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Summability of power series in several variables,
with applications to singular perturbation problems

and partial differential equations

WERNER BALSER(1)

ABSTRACT. 2014 We introduce and study a summability method of power
series in several variables, and investigate applications to formal solutions
of singular perturbation problems and partial differential equations. Doing
so, we extend results of Lutz, Miyake and Schäfke, resp. Balser, for the
complex heat equation to more general cases.

RÉSUMÉ. 2014 Nous introduisons et considérons une méthode de somma-
bilité de séries de puissances en plusieures variables et nous donnons des
applications aux solutions formelles de problèmes de perturbations sin-
gulières et aux équations aux dérivées partielles. Nous étendons ainsi des
résultats de Lutz, Miyake et Schaefke, resp. Balser, pour l’équation de la
chaleur variables complexes pour des cas plus généraux.

Annales de la Faculté des Sciences de Toulouse Vol. XIV, n° 4, 2005
pp. 593-608

0. Introduction

Recently, work has been done to generalize the results from the theory of
summability to power series in several variables: In papers by Lutz, Miyake
and Schâjke [8] and W. Balser [2], the unique formal solution of a Cauchy
problem for the complex heat equation has been shown to be k-summable
if, and only if, the initial data has corresponding properties. For analogous
results for a class of equations of parabolic type, see a manuscript of Ichi-
nobe and Miyake [10]. In another article by Balser and Miyake [4] it has
been clarified that such summability results are not so much due to an un-
derlying partial differential equation, but only depend upon the fact that
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the coefficients in the formal solution satisfy a differential recursion relation
of a certain (simple) form.

The results mentioned above, as well as corresponding ones in the theory
of singular perturbations, can be viewed in the setting of power series in
one variable with coefficients depending upon the remaining ones. As has
been shown in [3], the general theory of multisummability carries over to
this situation without difhculties. However, the following simple example
suggests that an even more general approach is appropriate: Consider a
series of the form

with sj  0. This series does not converge for any values Zj =1= 0, 1  j  m,
except when all sj vanish. If at least one of the sj is rational, one can show

that / satisfies a partial differential equation which we omit here. In view
of the integral representation of the Gamma function, it is quite natural to
define the function f, given by

as the sum of f : Expanding the integrand into a power series in zl , ... , zm
and integrating termwise, we obtain the series f . In addition, f satisfies
the same partial differential equation as f and is asymptotically equal to
f in some polysector. In fact, we shall show later that this asymptotic is
of a certain Gevrey type and determines f uniquely, due to the size of the
polysector. More general series can be summed in an analogous way, and
this is exactly what we shall investigate in this article: Consider any formal
power series f in finitely many variables zl , ... , zm. We then try to find
a sum f (zl , ... , zm) = Jooo ex g(xs1 zl , ... , x’- zm ) dx with g holomorphic
near the origin, chosen so that termwise integration of its power series gives
f . At first glance, this is a transformation affecting all variables at a time.
However, introducing suitable new variables depending upon s1, ..., sm,
we shall see that this corresponds to an application of Borel and Laplace
transform applied to a single variable, but this single variable well not be
one of the original variables Zk, except when all but one sj vanish.

1. Some basic notation

Throughout, let m be an arbitrarily fixed natural number. We shall
assume m  2, although most of what follows is correct, but well known, for
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m = 1 as well. Let S stand for the universal covering surface of C B {0}, or in
other words, for the Riemann surface of the logarithm. By z = (zl , ... , zm)
we denote an arbitrary point of SI, and by ~z~ we mean the Euklidean norm
of its projection into CI. Let B denote the set of z e SI with Ilzll = 1. The
set B can be regarded as a metric space, with the metric locally induced by
the Euklidean norm. However, note that we consider B as a subspace of SI,
so that it is not bounded with respect to this metric.

