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Traces and fine properties of a BD class
of vector fields and applications

LUIGI AMBROSIO (1), GIANLUCA CRIPPA (1),
STEFANIA MANIGLIA (2)

ABSTRACT. 2014 In this paper we study the fine properties and the trace
properties of a class of vector fields of the form C = wB, where w is
a locally bounded scalar function and B is locally bounded and with
finite deformation. Assuming also that the distributional divergence of
C is a locally finite measure, we relate the (distributional) trace of C
on hypersurfaces to the pointwise behaviour of w. We study also the
behaviour of these traces under the transformation wB ~ h(w)B, with
h ~ C1, proving a chain rule for traces.

As a consequence of these results we show that DiPerna-Lions theory
can be extended to special vector fields with bounded deformation. In the
case when B is locally BV we obtain also estimates on the size of the
approximation discontinuity and approximate jump sets of w.

RÉSUMÉ. 2014 Dans cet article, nous étudions les propriétés fines et les

propriétés de trace pour une classe de champs de vecteurs de la forme
C = wB, où w est une fonction scalaire bornée et B est localement bornée
et avec déformation bornée. Dans l’hypothèse que la divergence au sens de
la distribution de C sur une hypersurface, avec le comportement ponctuel
de w. Nous étudions aussi le comportement de ces traces par rapport à
la transformation wB ~ h(w)B, avec h E C1, et nous démontrons une
formule explicite pour les traces. Comme conséquence de ces résultats nous
démontrons que la théorie de DiPerna-Lions peut s’étendre aux champs de
vecteurs spéciaux avec une déformation bornée. Lorsque B est localement
BV nous obtenons aussi les estimations sur la taille des ensembles de

« discontinuité » approximative de w.
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1. Introduction

This paper is devoted to the study of the trace properties and of the
pointwise behaviour of vector fields C in R d of the form wB, where w is a
scalar function, the distributional divergence D - C of C is a Radon measure
and B is a weakly differentiable vector field. We will consider in particular
the case when B has locally bounded deformation (and we write B e BD1oc),
i.e. the symmetric distributional gradient EB of B is a vector-valued Radon
measure (see [28], [5]). This regularity class seems the natural one in view
of the following facts: on one hand the first author established in [3] an
extension of DiPerna-Lions theory [21] to the case when B has bounded
variation; on the other hand it was proved in [16] that still the theory
works under the assumption that EB e Lfoc. So a natural attempt is to
improve both results extending the theory to the case when EB is only
a Radon measure. We don’t achieve completely this goal, but we obtain
partial results and some auxiliary facts of general interest, that will be used
in the forthcoming paper [7].

The plan of the paper is the following. In §2 we fix our main notation
and recall the main facts about functions of bounded variation and functions
of bounded deformation. In particular we show in Proposition 2.5 that the
splitting of the difference quotients of a BV function into a strongly con-
verging part and a weakly converging part (one of the main tools used in
[3] to show that distributional solutions are indeed renormalized solutions)
extends to BD functions, taking the symmetric difference quotients into
account. This leads to the fact, proved in Theorem 2.6, that all limit points
of the modulus of the commutators

as ~ ~ 0 are singular with respect to the Lebesgue measure .cd, provided the
convolution kernel is radial.

In §3 we study the trace properties of locally bounded vector fields whose
divergence is a measure. Almost all the results of this section appeared in
[17] (see also [9], where first the existence of the normal trace was proved,
the unpublished paper [11] that influenced a lot our work and the more
recent paper [18], where even measure fields are considered), but we prefer
to write all results in a self-contained way, consistent with our purposes.
The starting point is that the normal trace Tr(C, ~03A9) on a bounded open
set 03A9 with a C1 boundary can be defined as a distribution, by the identity
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It turns out that this distribution is induced by a locally bounded function
defined on ~03A9 which coincides with the pointwise normal component of C
on 8Q for "generic" open sets S2 (see Proposition 3.6 for a precise statement) .
Moreover the trace operator is local not only on open sets, but also in the
following stronger sense: for any pair of C’ open sets Ç2,, 03A92 we have

where 03BD03A91 and V02 are the outer normals to 03A91 and O2 respectively (no
regularity is imposed on the intersection of the two boundaries). This fact
is crucial in order to extend the trace operator to countably Hd-1-rectifiable
sets which, in general, are not locally the boundary of an open set.

In §4 we go back to our special class of vector fields C = wB with
w, B E LÎ.c and B E BDioc and we establish the chain rule for traces

Its proof requires the quantitative version of the commutator estimate given
in §2 and a suitable extension argument, based on Gagliardo’s theorem.

In §5 we show how the DiPerna-Lions theory can be extended to special
vector fields of bounded deformation, i.e. those fields B E BDioc such that
the singular part of EB is concentrated on an Hd-1-rectinable set. We have
also to assume, as in [3], that the distributional divergence of B is absolutely
continuous with respect to .cd. The key property is the renormalization
lemma

Unlike [3] (see also [25], [12], [20]) its proof can not be achieved by choosing
very anisotropic convolution kernels, as for BD functions only radial kernels
ensure good estimates of the commutator. We use instead the chain rule
for traces to rule out the possibility of a concentration of B - ~(h(w)) on
hypersurfaces. In the last part of the section we illustrate several standard
consequences of the renormalization lemma: well-posedness of the continuity
equation, existence and uniqueness of regular Lagrangian flows, and stability
of regular Lagrangian flows with respect to smooth approximations.

Finally in §6 we analyze the pointwise behaviour of w. This is an im-
portant issue in the perspective [7] of defining a "precise representative"
of w to be used in a kind of chain-rule formula for the computation of
D - (h(w)B) even when D·B is not absolutely continuous with respect to
.cd, thus extending all renormalization lemmas known so far. We show first



- 530 -

the existence of approximate one-sided limits on Cl hypersurfaces, relating
them to the distributional trace, and then, using the coarea formula, we are
able to prove when B e BVloc the existence of the one-sided approximate
limits IDBI-a.e. However, we are able to show these properties only on the
set where the vector field is transversal, in a suitable sense, to its derivative
(see (6.5), (6.6)).

2. Main notation and preliminary results

We denote by ,Cd the Lebesgue measure in R d and by lik (E) the Haus-
dorff k-dimensional measure of a set E C Rd. In the sequel we denote by
03A9 a generic open set in Rd. Given a nonnegative Borel measure p in 03A9 we

say that M is concentrated on a Borel set F if M(Q B F) = 0. For a Borel set
F C Q, the restriction p L F is defined by

The same operation can be defined for vector valued measures p with finite
total variation in Ç2. We will sometimes use the following differentiation
property (see for instance [23] or Theorem 2.56 of [8]):

The approximate discontinuity set SB C 0 of a locally summable B :
03A9 ~ R’ and the approximate limit are defined as follows: x tt SB if and
only if there exists z C R’ satisfying

The vector z, if exists, is unique and denoted by B(x), the approximate
limit of B at x. It is easy to check that the set SB is Borel and that Ê
is a Borel function in its domain (see §3.6 of [8] for details). By Lebesgue
differentiation theorem the set ,S’B is Lebesgue negligible and B = B ,Ca-a.e.
in 03A9BSB.

