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Gaussian estimates
for symmetric simple exclusion processes

CLAUDIO LANDIM (1)

In memoriam of Martine Babillot.

ABSTRACT. 2014 We prove Gaussian tail estimates for the transition prob-
ability of n particles evolving as symmetric exclusion processes on Zd, im-
proving results obtained in [9]. We derive from this result a non-equilibrium
Boltzmann-Gibbs principle for the symmetric simple exclusion process in
dimension 1 starting from a product measure with slowly varying para-
meter.

RÉSUMÉ. 2014 We prove Gaussian tail estimates for the transition probabil-
ity of n particles evolving as symmetric exclusion processes on Zd, improv-
ing results obtained in [9]. We derive from this result a non-equilibrium
Boltzmann-Gibbs principle for the symmetric simple exclusion process in
dimension 1 starting from a product measure with slowly varying param-
eter.

Annales de la Faculté des Sciences de Toulouse Vol. XIV, n° 4, 2005
pp. 683-703

1. Introduction

To derive sharp bounds on the rate of convergence to equilibrium is

one of the main questions in the theory of Markov processes. In the last
decade, this problem has attracted many attention in the context of conser-
vative interacting particle systems in infinite volume. Fine estimates of the
spectral gap of reversible generators restricted to finite cubes and logarith-
mic Sobolev inequalities have been obtained. We refer to [9] for the recent
literature on the subject. From these bounds on the ergodic constants, poly-
nomial decay to equilibrium in L2 has been proved for some processes. For
instance, Bertini and Zegarlinski [1], [2] proved that the symmetric simple
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exclusion process in Zd converges to equilibrium in L2 at rate t-d/2. For a
class of functions f that includes the cylinder functions, there exists V(f)
finite such that

for all t  0. Here Pt stands for the semi-group,  f &#x3E;a for the expectation
of f with respect to the Bernoulli product measure with density a and
IIfl12 for the L2 norm of f. Janvresse, Landim, Quastel and Yau [5] and
Landim and Yau [10] extended the algebraic decay in L2 for zero range and
Ginzburg-Landau dynamics.

We refine in this article the Gaussian upper bounds obtained in [9] for
the transition probabilities of finite symmetric simple exclusion processes
evolving on the lattice Zd. Our approach is based on a logarithmic Sobolev
inequality and on Davies [4] method to derive estimates for heat kernels.

Consider n  2 indistinguishable particles moving on the d-dimensional
lattice Zd as symmetric random walks with an exclusion rule which prevents
more than one particle per site. The dynamics can be informally described
as follows. There are initially n particles on n distinct sites of Zd . Each
particle waits a mean one exponential time at the end of which, being at
x, it chooses a site y with probability p(y - x), for some finite range, ir-
reducible, symmetric transition probability p(·). If the site is vacant, the

particle jumps, otherwise it stays where it is and waits a new mean one

exponential time.

The state space of this Markov process, denoted by En, is the collection
of all subsets A of Zd with cardinality n:

while its generator £n is given by

where Ax,y stands for the set A with sites x, y exchanged:

In formula (1.1) summation is carried over all bonds {y, z} to avoid counting
twice the contribution of the same jump.
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It is easy to check that the counting measure on En, denoted by vn
(vn(A) - 1 for every A in En), is an invariant, reversible measure for the
process.

Fix a set Ao in En and denote by f t = fi Ao the solution of the forward
equation with initial data Ó Ao :

The main result of the article provides a Gaussian estimate for the tran-
sition probability f t . Denote by x = (x1,...,xn) the sites of (Zd)n. For
a configuration x, let xi,j be the j-th coordinate of the i-th point of x:
xi,j-xi · ej, where - stands for the inner product in R d and {e1,..., ed}
for the canonical basis of Rd. The Euclidean norm of (Rd)n is denoted by
~x~ so that ~x~2 = 03A3i,jx2i,j·M so that ~x~2=03A3i,jx2i,j·

Denote by 03A6 the Legendre transform of the convex function w2 cosh w:

An elementary computations shows that 03A6(w)~ w2 for w small and

(b (w) - w log w for w large.