For r = (r1, ..., ru), with ri either positive real numbers or +~, we con-
sider the polydisc D(r) = D(r1) x... x D(rm) = {z: lzj | rj, 1  j  m}.
A polysector S = S(d, 03B1, r), with r as above, ce = (al’...’ 03B1m), aj &#x3E; 0,
and d = (d1,...,dm) E R’, will be the Cartesian product of sectors
Sj = S(dj,03B1j,rj) = {zj : 0  |zj|  ri, Idj - argzjl  03B1j/2}. If all

rj = +oo, we shall also write S(d,03B1) for the corresponding polysector of
infinite radius. Note that some or all of the numbers 03B1j may be larger than
27r; this is why we always consider polysectors in SI. However, we shall not
always distinguish between a polydisc in CI resp. SI.

By s we will always denote a vector (S1, ..., Sm) with sj  0, and we let
1 si = si +... + sm. In some cases, but not always, we shall restrict s further
and require that sj &#x3E; 0 for every j - 1, ... , m, and we shall express this
by writing s &#x3E; 0, compared to s  0 when some or even all si may vanish.
Given s &#x3E; 0, set t = (z1 ’... ’ zm)1/|s| and uj = t-sJ zj, 1  j  m. Observe
that in Sm the mapping z - t is single-valued and holomorphic, and so are
the mappings z H uj. Moreover, note that U1 ..... um = 1, so that the
(n + 1 )-dimensional vector (t, u) - (t, ul , ... , um) contains m independent
entries. The mapping

is holomorphic and, due to the one relation eliminating one variable uj ,
say: the last one, may be regarded as mapping S’ bijectively onto itself.
So in what follows we shall freely go back and forth between the variables
zl, ... , zm and (t, u) to describe subsets of Sm. In particular, we shall write
f (z) = f(z1, ..., Zm) resp. f (t, u) = f(t, u1, ... , Um) to denote one and the
same function f, defined on some subset G C S’, either as depending on
the variables zi , ... , zm or on t, ul, ... , Um, always keeping in mind that the
product of the uj equals 1.

Given s &#x3E; 0, a region G shall be called an s-region, provided that it is
an open and simply connected subset of a polysector in Sm satisfying the
following condition:

e For every z = (zi, ... , zm) E G and every real x with 0  x  1, all
points of the form ( (x, z) = (XS1Z1,... xsm zm) belong to G.
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Note that every polysector is an s-region, for whatever vector s, but the
converse does not hold. Suppose that, instead of the above condition, we
have the following more restrictive one:

2022 For every z = (zl, ... , zm) e G and every real x with 0  x  +oo,
all points of the form ( (x, z) = (XS1 Zl, ... , xs- zm) belong to G.

In this case, we shall call G an s-region of infinite radius. The above
regions are easier to visualize using the variables (t, u) : Replacing z by
03B6(x,z) replaces t by xt, while the Uk stay fixed. Therefore, an s-region
G is characterized by the property that for fixed ul, ..., un the projection of
G onto the variable t is a sectorial region in the sense of [1, 3]. In case of
G having in, finite radius, this projection is a sector of infinite radius. The
relevance of these regions will become clear in the following section.

For any point z in an s-region G, there is a unique x &#x3E; 0 so that the

point «x, z) has Euklidean norm 1. The set of all such points is a bounded,
openi and simply connected subset of B, denoted by O(G) and named the
opening of the s-region G. Given any bounded, open and simply connected
O C B, there is a unique s-region G of infinite radius with O(G) = O. Thus
every such 0 will be called an opening.

