
surface is dual to a nonzero multiple of CI, the restriction of ci to CP20B S
is zero, which implies that H* (Ils B 03A35, R) = H* (C*, R) ~H* (CP20BS, R).
Thus, the Poincaré polynomial of the space Ils B 03A35 is divisible by 1 + t,
which implies easily that the differential E12,35 ~ E11,35 is zero. Theorem 1.2
is proved. D 
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