THEOREM 1.1. - Fix. a set Ao = {z1,..., zn) in En. Let ft be the solu-
tion of the forward equation (1.2). There exist finite constants

C2 = C2 (n, d, p), a0= ao (p) such that

for every T &#x3E; C2 and every set A = {x1,..., xn}. In this formula, summa-
tions is performed over all permutations u of n points and X03C3 stands for the
vector (x03C3(1), ..., x03C3n)).

The asymptotic behavior of 03A6(.) at the origin shows that for every q &#x3E; 0,
there exists a constant a, = al (p, 03B3) such that
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for all T &#x3E; C2 and all sets A such that 11 x, - z~  ’YT / log T for all permu-
tations u. Furthermore, since

we have that

For a fixed 7 &#x3E; 0, in last formula we may replace 03A6(w) by C(03B3)w2 if

lix,(i) - zi~  a2T-yl log T and 03A6(w) by C(7)wlogw otherwise.

2. Boltzmann-Gibbs principle

We prove in this section the Boltzmann-Gibbs principle for the symmet-
ric simple exclusion process out of equilibrium in dimension 1. This result
allows the replacement of average of local functions by functions of the em-
pirical density in the fluctuation regime and is the main point in the proof
of a central limit theorem around the hydrodynamical limit for interacting
particle systems (cf. [6], Chap. 11 ) . We restricted our attention to dimension
1 because Lemma 2.4 below has only been proved in d = 1.

The Boltzmann-Gibbs principle for one-dimensional processes out of
equilibrium was proved in [3] through the logarithmic Sobolev inequality.
A different version, involving microscopic time integrals, is presented in [8]
and uses sharp estimates on the comparison between independent random
walks and the symmetric exclusion process.

Fix a profile po : R d ~ [0, 1] in C1(Rd) with a bounded derivative
and consider a sequence of product measures {vNp0(·), N ) 1} on {0,1}Zd
associated to this profile so that 

(·),

Denote by IwN the probability measure on the path space D(R+, {0,1}Zd)
po(’) 

corresponding to the symmetric simple exclusion process starting from vN03C10(·)
and speeded up by N2. Expectation with respect to IwN is denoted by

lGVN . POW ·)

For x in Zd, let
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Of course, 03C1N(t,x) is the solution of the linear equation

This equation can be written as at pN (t, x) = N2 .clpN (t, x), where L1 is the
generator introduced in (1.1). Next proposition is the main result of this
section.

PROPOSITION 2.1. - Let d = 1 and fix T &#x3E; 0, a finite subset A of Z
such that lAI&#x3E; 2 and a continuous function H in L1(R). Then,

The proof of this proposition is presented at the end of this section. The
Boltzmann-Gibbs principle is a simple consequence but requires some extra
notation.

For a finite subset A of Z and 0  03B1  1, let

By convention, we set 03A8(~,03B1) = 1. Each cylinder function f : {0,1}Z~ R
can be written as

A straightforward computation shows that for each finite set A, f (A, .) is a

smooth function, in fact a polynomial.

For a cylinder function f, let f : [0, 1] ~ R be the real function defined
by f(03B1)=E03BD03B1[f(~)] and let

Note that f(~, a) = f (a) and that EXEZ f({x}, a) = j’(a). In particular, it
follows from a simple computation that
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Fix a smooth functions H in L1(R). By the previous formula,

Note that the sums in z, n and A are finite because f is a cylinder function.
Since H, pN(t, .) and f (f zl, .) are smooth functions, a change of variables
shows that the first term is of order N-I/2 and that the second is equal to

which is exactly the expression appearing in Proposition 2.1. Since f(A,·)
and 03C1N(t,·) are smooth bounded functions, we have proved the following
result, known as the Boltzmann-Gibbs principle.