Given an s-region G, we write G for its set-theoretic closure in sm. Note
that in S’ this closure does not contain points having one or several van-
ishing coordinates. For a polysector S, observe that S may be unbounded,
hence is not the analogue of a closed sector in the sense of [1, 3]. An s-region
G1 with G1 C G will be called a proper subregion of G, and we then write
G1 C G.Observe that then O(G1)  O(G), and conversely for any opening
0 C-- O(G) there exist G1 C G with O( G1) = O. If G is of infinite radius, we
define 1t(s) (G) to be the set of all f which are holomorphic in G and have
the following property: For every opening O  O(G) there exist constants
c, K &#x3E; 0 such that

By C [[z]] we shall mean the differential algebra of formal power series
in m variables f(z) = E" fn zn, with arbitrarily given complex coefficients
fn = fn1,...,nm. We say that such a formal series converges, if we can find
some radius r as above such that we have convergence in the polydisc D(r).
Note that then convergence is absolute, and uniform on every polydisc of

(1) Open in the subspace topology on B. Also note that B is a subset of Sm, hence
boundedness is a non-trivial condition.
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smaller radius, and the sum of f(z) is a holomorphic function in m variables,
which we shall always denote by f(z). It is easy to see that convergence of
f(z) is equivalent to an estimate for the coefficients of the form |fn| 
C K|n|, with suitably large constants C, K, independent of n, and |n| -
ni + ... + nm. The set of all convergent power series shall be denoted by
C Izl. If the coefficients fn satisfy

with C, K as above and s = (Si sn)  0, then we say that f(z) is of
Gevrey order s, and write E C [[zll,. Every series f E C [[z]]s converges
with respect to those zj with si = 0, in case there are any, in the following
sense: Suppose for simplicity that sj = 0 for li + 1  j  m, and let
V = (z1, ... , z03BC), w = (z03BC+1,..., zm), p = (nl, ... , n03BC),q = (n03BC+1, ... , nm), 
hence n = (p, q). Then f(z)= 03A3p fp(w) vP, with fp(w)= Eq f(p,q) wq, and
all these series converge for w in a polydisc which is independent of p. For
this reason, it is without loss of generality when we shall study summability
of power series f E C [[z]]s only for cases where all si are positive.

2. Integral operators of Laplace type

Let s &#x3E; 0 be given, and let G be an s-region of infinite radius. For
f(z) e H(s)(G) we define a function g = C’f by the integral

Consider an opening O  O(G). With K as in (1.1) and w e 0, let

z = 03B6(y, w) with 0  y  yo = K-1. These z obviously are an s-region which
we denote by G(O, K). Since 03B6(x, z ) = 03B6(x y, w), we conclude from (1.1) that
the integral (2.1) converges absolutely and locally uniformly in G(O, K).
Making yo even smaller, we may turn the path of integration in (2.1) to
become a ray arg x = T with 17-1  03C0/2, and at the same time make the vari-
ables Zj move in the opposite direction. The integral (2.1) then converges in
a region Gr(yo), whose opening Or is the preimage of O under the mapping
z H 03B6(eiT,z). In this fashion we can see that .Cs f becomes a holomorphic
function in an s-region G, linked to G by the following condition:

2022 The opening O( G) is the union of all Or defined above, with arbitrary
O  O(G) and |03C4|  7r/2.

In the variables (t, u) the above description of G says that for every fixed
u the projection of G onto the variable t is a sectorial region of opening more
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than 7r.Ifm=l,a change of variable in (2.1) shows that £’f coincides with
Laplace transform of order 03BA = 1/sj in the sense of [1, 3]. In general, we can
rewrite (2.1) as saying that g(t, u) = f °° e-x f(xt, u) dx. This shows that g
equals the Laplace transform of order 1 of f with respect to the variable t.
Using the inversion formula and substituting accordingly to return to the
original variables, we find

with q as follows: From infinity along a ray arg x = -(03C0- c)/2 to a cir-
cle of radius r &#x3E; 0 about the origin, along the circle to the ray arg x =
(7r + c)/2, and along that ray back to infinity. Observe that for z E G one
can find a small c &#x3E; 0 and large r, so that the values 03B6(x-1, z) are in G
for every x on this path. Thus we may think of (2.1) to be a generalization
of Laplace transform to functions of several variables, and (2.2) gives the
inverse operator Bs.

