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Higher order Poincaré-Pontryagin functions
and iterated path integrals®™)

LuBOMIR GAVRILOV (1)

ABSTRACT. — We prove that the Higher order Pointcaré-Pontryagin
functions associated to the perturbed polynomial foliation

df —e(Pdz+Qdy)=0
satisfy a differential eqation of Fuchs type.
RESUME. — Nous montrons que toute fonction de Poincaré-Pontryagin
d’ordre supérieur, associée au feuilletage polynomial perturbé défini par
df — e (Pdz+Qdy) = 0,

vérifie une équation fuchsienne.

1. Statement of the result

Let f,P,Q € R|z,y|] be real polynomials in two variables. How many
limit cycles the perturbed foliation

df —e(Pdzx + Qdy) =0 (1.1)

can have ? This problem is usually referred to as the weakened 16th Hilbert
problem (see Hilbert [15], Arnold [1, p.313]).

Suppose that the foliation defined on the real plane by {df = 0} possesses
a family of periodic orbits y(t) C f~!(t), continuously depending on a
parameter t € (a,b) C R. Take a segment o, transversal to each orbit
~(t) and suppose that it can be parameterized by ¢ = f|, (this identifies
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o to (a,b)). The first return map P(¢,€) associated to the period annulus
A = Ue,7(t) and to (1.1) is analytic in ¢, and can be expressed as

P(tye) =t + e Mp(t) + ¥ M1 (t) + - (1.2)

where My (t) # 0 is the kth order Poincaré-Pontryagin function. The maxi-
mal number of the zeros of My, on o provides an upper bound for the number
of the limit cycles bifurcating from the annulus A. For this reason My (t) was
called in [11] generating function of limit cycles. The above construction can
be carried out in the complex domain. In this case the polynomials f, P,Q
are complex and «(t) is a continuous family of closed loops contained in the
fibers f~!(t), parameterized by a transversal open disc ¢C. The maximal
number of the complex zeros of the generating function M, on o€ provides
an upper bound for the complex limit cycles bifurcating from the family

{7(t)}+, see [16].

The main result of the paper is the following

THEOREM 1.1. — The generating function of limit cycles My, satisfies a
linear differential equation of Fuchs type.

We show also that the monodromy group of My, is contained in SL(n, Z)
where n is the order of the equation. In this sense the differential equation
satisfled by M} is of “Picard-Fuchs” type too. As a by-product we prove
that n < r* where r = dim H;(f~(to),Z) and t; is a typical value of f.
It is not clear, however, whether there exists an uniform bound in & for the
order n. In the explicit examples known to the author n < r.

In the case k& = 1 the generating function M} is an Abelian integral
depending on a parameter

M () = /(t) Pdz + Qdy (1.3)
v

and hence it satisfies a Fuchs equation of order at most r (this bound is
exact). The identity (1.3) goes back at least to Pontryagin [21] and has
been probably known to Poincaré. In the case k > 1 the (higher order)
Poincaré-Pontryagin function My, is not necessarily of the form (1.3) with
P, @ rational functions. This fact is discussed in Appendix B. We show in
section 2 that Mg(t) is a linear combination of iterated path integrals of
length k along ~(t) whose entries are essentially rational one-forms. This
observation is crucial for the proof of Theorem 1.1. It implies that the mon-
odromy representation of M} is finite-dimensional, as well that My is a
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function of moderate growth. The universal monodromy representation of
all generating functions M}, was recently described in [11]. It is not known,
however, whether this representation is finite-dimensional.

We note that iterated path integrals appeared recently in a similar con-
text in the study of the polynomial Abel equation [3, 4, 8]. Some of their
basic properties used in the paper are summarized in the Appendix.

The author acknowledges the stimulating discussions and comments of
LD. Iliev, Yu. S. Ilyashenko, S. Yakovenko, and Y. Yomdin.