In a similar way one can define the approximate jump set JB C SB, by
requiring the existence of a, b e R’ with a~b and of a unit vector v such
that

where
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The triplet (a, b, v), if exists, is unique up to a permutation of a and b and
a change of sign of v, and denoted by (B+ (x), B- (x), 03BD(x)), where BI(X)
are called approximate one-sided limits of B at x. It is easy to check that
the set JB is Borel and that B± and v can be chosen to be Borel functions
in their domain (see again §3.6 of [8] for détails).

For B e L1loc(03A9; Rm) we denote by DB = (DiBj) the derivative in the
sense of distributions of B, i.e. the Rm d-valued distribution defined by

In the case when m - d we denote by EB the symmetric part of the
distributional derivative of B, i.e.,

DEFINITION 2.1 (BV AND BD FUNCTIONS). - We say that
B e L1(03A9; IIg"2) has bounded variation in 0, and we write B E BV(Ç2; Rm),
if DB is representable by an R’ d-valued measure, still denoted with DB,
with finite total variation in Ç2.

We say that BELl (0; Rd) has bounded deformation in S2, and we write
B e BD(03A9), if EijB is a Radon measure with finite total variation in 0 for
any i, j = 1,..., d.

We consider, for B e BVloc(03A9;Rm), the canonical Radon-Nikod00FFm
decomposition of DB into an absolutely continuous part DaB with re-
spect to rd and a singular part DS B with respect to ,Cd . Analogously, for
B E BDloc(03A9), we consider the Radon-Nikod00FFm decomposition of EB into
an absolutely continuous part EaB with respect to rd and a singular part
E’B with respect to ,Cd. We denote also by £B the Borel map with values
into symmetric d x d matrices representing the density of EaB with respect
to rd l.e. ia’B = 03B5BLd.

The distributional divergence D . B := 03A3iDiBi = Li EiiB is a well
defined measure with finite total variation in 0 when B E BD(Q) ; defining
div B as the trace of EB, the splitting of D . B into absolutely continuous
and singular part with respect to ,Cd can be read as follows:
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DEFINITION 2.2 (COUNTABLY Hd-1-RECTIFIABLE SETS). - We say
that E C Rd is a countably Hd-1-rectifiable set if there exist (at most)
countably many el embedded hypersurfaces ri C Rd such that

In a similar way, choosing oriented hypersurfaces ri, one can define an
orientation vE choosing pairwise disjoint Borel sets Ei C Fi such that the
union of the Ei’s covers Hd-1-almost all of E and defining

This orientation depends clearly on the choice of the decomposition, but
only up to the sign, due to the fact that for any pair of C’ hypersurfaces r
and r’ we have 03BD0393’ ~ {-03BD0393,03BD0393}Hd-1-a.e. on r n r’.

We recall that for a BV function B the approximate discontinuity set
,S’B and the jump set JB are countably Hd-1-rectinable and

(see Theorem 4.5.9 in [23] or Theorem 3.78 in [8]). For functions B E BD(Q)
it is known that JB is countably Hd-1-rectifiable (see [5]) but the validity
of (2.3) is still an open problem.

DEFINITION 2.3 (SBV AND SBD FUNCTIONS). - We say that
B E BV(Q; Rm) is a special function of bounded variation, and we write
B E SBV(03A9;Rm), if DSB is concentrated on a countably Hd-1-rectifiable
set. Analogously, we say that B E BD(Q) is a special function with bounded
deformation, and we write B E SBD(Q), if ESB is concentrated on a

countably Hd-1-rectifiable set.

Since (see for instance Theorem 3.77 of [8])

for any countably Hd-1-rectifiable Borel set F C 0, it turns out that
B E SBV(Q) if and only if |DsB| is concentrated on JB, and in some
sense JB is the minimal set where the measure is concentrated. Analogous
remarks hold in BD(O), due to the fact that (see Chapter II in [28])
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for any countably Hd-1-rectifiable Borel set F C Q (here a 0 b denotes the
symmetric tensor product of a and b, i.e. (a Q9 b + b Q9 a)/2).

Let us recall now some fine properties of functions with bounded defor-
mation that will be used in this paper, referring to [5] for detailed proofs
and more informations. It is well known that, in analogy to what happens
for BV (see Section 3.11 of [8] for the corresponding statements in BV),
the space BD(03A9) can be characterized by means of the one dimensional
sections: a function B E L1(0; Rd) belongs to BD(Ç2) if and only if, for
every direction 03B6 e Sd-1 :- ER d : 1(1 =11, we have B00FF e BV(03A903B6y;R)
for 1td-1 - a.e. y e Q03B6 and

where S03B6y :- {t e R : y + t03B6 E Q) is the one dimensional section of 03A9 on the
straight line passing through y in the direction 03B6, Ç2e := {y E 7re : 03A903B6y ~ 0}
denotes the orthogonal projection of 0 onto 03C003B6, the hyperplane orthogonal
to 03B6 passing through the origin, and B00FF := B (y + t03B6).03B6 for every t e 03A903B6y.

Furthermore, Fubini’s theorem gives that
i.e.

where ~03B6,y(t) = cp(y + t03B6). The structure theorem for BD functions (see
Theorem 4.5 of [5]) states that also the scalar products (Ea Bç, ç) and
(ES Bç, ç) can be recovered in an analogous way from the corresponding
parts of the derivative of Bÿ, i.e.

and also that

We also recall that for BD functions the following uniform estimate of
symmetric difference quotients (i.e. in the direction z and with the scalar
product along z) holds.
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LEMMA 2.4. - If B E BDzoc(n), then for any vector z E Rd and any
compact set K C Ç2 we have

where K|z| is the open |z|-neighbourhood of K, provided Izi  dist(K,~03A9).

Proof. - Let f E C~(03A9;Rd) and let z E Rd, then for any compact set
K C 0 we have

So (2.6) is true for functions f in C°° (Ç2- Rd). Given a convolution kernel
p : Rd ~ [0, +oo), let us define BE :== B * PE and let us apply (2.6) to BE
with z’ = (1 - 6)z to get

Using Fatou’s lemma and Jensen’s inequality (see for instance Theorem 2.2(b)
of [8]) we obtain

Recall that z’ - (1 - 6)z, so passing to the limit as 6 10 in the inequality

and taking into account the strong continuity in Lfoc of translations the
thesis is achieved. D
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We know that some properties of BV functions can be suitably extended
to BD functions. For example the following proposition provides more in-
formation on the behaviour of the symmetric difference quotients of BD
functions and, as expected, we get a result similar to the one for difference
quotients of BV functions (see Theorem 2.4 of [3]).