If we apply the operator .cs formally, i.e., termwise, to some formal power
series f(z)= En fn zn, we obtain the formal series i(z) = En fn 0393(1+sn) zn
which we regard as formal Laplace transform of f(z), writing 9 == £s Î.
Analogously, the formal operator BS can be defined, being inverse to £s.
All the operators introduced give good sense even for s = 0, coinciding with
identity operators.

3. Asymptotic expansions in several variables

In what follows, let s &#x3E; 0 be fixed, and let G be an s-region. Given
a function f, holomorphic in G, and a complex number f (0), we write
f(z) ~ f(0) as z ~ 0 in G provided that for every proper subregion G 1 C G
and every c &#x3E; 0 there exists 6 &#x3E; 0 so that f (z) - f(O)1  E whenever
z e G1 with 11 z 11  6. We say that f(z) is asymptotic to a f ormal power
series f(z)= En fn zn, if for every multi-index n we have

with n! = n1!...nm! and Dn = ~n1z1···~nmzm· Given s  0, we say that
this asymptotic is of Gevrey order S, if for every bounded proper subregion
G1  G there exist positive constants C, K so that

with 1 n - ni ... n. This is a natural generalization of the corresponding
notions for one variable to the several variable case and has been cosidered,
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e.g., by J.-C. Tougeron [13]. It is, however, different from the notion used
by H. Majima in [9], resp. by J. Mozo in [12, 11]. Note that this estimate in
particular implies f e C [[z]]s. We shall write f (z) ~s f(z) in G to indicate
that f (z) has f(z) as its Gevrey asymptotic of order s in G. By As (G)
we denote the set of all holomorphic functions f which have some Gevrey
asymptotic of order 9 in G, and J f shall stand for the unique formal power
series f which is the asymptotic expansion of f. Observe that the above
statements all make good sense even for s = 0, in which case f(z) ~0 f(z)
in G implies holomorphy of f at the origin, and f then converges to f for
sufnciently small values of z E G - to see this, let zo vary within a proper
subregion G1 C G and observe that the m-dimensional Taylor series of f (z)
about zo then converges in a polydisc which is independent of zo, so that
we may let zo tend to the origin.

While in (3.2) we required an estimate on bounded proper subregions
of G, it is necessary for investigating the asymptotic behavior of es f to
assume an analogous estimate on proper subregions of infinite radius: Let
Ass(G) stand for the set of functions which are holomorphic in G having
the following property: For every opening O C O(G) there exist constants
c, K &#x3E; 0 such that

In the one-variable situation, Cauchy’s integral formula can be used to show
that estimates (1.1) and (3.2) together imply (3.3); for m  2, however,
this is not necessarily so, as we learn from the following simple example:
Let f(z1,z2) = (1 - Zl z2)-1, which is holomorphic in G = S x S, with
,S’ = f z 0  arg z  03C0}. This G is polysector, hence an s-region for
whatever s &#x3E; 0. Clearly, f is holomorphic at the origin, hence satisfies
(3.2) for s = 0. For n = (0, v) we have f(n)(z1, z2) = v! zi Zl Z2) v
For E &#x3E; 0 (small), the region G1 = Si x S1, with S1 = {z : 03B5  arg z 

03C0-03B5}, is a proper subregion of G. Its opening contains vectors with abitrary
small second component, so that |f(n)(03B6(x,z))/n!| can be arbitrarily close
to xs103BDz03BD1. This term, however, cannot be estimated as in (3.3) with s = 0.
On the other hand, if G is an s-region with an opening O(G) for which
z = (zl, z2) E O(G) implies |zj| &#x3E; E, with some fixed E &#x3E; 0, then one can
see that (3.3) indeed holds.