2. The integral representation of M(t)

From now on we consider (1.1) as a perturbed complex foliation in C2.
Let I(t) € f~1(t) C C? be a continuous family of closed loops, defined for all
t which belong to some complex neighborhood of the typical value ¢y of f.
There exists a constant ¢ > 0 such that the holonomy (or monodromy) map
P(t,e) of the foliation ((1.1) associated to the family I(¢) is well defined
and analytic in {(¢,€) : |t — o] < ¢,|e] < ¢}. Therefore it has there the
representation (1.2). Of course the continuous deformation of a given closed
loop I(tg) C f~1(to) is not unique. The free homotopy class of the loop is
however unique and the first non-zero Poincaré-Pontryagin function My(t),
defined by (1.2) depends only on the free homotopy class v(¢) of I(t) [11].
The main result of this section is the following

THEOREM 2.1. — Let 4(t) : [0,1] — f~1(¢) be a continuous family of
closed loops. For every reqular value ty of f there exists a neighborhood Uy
of to in which the first non-vanishing Poincaré-Pontryagin function My(t),
associated to y(t) and (1.1) is a finite linear combination of iterated integrals
of length at most k, whose entries are differential one-forms analytic in

f71(Uo).
The function M(t) is computed according to the Frangoise’s recursion

formula [7]
Mi(t) = / Q%
(8

where
Oy = Pdz + Qdy, O = i1 (Pdz + Qdy),2 < m < k (2.1)

and the functions r; are determined successively from the (non-unique) rep-
resentation Q; = dR; +r;df. We intend to derive explicit expressions for the
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functions r;. For this purpose consider a trivial smooth fibration
fVW—oUs={teC:|t—t) <c}

where Vj is a connected analytic two-dimensional manifold, and f is an
analytic surjection. The fibers f~1(¢) are mutually diffeomorphic Riemann
surfaces. Suppose that there exists an analytic curve

Tt — Py(t) € f7Ht) C Vo,t € Uy (2.2)
transversal to the fibers f~1(¢). For an analytic one-form in V; define the
function

P
F(P)= / w
Po(t)

where ¢t = f(P) and the integration is along some path contained in f~1(¢t)
and connecting the points Py(t), P € f~!(t). Finally we shall suppose that
when varying P € f~1(Uy) the path connecting Py(t) and P varies con-
tinuously in P. The function F(P) is multivalued but locally analytic in

Vo = f~H(Uy).

LEMMA 2.2. — Under the above conditions the following identity holds

P P g
d/ w= / — |ldftw— (10 f)w (2.3)
P()(t) Po(t) df
where % is the Gelfand-Lerray form of dw and (o f)*w is the pull back of

df
w under the map

rof Vol Uy SV,

Remark. — If 7 : t — Py(t) € f~'(¢) is another transversal curve (as in
(2.2)) then (2.3) implies

IBO(t) Po(t) dw ) . .
d/Po(t) v (/Po(t) W) df + (Fo f)*'w — (1o f)*w.

If, in particular P = Py(t) (so the path of integration 7 is closed) we get
the well known identity [2]

d / w= / .
(%) i
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Proof of Lemma 2.2. — Suppose that when ¢ is sufficiently close to tg
the path of integration connecting Py(t) to P is contained in some open poly-
disc D, C Vj, in which we may choose local coordinates z, y. We claim that
for such a family of paths and for ¢ sufficiently close to ¢y the identity (2.3)
holds true. As (2.3) is linear in w we may suppose without loss of generality
that w|p, = Q(z,y)dz where @ is analytic in D,. Suppose further that the
path of integration from Py(t) = (xo(t), yo(t)) to P = (z,y) is projected
under the map (r,y) — x into an analytic path, avoiding the ramification
points of this projection, and connecting xy(t) and z in the complex z-plane.
Along such a path we may express y = y(z,t) from the identity f(z,y) =t
and hence

P x
d / w d Qdz

Po(t) zo(t)

x

Qdz — Qa(t)df + < Qy%dw> df

zo(t)

Qdz — Qi (t)df + (/I(t) —%dcs) df
To Yy

P
w— (1o fY'w+ (/P © dg?) df.