PROPOSITION 2.5. - Let B E BDloc(Rd) and let z E RdB {0}. Then the
symmetric difference quotients

can be canonically written as Bs (z) (x) + B203B4(z)(x), where

and

f or any compact set K C Rd. In addition we have the uniform bound

whenever K, K’ are compact subsets of R d and E &#x3E; 0.

Proof. - Let K be a compact subset of Rd, and let B = (BI, B2, ..., Bd)
E BDloc(Rd). Given z E Rd, without loss of generality, we can suppose that
z is a unit vector. Up to a rotation we can also .assume that z = ed, so we
can write x = (x’, xd) with x’ E 03C0d ~Rd-1 (the hyperplane orthogonal to
ed) and Xd E R. We denote by Kd the orthogonal projection of K on 7rd
and set Kd, := It E R : (x’, t) E KI. Then we have

By the characterization of BD functions, we know that Bd(x’, ·) E BVloc(R)
for H,d-1-a.e. x’ E Kd, so, using the result about difference quotients of BV
functions of a real variable (see Theorem 2.4 of [3]), we can canonically write
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where

and

In addition, we have

By the structure theorem for BD functions we know that for 1td-1-a.e.
x’ E K d we have

Then, (2.10) and (2.13) yield (2.7), taking also into account (2.12). Analo-
gously, from the identity

and from (2.11) we obtain (2.8), taking again (2.12) into account. D

In the following theorem we analyze the behaviour of the commutators

proving that all limit points as E 10 of their modulus are measures singular
with respect to ,Cd . In order to give a quantitative estimate we define

THEOREM 2.6 (CONCENTRATION OF COMMUTATORS). -
Let B E BD1oc(0) and let w E L~loc(03A9). Let p, be a family of mollifiers
induced by a radial convolution kernel p. Then:

(i) The distributions TE defined by (2.15) are induced by measures with
locally uniformly bounded variation in Ç2 as E 10.



- 537 -

(ii) Any limit point, in the distribution sense, of |T~| as E 10 is a measure
CI with locally finite variation in Ç2 satisfying

Proof. - (i) Let A ~~03A9 and let E  dist (A,,~03A9). We check first that

where

Indeed, for any test function ~ E C~c(A) we have that (TE, ~) is equal to

(in the last equality we used the fact that B7 PE is odd). Now, using the fact
that p(z) = h(Izl) is radial we obtain

and changing variables we get

Finally, by integration on A, from (2.6) we get the uniform LI bound on A
as,E 10.

(ii) Let CI be any limit point of the distributions 1 T, 1, along some sequence
Ei, and consider an open set A ~~ 03A9. By Riesz theorem and (i) we know that
a is a measure with locally finite total variation in Ç2. Given ~ E C~c (A) with
0 ~ p ~ 1 we have that 03C3, p) is equal to (with the notation wi = w * 03C1~i)
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The second term can be estimated from above with ||W||L~(A)|Ds · B|(A)
for i large enough. The first term can be estimated using (2.17) and Propo-
sition 2.5 as follows

The first limit is equal to 0 because

(taking into account the strong L1loc(03A9) convergence of B1~i(-z) in (2.7) and
the strong continuity in Lfoc of translations) so that the limit equals

using the fact that

The second limsup can be estimated with I(03C1) ||w||L~(A) |EsB| (A) using
(2.8). Since ~ is arbitrary we obtain that

and therefore the estimate of the thesis. D

3. Weak traces of vector fields with measure divergence

In this section we assume that C : 0 C Rd~ Rd is a locally bounded
vector field whose divergence, in the sense of distributions, is a locally finite
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Radon measure in Q, denoted by D · C. We denote by (Ç2) the class of
these vector fields.

Given a domain with C’ boundary 0’ cc n we can define the trace of
the normal component of C on 8Q’ as a distribution as follows:

This definition is obviously consistent with the Gauss-Green formula, in the
case when CECI (0’, Rd), and gives that the distribution is induced by the
integration on an’ of C - 03BD03A9’, where 03BD03A9’ is the outer normal to Q’. In general
it turns out that this distribution is induced by the integration of an L°°
function on 8Q’ , that we will still denote by Tr(C, ~03A9’), and moreover this
function depends only on 8Q’ and its orientation, rather than on 0’. First
of all, we need the following approximation lemma.

LEMMA 3.1. - Let 0’ cc 0 be a domain with C’ boundary. For any
cp E C~c(03A9) and any E &#x3E; 0 sufficiently small there exists ~~ ~ C~c(03A9) such
that

- §3e 2013 ~ vanishes in a neighbourhood of ~03A9’,

Proof. - Since ~03A9’ C CI it is easy to find (using for instance the fact
that ~03A9’ is locally a graph) a family of open sets Qh such that Oh C Ç2’,
Ç2h 1 Ç2’ as h ~ oo and

Consider h sufficiently large, so that Qh D 03A9’~, and Tlh = xç2, * pô, with
6 - 03C3(h) &#x3E; 0 sufficiently small so that ô  dist (~03A9h,~03A9’) and the interior
of (qh - 1} contains 03A9’~. Setting Ç3h = (1 - ~h)~, it suffices to check that
also the last property holds for h large enough. Indeed, by Jensen inequality
we still have

and since (by the lower semicontinuity properties of the total variation)
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we obtain (see for instance Theorem 1 in §1.9 of [22]) that |D~h| weakly
converge, in the duality with Cc(Rd), to 1 DXç2, 1. We have then

Hence we can set ~~ = ~h for sufficiently large h. E

PROPOSITION 3.2. - The distribution defined in (3.1) is induced by an
L°° function on ~03A9’, in the following still denoted by Tr(C, ~03A9’), with

Moreover, if E is a Borel set contained in ~03A91 ~ ~03A92 and if 03BD03A91=03BD03A92 on
03A3, then

Proof. - First, it is immediate to check that the support of the distri-
bution Tr(C, ~03A9’) is contained in ~03A9’. Let E &#x3E; 0 and ~ E C~c(03A9) and take
Ç3e as in the previous lemma. We can estimate in the following way:

If e - 0 we get |Tr(C,~03A9’)~&#x3E;|  ||C++L~(03A9’)||~||L1(~03A9’) and it follows that
we can represent Tr(C,~03A9’) with an L~ function on 8Q’.

For the second part of the proposition, let Ti and T2 be the traces of C
on a01 and an2 respectively. Take X E C~c(Rd) with 0  X  1 and with
support contained in the unit ball Bl. Take x e E satisfying the following
two conditions:

(a) x is a Lebesgue point for Tl and T2,

(b) (2.1) holds at x with ii - |D· CI L(Qi U Q2), E - E and k = d - 1.
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Observe that these properties are satisfied 1td-1-a.e. in E, so it will be

enough to show that T1(x) = T2 (x) for any such x.