Assuming (3.3), we can now show that Laplace transform preserves
Gevrey asymptotics but alters orders in a natural way:

THEOREM 3.1. - Given two vectors s &#x3E; 0 and s  0, define s = s + s.
Then for any s-region G of infinite radius and f E Ass, we have .cs f E
As(G), for an s-region G as described above. Moreover, J oC’ f = C’ 0 J f
for every such f.
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Proof. - Consider any proper subregion G1  G. Applying a compactness
argument to the closure of its opening O(G1), one can show that G1 may
be covered by finitely many s-regions GTk on which we may represent g =
£’f by (2.1), integrating along some ray arg x = T03BA. For any multi-index
n we then may calculate Dng by differentiation below the integral sign.
Estimating the resulting integral on proper subregions Gk C G03C4k, we obtain
existence of C, K with

Using the Beta integral, one sees 0393(1 + sn)0393(1 + sn)  0393(1 + sn) , and this
can be used to complete the proof. D

An analogous result holds for the Borel operator 35 : Let us say that an
s-region G is large whenever some other s-region G of infinite radius exists,
so that for z E G we can find E and r for which the path of intégration 7
used in (2.2) fits into G. Moreover, for s  0 define (s - s)+ to be the vector
whose coordinates are the maximum of sj-sj and 0.

THEOREM 3.2. - Given two vectors s &#x3E; 0 and s  0, define s =
(s - s)+. Then for any large s-region G and f E As(G), we have Bs f E
As(G), for an s-region G of infinie radius. Moreover, JoBs f = BS 0 J f
for every such f.

The proof of this theorem is very much analogous to that of the previous
one, resp. the corresponding result for m = 1, and is omitted here. As a con-
sequence we mention that for s = s we have BS o J f e C 1 z 1 . This, together
with the injectivity of .cs and Bs, implies that for large s-regions G the
mapping J : As(G) ~ C[[z]] is injective. In other words:

e A function f E 4, (G) is uniquely determined by its asymptotic when-
ever G is large in the above sense.

4. Partial asymptotics

In the previous section we have introduced asymptotic expansions in
which all variables zi approached the origin at a time. Sometimes it may be
more natural to have only some variables do so while the others are fixed.
However, for general regions, even for s-regions G, it may not be possible to
do this without leaving G. For example, let uj be restricted by lUI -11  1/2,
ul u2 - 1, and set zi = t uj, for t in some sector S. This describes an s-
region for s = (1,1) in which we cannot send Zl or Z2 to 0 for any fixed
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value of the other variable. On the other hand, if G is a polysector, we can
always do this. Therefore, we introduce the following terminology:

Let w be a non-trivial subset of {1, ... , nl, and let ç denote its comple-
ment. For any point z = (zl , ... , zm) ~ S’, let v be the vector of coordinates
zj for j e w (in their natural order), and let w be defined analogously, but
with ç instead of zu. We then can identify z with the pair (v, w) . Using this
notation, a region G will be named w-suitable if two non-empty regions G,
and Gç of vectors v resp. w exist for which Gw x Gç c G, and if in addition
G has 0 as a boundary point. Given a multi-index n, we also can form two
multi-indices p and q associated with the sets of indices w and ç and iden-
tify n with (p, q). Let f03C9(z) = Ep f p (w) vp be a formal power series in the
variable v, with coefficients depending upon w. For a w-suitable region G
and a function f, holomorphic in G, we then say that f is w-asynoeptotic to
f03C9 as v ~ 0 in G provided that for every p as above DP f (v, w) ~ fp (w) p!
as v - 0 in G03C9 with convergence being locally uniform for w in Gç. We
shall also refer to 03C9 as the type of asymptotic. If f has such an asymp-
totic, then for every q we conclude DqwDpvf(v,w) ~ Dq fp(w), and DqwDpv
can be identified with Dn, for n = (p, q). Thus it makes sense to say that
such an asymptotic expansion is of Gevery order s  0 if (3.2) holds. It is
not difficult to see that the above two theorems also hold for this partial
asymptotic expansion of type w, and we omit the proof here. Also observe
that it is natural to consider 03C9 = {1, ..., n} as the type of the complete
asymptotic expansions studied in the previous section. As a trivial but none
the less important example, we mention the following: If G is a polydisc and
f is holomorphic in G, then f admits partial asymptotic expansions of all
possible types.