Therefore (2.3) holds true in a neighborhood of Py(to). By analytic continu-
ation it holds true for arbitrary P and arbitrary continuous family of paths
connecting Py(t) to P. The Lemma is proved. |

Let f € Clz,y], v(t) C f~1(t) be a continuous family of closed loops
such that fw(t)w = 0. If y(t) generates the fundamental group of f~!(#)
then (2.3) implies that w = dA + Bdf where A, B are analytic functions in
f~1(Up). In the case when the fundamental group of f~1(¢) is not infinite
cyclic we consider a covering

Vo2V (2.4)

such that the fundamental group of Vj is infinite cyclic with a generator
represented by a closed loop %(g) projected to v(to) under p. Such a covering
exists and is unique up to an isomorphism [9]. Moreover Vp has a canonical
structure of analytic two-manifold induced by p. If we define f = fop, then
the fibration o

f : VO - U() (25)

is locally trivial and the fibers are homotopy equivalent to circles. An an-

alytic function (or differential form) on Vj is a locally analytic function
(differential form) on Vy = f~1(Up) such that
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(i) it has an analytic continuation along any arc in f~1(Up)

(i)  its determination does not change as (z,y) varies along any closed
loop homotopic to ¥(¢p).

We shall denote the space of such functions (differential forms) by
O(f~Y(Uy)) (Q*(f~1(Uy))). Lemma 2.2 implies the following

COROLLARY 2.3. — If & € QY(f~Y(Uy)) is such that Sy @ =0, then
@ =dA + Bdf

where A, B € O(f~1(Uy)),

P P -~
. do
A= [ aB—- [ 4RO
Po(t) oty Af

and R(.) is analytic in Uy.

o

In the proof of Theorem 2.1 we shall use the following well known

ProPOSITION 2.4. — Let f € Clz,y] be a non-constant polynomial.
Then there exists a polynomial m € C[f] such that
1. m(f) belongs to the gradient ideal of f

2. m(c) =0 if and only if ¢ is a critical value of f.

The identity
(afy + Bfy)dz A dy = df A (ady — Bdx) (2.6)
combined with Proposition 2.4 shows that when w is a polynomial (analytic)
one-form, then the Gelfand-Leray form

d
m(f)d—;}

can be chosen polynomial (analytic).

Proof of Proposition 2.4.— Consider the reduced gradient ideal
Jrea C Clz,y] generated by f,/D, fy/D where D is the greatest common
divisor of fy, f,. The variety V(Jreq) = {ci}; is a finite union of points
which may be supposed non-empty. Therefore C[z, y]/Jyeq is a vector space
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of finite dimension[9] and the multiplication by f defines an endomorphism.
Therefore m(f) € Jreq where m(.) is the minimal polynomial of the endo-
morphism defined by f. We note that m(c) = 0 if and only if ¢ = ¢; for some
i. Taking into consideration that [[,(f —¢;)/D is a polynomial we conclude
that [[.(f — c;)m(f) belongs to the gradient ideal of f.

Proof of Theorem 2.1.— Suppose that M; = -+ = Myr_, = 0 but
My, # 0, k > 3. The recursion formula (2.1) implies that M;(t) = fw(t) i,

where @; € Q'(f(Up)), ¢ < k. Indeed, @ = w € QY (f~1(Vp)) and if
@; € QY(f~Y(Uy)), then by Corollary 2.3

i " /” da;
Wiyl = — .
* Pty af

The Gelfand-Leray form % df may be supposed analytic (according to Propo-
sition 2.4 and (2.6)). M/ (t) = fy(t) = 0 implies that fP (t) 4oy ¢ O(f~1(Uy))
and hence ;41 € Q(f~1(Up)). We obtam in particular that

/v(t) Po(t) df

where

Mk_l(t)=/ D=0
7(t)

We shall prove the Theorem by induction on k. Suppose that that My_q(t),
is a finite linear combination of iterated integrals of length at most k — 1,
whose entries are differential one-forms analytic in f~1(Up). We need to
show that the same holds true for

P .
@. (2.7)

P()(t) df
Let wy,ws,...,wk—1 be analytic one-forms in f~!(Up). Lemma 2.2 implies

d /P / /Pk—l " dw1 Py /Pk—l "
- w1 w2 . k-1 | = —7 wa... k—1
df Polt (t) Po(t) df Jpy) Po(t)

) Py dws Py, Py Py_1 dwi—_1
+w1 E— Wkg—1+ - t+w w2 ... T
Pty & Po(t) Po(t) Pty

w1 A ws Py P
- w3 ... We—-1

af  Jpy Po(t)
~ 669 —
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Py woy A ws Py P
—Ww1 Wq ... We—1
Ry 4 Jro Po()