COROLLARY 2.2. - Let d = 1 and fix T &#x3E; 0, a cylinder function f and
a smooth function H in L’(R). Then,

The proof of Proposition 2.1 is based on three lemmas concerning the
decay of the space-time correlations of the symmetric exclusion process. We
start with a general result which will be used repeatedly.

Fix n  2 and denote by f t (A, B) = fNt(A, B) the semi-group associated
to the generator N2Ln. For a finite subset A of Z, let

Note that I(A) vanishes unless A contains two sites which are within a
distance smaller than the range of the transition probability. Next lemma
follows from Theorem 1.1 and a straightforward computation.
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LEMMA 2.3. - For all T  ~, n 2, there exists a finite constant C3,
depending only on n, p and T such that

for all A in 03B5n, N  1, 0  t  T; where

We now introduce the space-time correlations, also called v-functions in

[7]. For a finite subset A of Z and t  0, let ~N(t, ~) = 1,

Notice that ~N(t, {x}) vanishes for all x. An elementary computation shows
that 

where n = |A| and GN (t, A) is given by

Here again summation is carried over all bonds. Notice that the first line
vanishes for n = 2 and that the second line vanishes for n = 3.

The linear differential equation (2.1) has a unique solution which can be
represented as

so that the space-time correlations ~N (t, A) can be estimated inductively
in n.

Next lemma is due to Ferrari, Presutti, Scacciatelli and Vares [7]. In the
proof of Proposition 2.1 we do not need such sharp estimates.



- 690 -

LEMMA 2.4. - Assume that d = 1 and fix T &#x3E; 0. For each n  1, there
exists a fcnite constant C4 = C4(n,p,03C10,T) such that

For 0stT, 1kn and B ~ 03B5k, let

Since s and A will be fixed, most of the time, we denote RN(s, A; t, B) by
RN (t, B). Notice that in this definition we do not require A and B to have
the same cardinality. An elementary computation shows that RN(t, B) is

the solution of the linear differential equation

where k = IBI,

and HN (t, B) is given by

Notice that RN (t, 0) - VN (S A), that HN (t, B) vanishes for n = 1 and that
JN (s, A, B) is not equal to ~N(s, A U B) but given by

where the summation is carried over all subsets C of A n B and where ADB
stands for the symmetric difference of A and B.

The differential equation (2.2) has a unique solution which can be rep-
resented as
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where r = t - s. This last notation is systematically used below. Let

LEMMA 2.5. - Fix 2  k  n, 0  s  t  T and A in En. There exists
a finite constant C4 = C4 (p, n, T, 03C10) such that

where B(2j) = N-j and B(2j + 1) = logNINj+1 for j  0.

Proof. - UN (t, B) is absolutely bounded by

where

where the maximum is carried over n + k - 2~  m  n + k -f- Ê. Last

inequality follows from the explicit formula for JN (s, A, C). By Lemma 2.4,
the previous expression is less than or equal to C4B(n + k - 2Ê). On the
other hand, by Theorem 1.1,

Therefore,

This concludes the proof of the lemma. 0

We are now in a position to prove the main result towards the Boltzmann-
Gibbs principle.

LEMMA 2.6. - Fix n  2, there exists a finite constant C4 = C4(n,p,T,03C10)
such that

for all A, B in
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Proof. - Fix n  2, s  0 and A in En. For 1  k  n, denote by
RN,k(t,.) the solution of the linear differential equation (2.2). Since the
equation for RN,k involves RN,k-1, RN,k-2, an induction argument on k is
required. A simple pattern appears only for k à 7. Hence, for 1  k  6,
we need to proceed by inspection, making the proof long and tedious.

Consider k = 1. In this case HN vanishes and, by Lemma 2.5,

Here and below {aj, j  1} are finite constants depending on n, p, T and
po which may change from line to line.