Now define xP (y) = x(y-x 03C1) : we have that the support of xp is contained
in Bp (x) . We are going to use a blow-up argument to show our thesis. If p
is small enough, we can use xp as a test function in the definition of trace
to obtain

Let us now estimate the two differences that appear writing explicitly
~~03A91T1~03C1- ~~03A92 T2Xp. First of an we have

because the symmetric difference between 03A91 and n2 becomes very small
when 03C1 ~ 0. Moreover, we have

because of assumption (b) on x.

From these estimates we get

Observe that, for i = 1, 2, we have

because x is a Lebesgue point both for Ti and T2, by assumption (a). More-
over

where IIx is the tangent plane to E (that is, to ~03A91 and ~03A92) in x. This can
be easily seen changing variable, z = y-x 03C1, and observing that in a small
neighbourhood of x the rescaled sets aS2p = (~03A9i - x)/p both converge in
Cl to IIx as p 10.



- 542 -

Then, using the triangular inequality, we get

Recalling (3.3) and observing that we can find X such that

fnx x(z)dHd-1(z) ~ 0 we obtain that Ti (x) = T2 (x). ~

We can use the property (3.2) to define the traces Tr+(C, 03A3), Tr-(C, E)
on an oriented Cl hypersurface E C C Q. Indeed, choosing an open C’
domain Q’ ~~ 03A9 such that E COQ’ and vç2, = 03BD03A3, we define

Analogously, choosing this time an open CI domain Q" C C 0 such that
E ~ ~03A9" and VO" == -03BD03A3, we define

With the convention that boundaries of open sets are oriented by the
outer normal, it turns out that Tr- (C, E) is equal on 03A3 to the trace Tr(C, 8Q’)
defined in (3.1). If Tr+(C, E) = Tr-(C, E) we will sometimes indicate with
Tr(C, E) the common value.

DEFINITION 3.3 (NORMAL TRACE ON COUNTABLY Hd-1-RECTIFIABLE
SETS). 2013 Using the previous locality result we can give a meaning to the nor-SETS). - Using the previous locality result we can give a meaning to the nor-mal trace of C on any oriented countably Hd-1-rectifiable set S. Indeed, we
can ,find countably many oriented C’ hypersurfaces Si and pairwise disjoint
Borel sets Ei C Si such that H d (03A3B UiEi) = 0 and 03BD03A3(x) is the classical
normal to Si for any x E Ei, and then we can define

The locality property ensures that, up to 1td-1-negligible sets, this
definition does not depend on the choice of Ei and Ei; nevertheless, as
in the case of oriented Cl hypersurfaces, it depends on the orientation.

PROPOSITION 3.4. - Let C be a vector field in M~(03A9). Then:

(i) |D · C|(B) = 0 for any Hd-1-negligible set B C Q;

(ii) for ang Cl oriented hypersurface 03A3 c 0 we have
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Proof. - (i) By inner regularity it is enough to show the thesis for any
compact set K ~ 03A9 such that 1td-1(K) = 0. Then we will show that

Fix any E &#x3E; 0 and take a finite family of balls {Bi} such that K C UiBi
and 03A3iHd-1(~Bi)  E. Let X, be the characteristic function of UiBi and
let xE,a = XE * 03C103B4 with oô a standard convolution kernel. If ô is small enough,
we can suppose that the supports of all XE,D are contained in a compact set
K C Q. Then we have

and a simple estimate gives

Since ~~~,03B4 = DXE * P8, Jensen’s inequality gives

Hence we can apply the estimate above with a suitable 6(,E) ~ 0 to obtain
(3.4).

(ii) Since the statement has a local nature we can test the identity with
~ E C~c(A), where A ~~ 03A9 and E is equal in A to the 0 level set of
F E C1(-A) with 1B7 FI &#x3E; 0 in A. Setting A+ = A n {F &#x3E; 01 and A- -
A ~ {F  0} and using the definition of Tr+ (C, E) and Tr-(C,03A3), we get

and

Taking into account that
adding up these two equalities we get
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DEFINITION 3.5 (FAMILIES OF LEVEL SURFACES AND GRAPHS). - Let
I C R be an open interval and let 03A3t, t E I, be a family of oriented hy-
persurfaces. We say that {03A3t}t~I is a family of level surfaces in Ç2’ cc 0 if
there exists F E C’(Q’) such that F(Q’) = I, IF = t} = Et for any t E I,
|~F| &#x3E; 0 in Ç2’ and Et is oriented by ~F/|~F|.

We say that {03A3t}t~I is a family of graphs in Ç2’ CC Ç2 if, in addition, in
a suitable system of coordinates, we have

for some open set D C Rd-1 and some f e C1(D), and

The following proposition shows that the weak trace is generically consis-
tent with the pointwise values of the vector field on families of level surfaces.

PROPOSITION 3.6. - Let C e M~(03A9) and let Et, t~I, be a family of
level surfaces contained in Ç2’ cc 0 as in Definition 3.5. Then

Proof. - Since D - C is locally finite, there exists N1 C I at most
countable such that D - C L Et = 0 for all t e I B NI. For these values of t,
using Proposition 3.4, we have Tr+(C, Et) - Tr- (C, 03A3t).

Let us now approximate C with smooth vector fields CE = C * pE by
convolution, so that CE are locally uniformly bounded in L°° and converge to
C in L1loc(03A9). Since D - CE = (D.C)*PE’ by a general property of convolutions
of measures we have that D - CE ( weakly*-converge, in the duality with
C,(Ç2), to |D·C|. Hence (see for instance Proposition 1.62(b) of [8]) we have
also D - C, - D - C weakly*, in the duality with continuous and bounded
functions in 03A9, for every open set n cc 0 such that D - CI (an) = 0. For
such an S2, using the definition of trace we have

in the sense of distributions on Q. Observing that Tr( CE, an) are uniformly
bounded in L°°(8À) as E 1 0, we deduce that we have also convergence
weak* in L’ Noticing that, for every t E I B N1, we can find an open
domain Û with Et c 8Q and ID - CI = 0, we easily deduce that
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Recalling that 0’ CC Q, we can extract a "fastly converging" subse-
quence CEh, i.e. a subsequence such that Eh IICEh - C||L1(03A9’)  +oo. Then

we have

and it follows that 03A3h ||C~h - C||L1(03A3t)  +00 for all t e I B N2, with
L1(N2) = 0. Clearly this means that

for all t E I B N2. Recalling that for smooth vector fields the trace is the
classical one, we get the desired result for all t E I B (Ni U N2). D

Finally, in the more particular framework of families of graphs (with the
same notation introduced in Definition 3.5), we investigate the continuity
of the maps t  Tr+(C,03A9t) and t H Tr-(C,03A3t)· Looking at the traces as
functions on D, it turns out that the maps are weakly* continuous but not
strongly continuous in general.