Py Py_q Pr_3 W2 A W1
—w1/ wg.../ wk_g/ —
Po(®) Po(t) Po(t) if

) /Pki2 wg—2 A (10 f)'wr—1

Py
“+wq wo w3 ...
Po(%) df

Po(t) Po(t)
The differential form %;A(Td;ﬁ*—“”“—_‘ can be written in the form wy_2R(f)
where (70 f)*wi_1 = —R(f)df. This shows that (2.7) is a linear combination
of iterated integrals of length at most k£ — 1. As the Gelfand-Leray forms

wi Awiy1 dwi
a df

may always be chosen analytic in f~*(Uy) (see (2.6)) then Theorem 2.1 is
proved. |

The proof of the above theorem provides also an algorithm for comput-
ing the higher-order Poincaré-Pontryagin functions My, in terms of iterated
integrals. To illustrate this we consider few examples. To simplify the nota-
tions, for every given one-form w on C?, we denote by w’ some fized one-form,
such that df A w’ = dw (that is to say ' is a Gelfand-Leray form of dw).

FEzxzamples. —

1. It is well known that

M= /w) “

2. If M; = 0 then Lemma 2.2 and Corollary 2.3 imply
w = dA(z,y) + B(z,y)df + dR(f)

where

P P dw
Alz,y) = /P PCECVES /P RO = @)

P
Mg(t)z/ Bw:~/ w/ W
v(t) Yt)  JPo(t)

- 670 —
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and hence
M, (t) = —/ ww'. (2.8)
v(t)
As [ yw' = [, 4w =0 then the iterated integral (2.8) depends on

the free homotopy class of (¢) (and not on the initial point Py(t) ).
Py Q
!
M3(t):/ w/ —(w/ w')
vy Jroe) T Sy
where

P P P 12 P
A\
4 w/ W' zw'/ w'+w/ w"—/ ﬁ——u}—#—R(t)/ w
df Po(t) Po(t) Po(t) vy O Po(t)

and R(t) is an analytic function computed from the identity
(for)w' = R(f)df. As [, ww =0 then

3. If My =0, then

/

A
M;3(t) = / w(w')? +/ wio' — ww_d_c_u_. (2.9)
¥(t) 7(t) if

Both of the iterated integrals in (2.9) depend on the free homotopy

class of (t) only and do not depend on the particular choice of the
Gelfand-Leray form w’.

4. If M3 = 0, then

|
T~
€
S
o ]
a &la &=
F d
€
E\

/ /P ( @ WA w’)
vty IRy & Jrory  df
v for the

If we make the particular choice w' = —dB, B = flfo(t) af

Gelfand-Leray form of dw, as well w” = 0 then the formula for My
becomes

wAW dw/\w'
Ma(t) = /(t)w(w')?’—i—ww' e dj{
Y
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wAW wA wfi\;/
+/ w W —w
MO daf

- 2 7 o7V W' 2 oT
(] oy (] ohifory =g

!
LWAW

A 7 dw/\w/
W AW 27 df

= w(w")® + ww +w
/w) ) df df

wAW wA w,/i\;ul
+/ w w —w )
ve 9 df

Note that the last expression depends on the choice of w’ and hence
on the initial point Py(¢). It is an open question to find a general
closed formula for My, k > 4, in terms of iterated integrals with
rational entries, depending on the free homotopy class of y(¢) only.

3. Proof of Theorem 1.1

The proof is split in two parts. First we show that M (t) satisfies a linear
differential equation of finite order (possibly with irregular singularities). For
this we need to study the monodromy group of My (t). Second, we shall show
that the generating function My(t) is of moderate growth on the projective
plane CP!, and hence the equation is Fuchsian.