5. Summability in several variables

Given s &#x3E; 0 and an opening 0, we set 03BA = (1/s1, ..., ,1/sm ) and let
G denote the unique s-region of infinite radius with opening O. Then we
say that f(z) = 03A3 fn zn is 03BA-summable in direction (9. if the following two
conditions hold:

1. The series f(z) belongs to C [[z]]s, so that g(z)=03A3fn zn/0393(1 + sn)
converges (in some polydisc about the origin of C2).

2. The function g(z) can be continued into the region G, and its contin-
uation is in H(s) (G), so that .cs can be applied to obtain a function
f(z), which will be regarded as the k-sum of f(z) in direction O,
denoted as f = Sk,, f . The set of all formal power series which are
thus summable is denoted by C{z}k,o.
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This definition of k-summability shares many of the properties of the
single-variable case, as we shall show now:

THEOREM 5.1. - For arbitrary s and O as above, the set C {z}k,o is
an algebra over C, and the operator Sk,o is a homomorphism. Moreover,
C{z} C C{z}k,o.

Proof. - Vector space property of C{z}k,o and linearity of Sk,o follow

directly from the definition. To deal with the product, let Îj ~C{z}k,o be
given, for 1  j  2, and define gj(z) correspondingly. Setting

we find that h is holomorphic in G and has a convergent power series repre-
sentation at the origin which can be obtained by termwise integration of the
power series of gj. A straight-forward estimate, using gj e H(s)(G), then
implies h e 1t(s)(G). The function g - Ès (fi f2) is holomorphic near the
origin and related to h by

This shows that g is holomorphic in G, and estimating the integral we find
9 E 1t(s)(G).

For convergent f , hence |fn|  C Kin 1, the corresponding g is entire,
and termwise integration of its power series expansion is justified, hence we
have f~C{z}k,o. D

In what follows we consider the partial operators di - zj (djdzj) and
show that k-summability and application of Ój go together well:

THEOREM 5.2. - For arbitrary s and O as above and every j = 1, ... , m,
the operators Ój map C {z}k,o into itself, and

Proof. - Given f , let g be as in the definition of k-summability. Then the
function ôj g is the one corresponding to ôj f , and using Cauchy’s Formula
one can show ôj g e H(s) (G). r-1
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For s &#x3E; 0 and an opening O, we shall say that a series , f(z) E C{z}k,o
is strongly 03BA-summable in direction 0, provided that for every 01 c- O we
can find constants c, K such that

As we have shown by an example in Section 3, this is a non-trivial condition.
Using this terminology, the previous theorem has the following consequence:

THEOREM 5.3. - In addition to the assumptions in the previous theo-
rem, assume that f is strongly 03BA-summable in direction 0. If the unique
s-region G of opening O and infinite radius is of type w, then Sk,o j has
the partial asymptotic

Proof. - Observing that holomorphic functions have asymptotic expan-
sions of arbitrary types, the proof follows from the analogue to Theorem 3.1
for asymptotics of type w. 0

As for the one-variable case, one can also define multisummability of
power series in several variables, but we shall not consider this here.

6. Some applications

The following initial value problem for the complex heat equation has
been investigated in [8, 2, 4] :

with a power series f having positive radius of convergence. This problem
is formally well posed in the sense that there is a unique formal power series
in the two variable t and z, namely

This power series solution also makes sense for divergent f , hence it is

natural to investigate its summability properties, assuming corresponding
summability of f . Some first, but not very satisfactory, result in this direc-
tion was obtained in [2, Section 2].