THEOREM 3.7 (WEAK* CONTINUITY OF TRACES). - Let 03A3t, t E I, be

a family of graphs as in Definition 3.5 and let C E (Ç2). Fix to E I and
set

Then we have

Observing that we can test against W in the trace formula and estimating
in the obvious way, we get
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that clearly vanishes as t 1 to. This shows that

(where u(x) - 1+ |~f(x’)|2 is the area element) for any ~ e C~c(D).
Thanks to the density of smooth functions and to the uniform boundedness
of cet it follows that

and observing that 03C3(x’) ~ 1 we get the desired convergence. D

Obviously a similar result holds in the case of convergence of Tr- (C, 03A3t)
to Tr+(C, 03A3t0) as t 1 to. Let us now show that w*-continuity is the best we
can hope for. The following example is taken from [11].

Exarraple 3.8. - Set Q = R2 and 0’ the unit ball. Consider the horizontal
stripes 03A9+j = {1 2+1y1 2 and 03A9)- = {-1 2y1 2+1} for j positivestripes 03A9+j={1 2+1  y  1 2} and 03A9-j={-1 2  y  - 1 2+1} for j positive
integer. Then divide each stripe into squares and consider in each square
the vector field (of unitary modulus and constant in each triangle) drawn in
the figure. Observing that the discontinuities of the vector field are always
parallel to the discontinuities lines, thanks to Proposition 3.4 we deduce that
it is divergence-free, so it clearly belongs to M~(03A9). It is also immediate to
check that the trace on f y - 01 vanishes, but in this case we cannot expect
strong LI convergence to 0 of the traces on the horizontal lines, due to the
oscillations of the field.

4. Chain rule for traces on hypersurfaces

In this section we assume that C E M~(03A9) has the form wB with
w:03A9 ~ R, B : Q - Rd, both locally bounded, with B E BDloc(03A9). We
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show first that this class of vector fields is stable under "renormalization"
of the scalar component w.

LEMMA 4.1 (WEAK RENORMALIZATION) . - Under the assumptions
above, we have h(w)B E M~(03A9) for any h E C1(R). Furthermore, for
any open set 0’ ~~ 03A9 we have

with M = ||W||L~(03A9’) and I(p) defined as in (2.16).

Proof. - Let TE be defined as in (2.15) with WE = w *,o,, so that

Multiplying both sides by h’(w~) we obtain

Passing to the limit as E ~ 0, the thesis is achieved using Theorem 2.6(ii).
0

The following theorem is one of the main results of the paper: due
to the nonlinearities involved its proof cannot be achieved using only the
w*-continuity properties of the trace operator. The proof involves a suitable
extension argument, based on Gagliardo’s theorem, and the quantitative
estimate in Lemma 4.1.

THEOREM 4.2 (CHANGE OF VARIABLES FOR TRACES). - Let 0’ CC 0
be an open domain with a CI boundary and let h E C1(R). Then

where the ratio Tr(wB, ~03A9’)/Tr(B,~03A9’) is arbitrarily defined at points where
the trace Tr(B, ~03A9) vanishes.

Proof. - It is not restrictive to assume that the larger open set 0 is
bounded and that it has a Cl boundary.

Step 1. Let 03A9" = 0 B Ç2’. In this step we prove that
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under the assumption that both w and the components of B are bounded
and belong to the Sobolev space W1,1(03A9"). Indeed, the identity is

trivial if both w and B are continuous up to the boundary, and the proof
of the general case can be immediately achieved by a density argument
based on the strong continuity of the trace operator from W1,1(0") to
LI (~03A9", 1td-1 L aÇ2") (see for instance Theorem 3.88 of [8]).

Step 2. In this step we prove the general case. Let us apply Gagliardo’s
theorem on the surjectivity of the trace operator from W1,1 into LI to
obtain a bounded vector field B, e [W1,1(03A9")]d whose trace on 8Q’ C 8Q"
is equal to the trace of B, seen as a function in BD(Q’). In particular
Tr(B, ~03A9’) = -Tr(B1,~03A9") on 9Q’. Defining

it turns out that 13 e BDloc(03A9) and that (see (2.5) )

Let us consider the function 9 := Tr(wB, ~03A9’)/Tr(B, OÇ2’) (set equal to 0
wherever the denominator is 0) and let us prove that ||03B8||L~(~03A9’) is less than
||w||L~(03A9’)· Indeed, writing 8Q’ as the 0-level set of a CI function F with
|~F| &#x3E; 0 on 8Q’ and {F = tl c 0’ for .c1-a.e. t &#x3E; 0 sufficiently small, by
Proposition 3.6 we have

Hd-1-a.e. on {F = t}. Passing to the limit as t 10 and using Theorem 3.7
we recover the same inequality on {F = 0}, proving the boundedness of 0.

Now, still using Gagliardo’s theorem, we can find a bounded function
W1 E M1,1(03A9") whose trace on aÇ2’ is given by 0, so that the normal trace
of w1B1 on 8Q" is equal to -Tr(wB, 8Q’) on the whole of 8Q’. Defining

by Proposition 3.4 we obtain

Let us apply now Lemma 4.1 and (4.2), (4.3), to obtain that the diver-
gence of the vector field h(w)B is a measure with finite total variation in Q,
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whose restriction to 8Q’ vanishes. As a consequence, Proposition 3.4 gives

By applying (4.4), Step 1, and finally our choice of B1 and WI the fol-
lowing chain of equalities holds Hd-1-a.e. on 8Q’:

5. The Cauchy problem with a S’BD velocity field

In this section we show that any distributional solution of the transport
equation B· Vw = cLd is renormalizable, according to the terminology
introduced by Di Perna and Lions in [21], when the vector field B belongs
to SBD1oc(0) and D.B « ,Cd. In the rest of the section we illustrate several
by now standard consequences of this fact, based on the tools introduced in
[21] and in [3].

THEOREM 5.1 (RENORMALIZATION LEMMA). - Let B E SBD1oc(0) be
a locally bounded vector field with D - B « Ld. If w is a locally bounded
function satisfying D. (wB) « ,Cd, then

with -

Proof. - Passing to the limit as ~~ 0 in (4.1) of Lemma 4.1 and using
Theorem 2.6(ii) we obtain

for some measure 03C3 absolutely continuous with respect to IE’BI. By the
SBD assumption the measure |EsB| is concentrated on some countably
1td-1-rectifiable set E. Therefore, it suffices to show that
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By the rectifiability of E we can cover Hd-1-almost all of E by com-
pact sets Ki, each contained in a Cl oriented hypersurface aoi. Taking
into account the first statement in Proposition 3.4, it suffices to show that
D - (h(w)B)La~03A9i = 0 for any i. Since the divergences of B and wB are
absolutely continuous the second statement in Proposition 3.4 gives

Hd-1-a.e. in 8Qj, so that the change of variables formula for traces gives

From Proposition 3.4 again we obtain that D: (h(w)B)L80i = 0. r-1

Introducing the notation (justified by the absolute continuity assumption
on the divergence)

we can read the renormalization lemma in an easier way:

Notice that in the general case B e BD1oc(0) and D - B « .cd the
previous argument still gives that the absolutely continuous part of B:
~(h(w)) is h’(w)B - ’7w and that B - ~(h(w))L03A3 = 0 for any countably
Hd-1-rectifiable set, but these informations are not sufficient to conclude,
as B . ~(h(w)) could a priori have also a "Cantor" part, neither absolutely
continuous with respect to .cd, nor concentrated on rectifiable sets.