3.1. The monodromy representation of M

Recall first that the universal monodromy representation for M (t) (for
arbitrary k) can be constructed as follows (see [11] for proofs). To the non-
constant polynomial f € C[z,y] we associate the locally trivial fibration

e\ Lea

where A C C is the finite set of atypical values. Let ¢t ¢ A and put
S = f~1(ty). The canonical group homomorphism

where Diff (S)/Diffp(S) is the mapping class group of S, induces a homo-
morphism (group action on 71 (S))

m1(C\ D,tg) — Perm(m1(S)) (3.2)

where Perm (n1(S)) is the group of permutations of 71 (S), and 71 (S) is the
set of free homotopy classes of closed loops on §.
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Let v(to) € m1(S) be a free homotopy class of closed loops on S and
consider the orbit 0., of ¥(tg) under the group action (3.2). For a given
point Py € S we denote F = m1(S, Py) and let G C 71(S, Py) be the normal
subgroup generated by the pre-image of the orbit O, ;) under the canonical
projection

m1(S, Py) — m1(S) .

Let (G, F') be the normal sub-group of G generated by commutators

g ' f'9f,9€G, fEF

and denote
H}(S,Z) = G/(G,F).

From the definition of G it follows that the Abelian group H{(S,Z) is in-
variant under the action of 71 (C\ A) and hence we obtain a homomorphism
(the universal representation)

m(C\ A, to) — Aut(H{ (S, Z)). (3.3)

On the other hand, the monodromy representation of the generating func-
tion My (t) = Mg(y, Fe,t) is defined as follows. The function Mg(t) is mul-
tivalued on € \ A. Let us consider all its possible determinations in a
sufficiently small neighborhood of ¢t = ty. All integer linear combinations of
such functions form a module over Z which we denote by Mg (v, Fc). The
fundamental group m1(C \ A, tp) acts on My = Mg(y,F:) in an obvious
way. We obtain thus a homomorphism

m1(C\ A, to) — Aut(My) (34)
called the monodromy representation of the generating function My (v, Fe, t).

It is proved in [11, Theorem 1] that the map
HY (£ (to), Z) 5 My(7, Fe) 1 v = Mi(, Fe, 1) (3.5)

is a canonical surjective homomorphism compatible with the action of the
fundamental group 71 (C\ A, tg). Equivalently, (3.4) is a sub-representation
of the representation dual to the universal representation (3.3).

If the rank of the Abelian group HY (f~'(to),Z) were finitely generated,
then this would imply that each My (t) satisfies a linear differential equation
whose order is bounded by the dimension of H] (f~1(¢), Z). We shall prove
here a weaker statement: M (t) satisfies a linear equation of finite order
(depending on k). OQur argument is based on the integral representation for
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M;,(t) obtained in the previous section. Namely, consider the lower central
series

FAD2FD - Fp2- (3.6)
where F; = F = m1(S, Py), and Fyy1 = (F, F) is the subgroup of Fy, gen-
erated by commutators (fx, f) = fk_lf‘lfkf, fr € Fy, f € F. An iterated
integral of length k along a closed loop which belongs to Fyi; vanishes.
Therefore Theorem 2.1 implies that in (3.3) we can further truncate by
Fy11. Namely, for every subgroup H C F we denote H = (HU Fyq1)/Fry1.
As before the group action (3.2) induces a homomorphism

m(C\ D, to) — Aut(G/(G, F)) (3.7)
and there is a canonical surjective homomorphism
G/(G, F) = My(y, F.).
The lower central series of F = F] is
Fi D Fy D ---Fy D {id}.

It is easy to see that in this case (G,F) C F is finitely generated (e.g.
[20, Lemma 4.2, p.93]), and hence G/(G, F) is finitely generated too. This
implies on its hand that M(~y, F.) is finite-dimensional, and hence the gen-
erating function satisfies a linear differential equation. Its order is bounded
by the dimension of G/(G, F). The latter is easily estimated to be less or
equal to

k
> dimF;/Fi <r*
i=1

(for the last inequality see [14, section 11]). To resume, we proved that the
generating function of limit cycles My(t), t € C\ A, satisfies an analytic
linear differential equation of order at most r*.