Before dealing with the above problem, we consider a related but slightly
simpler situation arising for the following singular perturbation problem
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which was originally discussed by J. Ecalle [5, 6, 7]: The equation 03B5 x’ =
x - f(z) has the formal solution

for arbitrary f(z). The situation of convergent / leads to summability of
X, regarded as a power series in 03B5 with holomorphic functions in z as co-
eincients; for a brief description of such results, see [3]. Here we study the
following case:

e For some 0  03BA  1, assume that
03BA-summable in some direction d E R.

Setting u = 1/03BA - 1, it follows from results in [3] that this assumption
is equivalent to saying that

converges and the function so defined is holomorphic and of exponential
growth at most r, in a sector S = S(d, a) of infinite radius, for some cx &#x3E; 0,
and the same then holds for the derivative g’. It will be convenient for

estimates to follow to state the growth assumption as saying that for every
0  (3  cx there exist C, c so that for z E S(03B2, d)

to see that this indeed is equivalent to g and g’ being of exponential growth
at most 03BA, observe that the series

and

both define entire functions that are of exponential order r, and finite non-
zero type, and hence can be estimated from above and below by c exp [K] |z|03BA],
for suitable constants c and K.

Under the above assumption, x is of Gevrey order s = (03C3,03C3 + 1). There-
fore, we introduce the function
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This series converges, and the corresponding function has the following in-
tegral representation which may be found by termwise integration of the
power series expansion of the integrand:

with g(z) as in (6.3). For z and E in S and 0  t  1, we have t03C3[z + E (1 -
t)] E S, hence we conclude holomorphy of y(z, E) in the multisector ,S’ x S.

Using (6.4), one obtains for z, E e S(d, 0) x S(d, 0)

This implies the estimate we need to show for k = (03C3-1,(1+03C3)-1) and
O being the opening of the multisector S x S that x(z, E) is 03BA-summable in

directzon O. Since h(03B5) = x(0, 03B5), we also find that h(03B5), formally regarded as
a power series in two variables, is k-summable in direction O. This, however,
can be seen in this case to be equivalent to 03BA-summability in direction
d (when regarding h as power series in one variable). Thus we have that
the above assumption is both necessary and sufficient for 03BA-summability of
(z, E).

The treatment of the formal solution û (t, z) of the heat equation es-
sentially follows the same lines, but is more involved. Here, we assume the
following:

a For some 0  K  1/2, let h(z) - Eo 0393(1+n/2) fn zn be n-summable
in directions d and d + 1r.

With 03C3=1/03BA-1/2, general results in [3] imply that this holds if, and only
if, the series

converges and the function so defined is holomorphic and of exponential
growth at most K in the sectors S+ = S(d, 03B1) and S- - S(d + 7r, 03B1), for
some small positive a. In particular, this assumption implies that / is at
most of Gevrey order &#x3E; 0. Hence, the series û(t, z) is of Gevrey order
s = (203C3 + 1, 03C3), so we here consider the function
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To discuss holomorphic continuation of v(t, z), we assume that z e S+ and
t~S = S(2d,203B1), interpreting Vi as being in S+. With g as in (6.6), one
checks by termwise integration (for sufficiently small values of |z|, |Itl) that
2 03C0 v(t, z) = v+(t, z) + v - (t, z), where

v± (t, z) = g(u03C3[z±2(1-u)t]) du. (6.7)03BD±(t,z) = 11 g(u03C3[z±(1-u)t]) u(1-u) du. (6.7)

The points u’ (z + 2(1- u)t) always are in S+, so holomorphy of v+ (t, z)
in S x S+ follows from the integral representation. For v_(t, z) the same
will, in general, be true only in a much smaller s-region G- C S x S+ of
infinite radius and an opening O_ which we now will construct: Recall that
by assumption g is holomorphic in the union of the sectors SI and a disc
about the origin of generally small radius; this union will be denoted by
G from here on. Fixing a value z e S+, we shall show existence of 6 &#x3E; 0

such that for all t ~ S with |z|2 + |t|2 = 1 and 12argz-argtl  b, the
function v- (x 2o,+lt, XCT z) can be continued with respect to x all along the
positive real axis. To do so, first observe that (6.7) implies for sufficiently
small x &#x3E; 0 

v_(x203C3+1t,x03C3z)= ~x0 g(hx(u)) u(x-u) du, hx(u)=u03C3(z-2(x-u)t).