In the final part of this section we briefly recall the consequences of
the renormalization property for S’BD functions, referring to [3] for more
details, since the proofs here will be omitted because they are just the same
ones we have in the BV case.

First we can apply the renormalization property to derive uniqueness
and comparison results for bounded weak solutions of the transport equation
~tw+b.~w= cLd+1 in the autonomous case and also in the nonautonomous
case, when b is SBD with respect to the spatial variables.

We fix T e (0, +00), and consider a vector field B of the form B = (1, b),
with a function b(t, x) : (0, T) x Rd ~ Rd satisfying the following conditions
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We also assume that for .c1-a.e. t E (0, T) the distribution D·bt is repre-
sentable as div bt fd with

With the particular choice of B = (1, b) the renormalization property, which
can be proved along the same lines of Theorem 5.1 by a mollification along
the spatial variables only, reads as follows:

Moreover the equation on the left hand side reduces to a transport equation
of the form 

(with wt = w(t,·), ct = c(t, .)). When ct - etwt for this PDE the same
comparison result that the first author proved for BV functions in [3] holds
(the proof uses Gronwall inequality and (5.4)). For the reader’s convenience
we recall the statement of the theorem.

THEOREM 5.2 (COMPARISON PROPERTY). - Let wl, i = 1, 2, be solu-
tions of the transport equation (5.5) in (0, T) x Rd with with ct = etwt and

Jo IletIILOO(BR) dt  +~ for any R &#x3E; 0. Assume that b satis fies (5.1), (5.2),
(5.3) and that there exist constants C &#x3E; 0, R &#x3E; 0 such that

As showed in [21] and in the last section of [3], the comparison
property can also be used as a tool to study the generic uniqueness of
the ODE = b(t, 03C8), through the notion of regular Lagrangian flow. Let
us recall the basic definitions in this context before stating the two relevant
theorems in this discussion, concerning the existence and uniqueness for
regular Lagrangian flows, and the stability of regular Lagrangian flows with
respect to the approximation of b with vector fields which are Lipshitz with
respect to the x variable.

Let A c Rd be a Borel set and let us denote by S(Rd) the space
C([0,T];Rd) endowed with the sup norm. Given an .cd-measurable map
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03C8: A ~ S(Rd), we say that e is a Lagrangian flow starting from A relative
to b if 03C8(x)(·) is an integral solution of the ODE 1 = b(t, -y) starting at x
(1.e. q E C([O, T]; R’) and 03B3(t) = x + fô b(T, 03B3(03C4)) d7 for any t E [0, T]) for
,Cd-a.e. x e A. Furthermore, we say that a Lagrangian flow 0 is regular if
there exist an increasing sequence of Borel sets Ah whose union is A and
constants Ch such that

The natural extension to the ,SBD case of the results in Section VI of [3]
are the following theorems:

THEOREM 5.3 (EXISTENCE AND UNIQUENESS). - Ass2cme that

Then, for any Ld-measurable A C Rd there exists a regular Lagrangian flow
starting from A.

Furthermore, if 03C8i are regular Lagrangian flows starting from Ld-measurable

THEOREM 5.4 (STABILITY). - Ass2cme that (i) and (ii) in Theorem 5.3
hold. Let bh (t, x) : (0, T) x Rd~Rd be satisfying

Let 03C8h(x)(t) be the unique solutions in [0, T] of the ODE (t) = bh (t, 03B3(t))
with the initial condition 03B3(0) = x and assume that for any R &#x3E; 0 there

exists a constant CR such that
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with MR = R+T suph||bh||~. Then, denoting by’ljJ the regular Lagrangian
flow relative to b starting from Rd given by Theorem 5.3, the functions 03C8h
converge in L1loc(Rd;S(Rd)) to the function 03C8, i.e.

6. Continuity points, jump points and traces

In this section we compare the trace operator, defined in the sense of
distributions in Section 3, with the (approximate) pointwise limits defined
with integral averages on balls, used in the definitions of the approximate
discontinuity set S’u, the approximate limit û, the approximate jump set
Ju and the approximate one-sided limits uI. When u = B E BDioc the
following well known result provides a complete solution of this problem
(see Chapter II in [28]):

PROPOSITION 6.1. - Let E ~ 03A9 be a Ci oriented hypersurface and
B e BDloc(03A9) . Then, up to Hd-1-negligzble sets, we have

Irc addition, we have H,d-1 ((SBB JB) n E) - 0.

An analogous result holds for functions u E BVioc(n; Rm), see for in-
stance Theorem 3.77 and Theorem 3.84 of [8]. In the following theorem we
try to extend these properties to locally bounded scalar functions w satis-
fying wB E (Q). It turns out that this is possible out of the set where
the normal trace of B on E vanishes.

THEOREM 6.2 (ONE-SIDED LIMITS OF w ON CI HYPERSURFACES). -
Let E C 0 be a el oriented hypersurface and let w, B be locally bounded
functions with B E BD1oc(0) and wB E M~(03A9) . Then, for ?nCd-1-a. e.
x e E such that Tr+(B, 03A3)(x):~ 0, we have (recall the notation (2.2))

An analogous result holds replacing Br+(x,03BD03A3(x)) with B-r(x,03BD03A3(x)) and
Tr+ with Tr-.
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Proof. - By the same extension argument used in the proof of
Theorem 4.2 (based on Gagliardo’s theorem on the surjectivity of the trace
operator from W1,1 to L1) we can modify w and B only on the "negative"
side of E in order to obtain that D - (wB)L03A3 = 0. This modification of w
and B does not affect the statement of the theorem, due to the fact that
the Lebesgue measure of the negative side of E inside B+r(x,03BD03A3(x)) is an

infinitesimal faster than r . Moreover, taking into account the change of
variables for traces, the same extension ensures also that D · (w2B)L03A3 = 0.

Let F G E be the set of points where Tr+(B, E) = 0. We fix x e E F
where the following properties hold:

(a) x is a Lebesgue point for the maps Tr+(wB, E) and Tr+ (w2B, E), i.e.

and

(d) For some vector B e Rd we have

and B - 03BD03A3(x) = U+ (B, 03A3)(x).
All the properties above hold out of an Hd-1-negligible subset of E B F

(recall the change of variables for traces, property (2.1) with k = d - 1 and
Proposition 6.1), hence if we show that these properties imply (6.1) we have
completed our proof.