3.2. The moderate growth of M

We shall show that the possible singular points (contained in AUoc) are
of Fuchs type. A necessary and sufficient condition for this is the moderate
growth of My (¢) in any sector centered at a singular point. For this we shall
use once again the integral representation for My (t). Let #; be an atypical
value for f and suppose that the analytic curve

Tt — Py(t) € F7I(1)

is defined for ¢ ~ t; and is transversal to the fibers f~1(t). It follows from
the proof of Theorem 2.1 that M (¢) has an integral representation in a
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punctured neighborhood of ¢y too. More precisely My(t) is a finite linear

combination
a;(t) / O
E - 1---wp
mi () Sy

where w¥ are polynomial one-forms, i; < k, c;(t) are analytic functions and
m;(t) are polynomials. Let

t— Po(t) € f71(t),t — Po(t) € £71(2)

be two analytic curves defined in a neighborhood of the atypical value {¢
and transversal to the fibers f~1(¢) (including f~!(¢9)) and consider the
iterated integral

F(t)z/ Wiwg ... W
i)

where [(t) is a path on f~1(t) connecting Py(t) and Py(t), and wy,ws, . . ., ws
are polynomial one-forms in C2.

PROPOSITION 3.1. — Let S(tg) = {t € C : arg(t — tp) < o,
0 < |t —tg| < mo} be a sector centered at tg. There exists ro, Ng > O such
that |F(t)| < |t — to|No. Let S(00) = {t € C : arg(t) < o, [t| > ro} be
a sector centered at co. There exist To, No > 0 such that |F(t)| < |t|No in
S(00).

Remark. — Recall that an analytic function F defined on the universal
covering of C \ A and satisfying the claim of the above Proposition is said
to be of moderate growth.

Proof of Proposition 3.1.— Let (z;(t),v:(t)) € f~1(t) be the ramifica-
tion points of the projection f~1(t) — C induced by 7 : (z,y) — x. Each
ramification point x;(¢) has a Puiseux expansion in a neighborhood of o.
Therefore when t tends to tg in a sector centered at tg, each ramification
point tends to a definite point P € CP!.

Assume further that the projection of I(t) on the z-plane is represented
by a piece-wise straight line

7(l(t)) = Uiy [T4, Tiga] (3.8)

connecting zo(t), z1(t),- -+, Zny1(t) where x;, i = 1,2,...,n are some ram-
ification points, and Py(t) = (zo(t), v0(?t)), Po(t) = (@n41(t), yn+1(¢)). The
iterated integral F(¢) along [(¢) is expressed as an iterated integral along
m(I(t)) whose entries are one-forms with algebraic coefficients. It is clear
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that such an iterated integral along [z;(t), z;+1(¢)] is of moderate growth
(because z;(t) are of moderate growth). Thus, if the number n in (3.8) were
bounded when t varies in S(¢g), then F(¢) would be of moderate growth of
F(t). It remains to show that the number n = n(t) is uniformly bounded in
S(to). Note that when ¢ € S(tp) and r is sufficiently small the ramification
points x;(t) are all distinct. Denote by B the subset of S(ty) of points ¢
having the property

“there exist ramification points x;(t), z;(t), zx(t) such that ;(t) — x;(t)
and z;(t) — zx(t) are collinear but not identically collinear .”

Using the fact that z;(t) — z;(t), z;(t) — zx(t) have Puiseux expansions,
we conclude that B is a real analytic subset of R? ~ C of co-dimension one.
The set S(tp) \ B has a finite number of connected components and on each
connected component the function ¢ — n(t) is constant. It follows that n(t)
is uniformly bounded. Proposition 3.1, and hence Theorem 1.1 is proved.

A. Iterated Path Integrals

Let S be a Riemann surface and w;,ws,...,wr be holomorphic one-
forms. For every smooth path [ : [0,1] — S we define the iterated path
integral

/wlwg...wk = / fk(tk)...fl(tl)dtk...dtl (Al)
1 Otp ... <1<l

where I*w; = f;(t)dt. We have for instance

1(t)
/wlwg = /w1 wa.
4 l 1(0)

The basic properties of the iterated path integrals (A.1) were established
by Parsin [19]. The general theory of iterated integrals has been developed
by Chen, e.g. [5, 6]. In the Chen’s theory the iterated integrals generate
the De Rham complex of the path space PX associated to an arbitrary
manifold X. In this context the iterated integrals of the form (A.1) provide
the 0-cochains of the path space P, S, where a,b are the two ends of I.
Indeed, a connected component of P, ;S consists of those paths (with fixed
ends) which are homotopy equivalent, and (A.1) is constant on such paths.
Some basic properties of iterated path integrals are summarized below. The
missing proofs (and much more) may be found in R. Hain [12, 13].
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LEMMA A.1l. —

(i) The value of [,wiws...w depends only on the homotopy class of 1
in the set of loops with ends fized at 1(0),1(1).