For k = 2, since RN (t, 0) is time independent and absolutely bounded
by B(n), the previous estimates and Lemma 2.5 show that

Therefore, by the explicit formula (2.3) for RN,2(t, B) and by Lemmas 2.3,
2.5, 

because B (n)  B(n - 1). Notice that this inequality proves the lemma for
n = 2 because RN,2(t, B) = RN (s, A; t, B).

The estimates for RN,1 and RN,2 give bounds for HN,3 which in turn,
together with the explicit formula (2.3) for RN,3(t, B) and Lemmas 2.3, 2.5
show that

Here we used the fact that B(n - 3) = NB(n - 1) to eliminate one of the
terms appearing in the expression of RN,3(t, B).

We repeat this procedure for k = 4, 5 and 6 to obtain that
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For k = 5, we used the fact that B(~) log N  B(~ - 1).

A pattern has been found for k = 5, 6. It is now a simple matter to
prove by induction that this pattern is conserved so that

for k à 7. It remains to recall the definition of B(j) and to recollect all
previous estimates to conclude the proof of the lemma. D

Notice that we could have set B(1) = N-1 for the estimates in the
previous lemma. Taking B(1) = log N/N simplifies slightly the notation
since we have that B(n + 2) = B(n)N-1 for all n  0 and we miss only a
log N factor, which is irrelevant for our purposes.

We are now in a position to prove Proposition 2.1. With the notation
introduced in this section, the expectation appearing in the statement of
the proposition becomes

where A + x is the set {z + x : z E A}. By Lemma 2.6 and a change of
variables, this expression is bounded above by

which proves Proposition 2.1.

We conclude this section with an observation. The same arguments pre-
sented above in the proof of Proposition 2.1 shows that

for some finite constant C(p, po, T). Here F(a) = 03B1(1 - a).
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3. Gaussian tail estimâtes for labeled exclusion processes

Fix n  2 and a finite range, symmetric and irreducible transition prob-
ability p(-) on Zd. Consider n labeled particles moving on the d-dimensional
lattice Zd through stirring. This dynamics can be informally described as
follows. The n particles start from n distinct sites of Zd . For each pair (x, y)
of Zd , at rate p(y - x), particles at x, y exchange their positions. This means
that if there is a particle at x (resp. y) and no particle at y (resp. x), the
particle jumps from x to y (resp. from y to x). If both sites are occupied, the
particles change their position and if none of them are occupied, nothing
happens.

The state space of this Markov process, denoted by Bn, consists of all
vectors x = (x1, ..., xn ) of (Zd)n with distinct coordinates:

while the generator Ln is given by

In this formula, for a configuration x = (Xl’...’ Xn) in Bn, aX’y x is the

configuration defined by

This generator corresponds to the generator (1.1) in which particles have
been labeled and are therefore distinguishable.

It is easy to check that the counting measure on Bn, denoted by JLn, is
an invariant reversible measure for the process. The goal of this section is to
obtain sharp estimates on the transition probability of this Markov process.
To state the main results of the section, fix a state z in Bn and denote by
ft the solution of the forward equation:

Recall that we denote by 03A6 the Legendre transform of the convex func-
tion w2 cosh w.



- 695 -

THEOREM 3 .1. - Fix n  1 and a point z = (zl , ... , zn) in Bn. Let
ft be a solution of the forward equation (3.2). There exist finite constants
C2 = C2 (n, d, p), ao = ao (p) such that

for every T &#x3E; C2 and every configuration x.

Since 03A6(w) ~ w2 for w small, for 1 &#x3E; 0, there exists a finite constant
al = al (p, 1) such that

for every T &#x3E; C2 and every configuration x such that

On the other hand, since x2 cosh x
Hence,

for every T &#x3E; C2. Of course this estimate is only interesting if Ilx - z~ »
TI log T,

Since the proof of Theorem 3.1 follows closely the one of Theorem 2.2
in [9], we present only the main differences. Throughout this section, Co
stands for a universal constant, which may change from line to line.