Up to a translation and a rotation we can assume with no loss of
generality that x - 0 and that vr(x) = ed, the d-th coordinate vector
of the canonical basis of Rd. Since 0 ~ F we have that Èd j4 0 and we
can assume, to fix the ideas, that Bd &#x3E; 0 (possibly replacing B with -B
this is not restrictive). We describe E in a neighbourhood of 0 as the 0
level set of a C’ function 03A6, with ~03A6 parallel to 03BD03A3, so that 03A6(0) = 0 and
~03A61&#x3E;(0)/~03A61&#x3E;(0)| = ed.
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Denoting by x = (x’, xd) the generic point in Rd, we consider the
"parallelograms"

(where ||x’|| = sup{|xi| : :1id-1}) and their intersections Qr with
{03A6 &#x3E; 0}. Notice that the normal component of B vanishes on all faces of
Qr, with the exception of the "top" face Ur (in the hyperplane (xd = r})
and the "bottom" face Dr (in the hyperplane (xd = -r}). We denote by
~iQr the boundary of Qr without the top and bottom faces. Notice also
that Ld(Q+r) = rd + o(rd), since 03A3 is a CI hypersurface.

Let ri ~ 0 and let si E (ri, 2ri ) be such that

and Tr+(B, 9QsJ coincides H,d-1-a.e. on 9Qg, with B. v, v being the outer
normal to Qs2 (the existence of si is ensured by the mean value theorem
and by Proposition 3.6).

Step 1. We show first that
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Choose indeed the test function cpi (y) = Si-yd and apply the definition of
trace to obtain

because - 0 on Us2. The first integral in the right hand side is o(sd),
by condition (c) on the divergence of wB. The domain of integration in the
second integral can be split into two parts, intersecting with ~Qsi (and this
intersection is contained in ~iQsi, for i sufficiently large) and with S. Using
the fact that B - v = 0 on ~iQsi, the first of these two parts is again o(sd),
by the estimate

and by our choice of si. It remains to consider

Here we use condition (a) (that, by a comparison argument, holds for the
family Qr as well) and the fact that = si + o(si) on Qsi n E to obtain
that this integral is equal to

Step 2. In this step we show that

Indeed, repeating the argument of Step 1 for the vector field w2B (recall
that properties (a) and (c) have been imposed for the vector field w2B as
well) and using conditions (b) and (d) we obtain

therefore condition (d) again gives
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Expanding the squares and using (6.2) and (6.4) we get

Eventually, adding and subtracting wBd and using condition (d) again we
get (6.3).

Step 3. Conclusion. If r &#x3E; 0 is such that B+ (0, ed) C Ql, we obtain by
Step 2 and by a comparison argument based on the fact that B) (0, ed) C Qr
and that

the property

and therefore

Since the initial sequence ri is arbitrary the proof is achieved. D

Remark. 6.3 (One-sided ,approximate limits of w on countably H,d-1-
rectifiable sets). - The previous result trivially extends to countably Hd-1-
rectifiable sets E C 0, where in this case vr is an orientation of E. In-

deed, by the very definition of orientation, we can find countably many
CI hypersurfaces Ei and pairwise disjoint Borel sets Ei C Ei such that
Hd (03A3B Ui Ei) - 0 and 03BD03A3(x) is the classical normal to Si for any x e Ei.

When the vector field has bounded variation we can say something more,
proving existence of one-sided approximate limits 1 DB 1-a.e. out of the singu-
lar sets where the normal component of B vanishes. According to Alberti’s
rank one theorem [1] we can write DS B = q Q9 çlDs BI for suitable unit
vectors 03BE,~ E Rd uniquely determined |DsB|-a.e. up to a common change
of sign. Comparing this representation with the one given in (2.4) on JB,
we see that we can orient JB in such a way that VB = 03BE. Then we define
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Observe that the sets FB depend on the choice of 03B6, since 03B6 is defined

only |DsB|-a.e. by Alberti’s theorem. Nevertheless this ambiguity will not
influence our results, because in Theorem 6.5 we will prove a property that
holds |D’B|-a.e. Furthermore notice that, once we choose 03B6, F: and FB
differ only on JB, where B+ and B- could have différent scalar products
with 03B6.

When u = XE is the characteristic function of a measurable set, the

approximate discontinuity set Su coincides with the essential boundary a* E,
i.e. the set of points where the density is neither 0 nor 1. On the other hand,
choosing vu in such a way that u+ &#x3E; u-, it turns out that u+ - 1 and
u- - 0 at any approximate jump point. With this convention vu is called
approximate inner normal to E and we set vE - vu. When u E BUoc(Q)
(i.e. the set E has locally finite perimeter in Q) using a result due to De
Giorgi and Federer (see Theorem 3.59 and Theorem 3.61 of [8]) we have

LEMMA 6.4. - Let B E BVioc(O; Rd), let i ~ {1, ..., dl and let E~03A9
be an Ld-negligible Borel set. Then, for L1-a. e. t E R the following property
holds: (sgn ~i) 03B6 is the approximate inner normal to {Bi &#x3E; tl for Hd-1-a.e.
x ~ E ~ ~ {Bi &#x3E; t}.

Recall that sgn ~i is not defined only on a |DsBi|-negligible set, so the
lemma is correctly stated, again in view of Theorem 6.5.

Proof. - Without loss of generality we assume that E CC Ç2. We use
(see for instance Theorem 3.40 of [8]) the coarea formulas and (6.7) to obtain
for any Borel bounded map ~ with compact support in Ç2

where 03B6t is the approximate inner normal to {Bi &#x3E; t}. Using these formulas
we get
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Comparing the two expressions we see that equality can hold only if the
property stated in the lemma is true. D

We can now prove existence of the approximate one-sided limits |DB|-
a.e. out of the sets F:. . By Lebesgue differentiation theorem it suffices to
consider the singular part of DB only.

THEOREM 6.5. - Let B e BVloc(03A9;Rd). Then for |DsB|-a.e. x E 03A9BF+B
we have 

for a suitable w+ (x) E R. Moreover, in any Borel set E ~ 03A9 B (FB U SB)
such that |DsB|E « 1 DBi 1, we can characterize w+ by

Proof. - Since SB is countably 1td-1-rectifiable the existence of the
one-sided approximate limit on SB is a direct consequence of Theorem 6.2
and of Remark 6.3. Therefore, we consider in the following only points out
of Fi U SB.