(1) Ifly,l5 : [0,1] — S are composable paths (i.e. l1(1) = 12(0) ) then

k
/ Wy ... W = E / wiws . ..wi/ Wip1Wa .« . - Wk (A.2)
lLils P I

where we set [jwiwy...w; =1 if i=0.

k
/W1(U2...CUk =(-1) / WEWk—1 -+ - W1.
! -1

From now on we suppose that 1(0) = I(1) = Py and put F = 7m1(S, ).
For o, 3 € F we denote the commutator a=*3~taf by (o, 3). If A,B C F
are subgroups, we denote by (A, B) the subgroup of F' generated by all
commutators (¢, 3), such that @ € A and # € B. Consider the lower central
series F = Fy, D F, D F3 D ... where Fy, = (Fi—1,F) and F} = F.

(ii)

LEMMA A.2. —

(i)
—/ w1uJ2:det( fawl fﬁuﬁ ),Va,ﬂEFL
(,8) Jow2 fg w2

(i) Let v € Fy, and wy,ws,...,wk be holomorphic one-forms on S. Then
the iterated path integral f7 w1 Wy ... Wg_1 vanishes, and the value

of the integral f7 wy wy ... wg does not depend on the initial point
P.

(ii1) If o, B € Fy then

/ w1 wy ... wk:/ w1 Wy ... wk+/ W] Wy ... Wg.
af (o3 B

(v) If a € Fy, B € Fy, then

—/wlwg...wp+q - /wlwg...wp/ Wp+1 Wp42 ... Wpig
(a,8) o B

- / W) W2 ... wq/ Wo+1 Wg42 --. Wpigq
B a
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Proof. — The identity (¢) follows from (A.2). It implies in particular that
f7 wiwy does not depend on the initial point Py provided that v € F3, and
vanishes provided that v € F5. Suppose that the claim (ii) is proved up to
order k—1 and let v € Fy. If v = (, 3) where o € Fj,_; then (A.2) implies

/ W wg ... Wg—1 = /wlwz...wk_1+/ W wa ... Wg-1
(@,8) a a~!

k—1
+E /u)1CU2...(.di/ Wi «e. We—1
i=0 VB -1

= / wlwg...wk_l-{—/ W] W ... Wg—-1
aa~?! BB
= 0.

If, more generally, v € Fj then v = [],y; where each v is a commutator
(a, B), such that either o € Fy_1, or 8 € Fy_;. Therefore

/w1w2...wk_1= E / w1w2...wk_1:0.
Y i 1

The claim that f7 w1 Wa ... W, ¥ € Fy does not depend on the initial
point Py follows from (iv) (by induction). The claims (iii) and (iv) follow
from (ii) and (A.2). |

We proved in section 2 that the generating function of limit cycles M ()
is a linear combination of iterated path integrals of length k along a loop
v(t). As M(t) depends on the free homotopy class of v(t) then these it-
erated integrals are of special nature. The iterated integrals appearing in
Lemma A.2 have the same property: they do not depend on the initial point
Py. Therefore they must satisfy (by analogy to M) a Fuchsian differential
equation. The proof of this fact can be seen as a simplified version of the
proof of Theorem 1.1 and for this reason it will be given below.

Let v(t) C f~'(¢) be a family of closed loops depending continuously
on a parameter t in a neighborhood of the typical value to of the non-
constant polynomial f € C[z,y]. We put S = f~1(¢¢) and suppose, using
the notations of Lemma A.2, that () € Fy. Consider the iterated integral

I(t)=/ Wy Wy ... Wi
v(¢)

where w; are polynomial one-forms in C?. In the case k = 1 this is an Abelian
integral depending on a parameter ¢ and hence it satisfies a (Picard-) Fuchs
equation of order at most r.
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PROPOSITION A.3. — The iterated integral I satisfies a Fuchs equation
of order at most M,(k), where M.(k) = dimFy/Fy4+1 is given by the Witt
formula

M,(k) = 1 dzlkjuw)rk/d (A.3)

and u(d) is the Mdbius function (it equals to 0, £1, see Hall [14]). For small
values of k,r the numbers M, (k) are shown on the table below.