We first need a logarithmic Sobolev inequâlity for the process Xt re-
stricted to cubes. Fix an integer Ê and décompose the lattice Zd into disjoint
cubes {039Bk : k  1} of length é:

For a vector k = (k1’...’ kn), let Ak be the finite cube of (Zd)n defined by
039Bk = Akl x ··· x 039Bkn and let L039Bk be the generator Ln introduced in (3.1)
restricted to the cube Ak. This means that jumps from Ak to its complement
are forbidden as well as jumps from the complement to Ak.
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LEMMA 3.2. - There exists a finite constant Cl depending only on the
transition probability p(-), the dimension d and the total number of particles
n such that

for all densities f with respect to the uniform probability measure over Ak.
In this formula, the sum on the right hand side of the inequality is carried
over all pairs x, y in Ak such that y = aX’Yx for some x, y with p(y-x) &#x3E; 0.

Proof. - It is well known that a symmetric random walk evolving on a
d-dimensional cube satisfies a logarithmic Sobolev inequality of type (3.3)
and that the superposition of independent processes satisfying logarithmic
Sobolev inequalities also satisfies a logarithmic Sobolev inequality, the con-
stant being the maximum of the individual constants. This proves (3.3) in
the case where the cubes 039Bk are all difFerent: ki ~kj for i # j.

It remains to consider the case where some cubes are equal. In this
situation, the diagonal is forbidden because two particles cannot occupy the
same site, and two particles may exchange their position. Fix 2  m  n
and consider the hypercube Ak = 039Bk x ... x Ak of (Zd)m. If we do not
distinguish particles, we retrieve the symmetric simple exclusion process on
039Bk with m particles. This process satisfies a logarithmic Sobolev inequality
of type (3.3) with a constant Co depending only on the dimension d and
the transition probability p(·) [11]. It is not difficult to recover (3.3) for the
random walk Xt on Ak from this estimate.

Indeed, let 03A3039Bk,m be the subsets of 039Bk with m points: 03A3039Bk,m =
{A C Ak : |A| = m}, let 03BC039Bk,m be the uniform probability measure on
03A3039Bk,m and, for a density f : Ak - R+ with respect to the uniform measure
over Ak, let f : 03A3039Bk,m - R+ be the density with respect to 03BC039Bk,m defined

by 

where the summation is performed over all permutations a of m elements.

With this notation, we may rewrite the left hand side of (3.3) as

where the summation over x is carried over all points x = (Xjl ... 1 x,) such
that {x1,...,xm}=A.
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It is not difficult to prove a logarithmic Sobolev inequality for the per-
mutation of m points. Let Sm be the set of all permutations 03C3 of m points.
Consider the Dirichlet form DSm defined by

There exists a finite constant Co such that

for all densities g with respect to the uniform probability measure on 8m.

Since f(x)/(A) is a density with respect to the uniform probability
measure over the set of all permutations, the first term is bounded above
by

for some finite universal constant. It remains to connect each point x in A
to each point y in A by a path x = zo,..., zr = y such that Zj+1 = aX’Yzj
for some x, y with p(y - x) &#x3E; 0 to estimate the previous term by the right
hand side of (3.3). This can be done as follows.

Assume first that d = 1. To explain the strategy in a simple way, we
allow two particles to occupy the same site in the construction of the path.
The modifications needed to respect the exclusion rule are straightforward.
Fix x and y in a same set A. Since both points belong to the same set,
there exists a permutation u of m points such that yi = x03C3 (i) for 1  i  m.