We would like best to use the same integral representation for arbitrary x,
but for large x &#x3E; 0 the points hx(u) = u03C3z (1-wx-u), with w = 2t/z,
in general are outside of the region G of holomorphy of g when integrating
along the real axis . This problem does not arise for arg t = 2 arg z, because
then hx(u) stays on the straight line through é and z. Since the region G
is open and hx (u) depends continuously upon t, we see that for arbitrarily
fixed xo &#x3E; 0 there exists a 6.,o &#x3E; 0 such that for arg t - 2 arg z|  6xo
the curve parametrized by hx(u), 0  u  x, still is in G, meaning that we
can use the integral representation to continue v- (x203C3+1t, XCT z) with respect
to x to the interval 0  x  xo. For x0 ~ oo, however, the value of bxo
may tend to zero. To avoid this, we shall for x  xo := 4|w|-2 integrate
along a curve in the u-plane from 0 to x that consists of two straight line
segments, parametrized as ul(T) = T (x-w-2), resp. u2 (03C4) = x-(1-03C4) w-2,
both for 0  T  1. For the moment, let ô = 6xo, and let t be such that
|2 arg z - argt) = |arg w|  b. Given E &#x3E; 0 (small), we see that we can
make ô smaller so that |arg uj(03C4)|  03B5 provided that |arg w|  6, and

1 arg (w x-u1(03C4) - 1)|  E, while 1 - w x - u2 (T) remains real, due
to the choice of the path. For sufficiently small E, this implies hx(u) E G
for every on the path. Hence for the corresponding pair (t, z) we may
represent v- (x2CT+1t, XCT z) by the above integral, for whatever value of x &#x3E; 0.
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Altogether, this shows existence of an opening O which contains arbitrary
points (t, z) E B with d - arg zl  03B1/2 and 1 arg t - 2 arg z|  6, with

sufficiently srrtall 6 &#x3E; 0, depending upon z, so that v- (t, z) is holomorphic
in the corresponding s-region G_ of infinie radius. In this region we can
obviously let either one of the variables tend to 0 while keeping the other
,fixed, hence G_ is a region of all possible types w.

To show k-summability of û(t,z) for k= ((2a + 1)-1, 03C3-1), we have
to estimate v± (t, z). To do so, let G-,1  G- be a proper subregion and
use the integral representation (6.7) for v- (t, z), integrating along a path
described above. Here, it is more natural to choose a parametrization u(T)
of the path with 0  03C4  1, and doing so we observe that |u(03C4)|  aT,

11 - u(03C4)|  a(1- 03C4), |u’(03C4)|  a for some a  1 and all T where u’(-T)
exists. For v+(t, z) we may then use the same notation by setting u(T) = T.
We then observe that all points u(03C4)03C3(z ± 2 (1 - û(7-»t remain within a
proper subregion G1  G, and there we have by assumption that g(z) is of
exponential growth not more than 03BA. This fact can be expressed as saying

with suitably large C, c. Estimating the integral accordingly, termwise in-
tegration leads to an estimate of the form

which implies a similar estimate for v(t,z). Estimating |t|1/2 by 1 resp. |t|,
for |t|  1 resp. |t| &#x3E; 1 and using Stirling’s formula, one then can show

with different constants C, cj. This estimate is sufficient to show summa-
bility of û(t, z) as stated above. As for the first example, one can again
show that the above assumption on f is also necessary for k-summability
of û(t, z). Also observe that the proof for o- = 0 may be simplified, and the
result obtained coincides with the one proved in [8].
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