Since 1 D’B « Ei 1 D’Bi we can find pairwise disjoint and Ld-negligible
Borel sets El , ... , Ed such that |DsB|Ei « 1 D’Bi | and the union of the
Ei’s covers |DsB|-almost all ouf 0 B (FB U SB ) . We will prove that w+ exists
for IDBI-a.e. x E Ei and

By Lemma 6.4 we have that for L1-a.e. t e R the following two
properties hold: first, {Bi &#x3E; tl has locally finite perimeter in Q; second,
the approximate unit normal to {Bi &#x3E; tl is given by (sgn ~i) 03B6(x) for H,d-1-
a.e. x E Ei n 8*(Bi &#x3E; tl. For any such t, by Remark 6.3, Theorem 6.2
and by rectifiability of ~*{Bi &#x3E; t}, we obtain that (6.8) holds for H,d-1-a.e.
x E Ei n 8* (Bi &#x3E; t}, with

Since Ei does not intersect SB we have that t = Bi (x) for any x E Ei n
8*(Bi &#x3E; tl. Indeed, if x belongs to ~*{Bi &#x3E; tl and t  Bi(x), then
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Ld({Bi  t} n Br(x)) should not be o(rd), but using Chebyshev inequality
we should have

and this integral is o(rd) because x e SB. In the same way we can prove
that t cannot be strictly greater than i(x). Therefore the formula for w+ (x)
given in (6.9) holds and finally, by integration with respect to t, the coarea
formula gives the existence of w+ for |DsBi|-a.e. x E Ei. ~

Bibliography

[1] ALBERTI (G.). 2014 Rank-one properties for derivatives of functions with bounded
variation. Proc. Roy. Soc. Edinburgh Sect. A, 123, p. 239-274 (1993).

[2] ALBERTI (G.), AMBROSIO (L.). 2014 A geometrical approach to monotone functions
in Rn. Math. Z., 230, p. 259-316 (1999).

[3] AMBROSIO (L.). 2014 Transport equation and Cauchy problem for BV vector fields.
Invent. Math., 158, p. 227-260 (2004).

[4] AMBROSIO (L.), BOUCHUT (F.), DE LELLIS (C.). - Well-posedness for a class
of hyperbolic systems of conservation laws in several space dimensions. Comm.
Partial Diff. Eq., 29, p. 1635-1651 (2004).

[5] AMBROSIO (L.), COSCIA (A.), DAL MASO (G.). 2014 Fine properties of functions in
BD. Arch. Rat. Mech. Anal., 139, p. 201-238 (1997).

[6] AMBROSIO (L.), DE LELLIS (C.). 2014 Existence of solutions for a class of hyperbolic
systems of conservation laws in several space dimensions. IMRN, 41, p. 2205-2220
(2003).

[7] AMBROSIO (L.), DE LELLIS (C.), MALY (J.). 2014 On the chain rule for the divergence
of BV like vector fields: applications, partial results, open problems. Preprint
(2005).

[8] AMBROSIO (L.), FUSCO (N.), PALLARA (D.). 2014 Functions of bounded variation
and free discontinuity problems. Oxford Mathematical Monographs (2000).

[9] ANZELLOTTI (G.). 2014 Pairings between measures and bounded functions and com-
pensated compactness. Ann. Mat. Pura App., 135, p. 293-318 (1983).

[10] ANZELLOTTI (G.). 2014 The Euler equation for functionals with linear growth. Trans.
Amer. Mat. Soc., 290, p. 483-501 (1985).

[11] ANZELLOTTI (G.). 2014 Traces of bounded vectorfields and the divergence theorem.
Unpublished preprint (1983).

[12] BOUCHUT (F.). 2014 Renormalized solutions to the Vlasov equation with coefficients
of bounded variation. Arch. Rational Mech. Anal., 157, p. 75-90 (2001).



561

[13] BOUCHUT (F.), JAMES (F.). 2014 One dimensional transport equation with discon-
tinuous coefficients. Nonlinear Analysis, 32, p. 891-933 (1998).

[14] BOUCHUT (F.), JAMES (F.), MANCINI (S.). 2014 Uniqueness and weak stablity for
multi-dimensional transport equations with one-sided Lipschitz coefficients. Ann.
Scuola Normale Superiore di Pisa, Classe di Scienze, (5) 4, p. 1-25 (2005).

[15] BRESSAN (A.). 2014 An ill posed Cauchy problem for a hyperbolic system in two
space dimensions. Rend. Sem. Mat. Univ. Padova, 110, p. 103-117 (2003).

[16] CAPUZZO DOLCETTA (I.), PERTHAME (B.). - On some analogy between differ-
ent approaches to first order PDE’s with nonsmooth coefficients. Adv. Math. Sci
Appl., 6, p. 689-703 (1996).

[17] CHEN (G.-Q.), FRID (H.). 2014 Divergence-measure fields and conservation laws.
Arch. Rational Mech. Anal., 147, p. 89-118 (1999).

[18] CHEN (G.-Q.), FRID (H.).2014 Extended divergence-measure fields and the Euler
equation of gas dynamics. Comm. Math. Phys., 236, p. 251-280 (2003).

[19] COLOMBINI (F.), LERNER (N.). 2014 Uniqueness of continuous solutions for BV vec-
tor fields. Duke Math. J., 111, p. 357-384 (2002).

[20] COLOMBINI (F.), LERNER (N.). 2014 Uniqueness of L°° solutions for a class of conor-
mal BV vector fields. Geometric Analysis of PDE and Several Complex Variables,
Contemp. Math., 368, p. 133-156 (2005).

[21] DI PERNA (R.J.), LIONS (P.L.). 2014 Ordinary differential equations, transport the-
ory and Sobolev spaces. Invent. Math., 98, p. 511-547 (1989).

[22] EVANS (L.C.), GARIEPY (R.F.). 2014 Lecture notes on measure theory and fine prop-
erties of functions, CRC Press (1992).

[23] FEDERER (H.). 2014 Geometric measure theory, Springer (1969).
[24] KEYFITZ (B.L.), KRANZER (H.C.). 2014 A system of nonstrictly hyperbolic conser-

vation laws arising in elasticity theory. Arch. Rational Mech. Anal., 72, p. 219-241
(1980).

[25] LIONS (P.L.). - Sur les équations différentielles ordinaires et les équations de
transport. C. R. Acad. Sci. Paris Sér. I, 326, p. 833-838 (1998).

[26] PETROVA (G.), POPOV (B.). 2014 Linear transport equation with discontinuous co-
efficients. Comm. PDE, 24, p. 1849-1873 (1999).

[27] POPAUD (F.), RASCLE (M.). - Measure solutions to the liner multidimensional
transport equation with non-smooth coefficients. Comm. PDE, 22, p. 337-358

(1997).
[28] TEMAM (R.). 2014 Problèmes mathématiques en plasticité. Gauthier-Villars, Paris

(1983).
[29] VASSEUR (A.). 2014 Strong traces for solutions of multidimensional scalar conserva-

tion laws. Arch. Ration. Mech. Anal., 160, p. 181-193 (2001).