r\k|1]2]| 3| 4 5 6 7 8
1 1{0] 0| O 0 0 0 0
2 211 2| 3 6 9 18 30
3 313 8|18 32| 116 | 312 | 810
4 46|20 (60| 204 | 4020 | 4095 | 8160

Proof. — Let A be the finite set of atypical values of f. The function
I(.) is locally analytic on C \ A and has a moderate growth there (see
section 3). A finite-dimensional representation of its monodromy group is
constructed as follows. As F, is a normal subgroup of F' we may consider the
Abelian factor groups Fy/Fi+1. Recall that Fy/Fy,i is free, torsion free,
and finitely generated. Thus it is homomorphic to ZM-(¥) where r is the
number of generators of F' and M, (k) is given by the Witt formula (A.3),
e.g. Hall[14]. As the Abelian group Fy/Fj+1 is canonically identified to a
subset of 71(S) invariant under the action (3.2) of the fundamental group
m1(C\ A, tp), then we obtain a homomorphism

™1 (C \ A, t[)) — Aut(Fk/Fk+1) . (A4)

Finally, Lemma 3(ii) implies that the iterated integral I(¢) depends on the
equivalence class of y(t) in F/Fj+1. Therefore the monodromy representa-
tion of I is a sub-representation of (A.4). The Proposition is proved.

B. Is the generating function M, an Abelian integral?

Equivalently, is the Fuchs equation satisfied by M}, of Picard-Fuchs type?
This is an open difficult problem. The results of [11] and Theorem 1.1 pro-
vide an answer to the following related question. Let f € C[z,y] be a non
constant polynomial, v(t) € f~1(t) a family of closed loops depending con-
tinuously on t. Is there a rational one-form on C2, such that

My (t) = /( w ? (B.1)
y(t
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Consider the canonical homomorphism
™ HY (F71(8), Z) — Hu(f71 (), Z) (B.2)

(which is neither injective, nor surjective in general ) as well the surjective
homomorphism

mo: HY (f7H(t), Z) — My (v, Fe). (B.3)

The homomorphism 7 is defined in an obvious way, and w5 was defined
in section 3.1. Recall that both of them are compatible with the action of
M (C \ A, t()) .

THEOREM B.1.— The generating function My can be written in the
form (B.1) if and only if

Ker(m) C Ker(ms).

The theorem says, roughly speaking, that My is an Abelian integral in
the sense (B.1) if and only if My “depends on the homology class of ()
only”. Indeed, when My (t) is an Abelian integral, this holds true. Con-
versely, if Ker(m) C Ker(nz), then the injective homomorphism

HY(f71(t),Z)/Ker(m) — Hi(f7(t),Z)
and the surjective homomorphism
H(f71(1),2)/Ker(m) — Mg (v, Fe)

are both compatible with the action of 71 (C \ A, #p). The proof that M}, is
an Abelian integral in the sense (B.1) repeats the arguments from the proof
of [11, Theorem 2] and will be not reproduced here.

Theorem B.1 can be illustrated by the following two basic examples,
taken from [11].

Example B.2. — The generating function M3 associated to the perturbed
foliation

df +e(2—z+ %x2)dy =0,f=z(¥*~ (z - 3)?)

and to the family of ovals y(¢) around the center of the unperturbed system
can not be written in the form (B.1). Indeed, an appropriate computation
shows that there is a loop [(t) contained in the orbit of () under the action
of m1(C\ A, tp), such that

e the homology class of I(t) is trivial
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o the free homotopy class of I(¢) is non-trivial

e the corresponding generating function M3(t) = Ms(l, F.,t) is not

identically zero.

It follows that Ker(m ) ¢ Ker(m) and My (t) is not an Abelian integral.

Ezample B.3.— Let w be an arbitrary polynomial one-form on C2. The
generating function M} associated to

df +ew=0,f=1y>+ (2% —1)?

and to the exterior family of ovals {f = t},t > 1 can be written in the
form (B.1). Indeed, it can be shown that the homomorphism 7, (B.2) is
injective [11]. Thus M}, is always an Abelian integral in the sense (B.1), see
also [17, 18].
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