The path {zj} connecting x to y is defined as follows. We start changing
the first coordinate x, of x, keeping all the other constants, moving from
x = (x1,...,xm) to w1 = (yl = X,(1), x2, ... , X.). Note that the last
configuration has two particles occupying the same site. At this point, we
change the coordinate Xa(l)’ moving from a new configuration W2, which
is obtained from x, by replacing x 1 by x03C3(1) and x03C3(1) by x03C32(1), where
a2 == a o u. We repeat this procedure. If the orbit of 1 for the permutation
u is the all set {1, ..., m}, this algorithm produces a path from x to y.
Otherwise, after completing the orbit of 1 by the map u, we choose the
smallest coordinate not belonging to the orbit of 1 and repeat the procedure.
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Denote by Fx,y the path just constructed. Notice that

1. its length is bounded by ml and

2. all coordinates but one of each site z in 0393x,y belong to the set
txI ... , 1 X,,I.

Therefore, by Schwarz inequality, (3.5) is bounded above by

The last sum in the first line is performed over all pairs b = (bl, b2) of
consecutive sites in the path Fx,y, while the first sum in the second line is
performed over all pairs b = (bl, b2) such that b2 = U"’+y for some x, y
in Zd such that p(y) &#x3E; 0. Since all but one coordinate of each site in Fx,y
belong to lx 11 ..., xm}, for each fixed bond b = (b1, b2) there is at most mi
possible sets A which might use this bond. For each set A, there is at most
m! end points and m! starting points for the path. The last sum is thus
bounded by

This concludes the proof of the estimate of the first term in (3.4) in dimen-
sion 1.

The proof in higher dimension is similar. The idea is to consider a config-
uration x as a point in Z,d and repeat the previous algorithm, moving the
first coordinate of the first particle, then moving the first coordinate of the
03C3(1)-particle, until all first coordinates of all particles are modified. At this
point, we change the second coordinate of the first particle and repeat the
procedure. This method gives a path of length at most Coimd and whose
sites have all but one of the md coordinates equal to the coordinates of x.
These two properties permit to derive the estimâtes obtained in dimension
1, replacing m by md. This proves that the first term in (3.4) is bounded

above by the the right hand side of (3.3).

We focus now on the second term of (3.4). By the logarithmic Sobolev
inequality for m exclusion particles in a cube Ak, this expression is less than
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or equal to

for some finite constant C depending only on p(·) and d. By Schwarz in-
equality, this expression is bounded by the right hand side of (3.3). D

The second main ingredient in the proof of Theorem 3.1 is an estimate
of the action of the generator Ln on certain exponential functions.

For a vector 0 = (03B81, ...,03B8n,), 03B8i in Rd , denote by uJo the function
03C803B8: Bn ~ R defined by 03C803B8(x) = explo - x}. Here, x - y represents the
inner product in (Zd)n. An elementary computation shows that there exists
a finite constant ao, depending only on the transition probability p(·), such
that

for all x in Bn, where

Next result relies mainly on Lemma 3.2 and on the bounds (3.6). Its
proof follows closely the one of Lemma 4.3 in [9] and is therefore omitted.
For a positive function e : Bn ~ R, denote by D03C8 the Dirichlet formula
defined by

LEMMA 3.3. - Fix a vector 0 in (Rd)n, ~  2, denote by Ci the constant
introduced in Lemma 3.2 and let 1/J == 1/Jo. There exists a finite constant ao,
depending only on the transition probability p(.), such that

for every density f : 13n --+ R with respect to e dJLn.

The estimates (3.6) permit also to prove the following bound. Recall that
ft is the solution of the forward equation (3.2) and that pn is the counting
measure on Bn.
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LEMMA 3.4. - Fix a smooth increasing function p : R+ ~ (1, oc) and a
smooth function À == (03BB1, ..., Àn) : R+ ~ (Rd)n. Let 03C8t(x) = exp{03BB(t) · x}
and let ht = ftlot, ut = hf(t)/2. There exists a finite constant ao, depending
only on the transition probability p(.), such that

The proof of Lemma 3.4 relies on the estimates (3.6) and follows closely
the proof of Lemma 5.1 in [9].

We are now in a position to prove Theorem 3.1. Recall that ft is the

solution of the forward equation (3.2). Fix T &#x3E; 0 large, set q = 1+(logT)-1,
q’ = log T and consider a smooth increasing function p: [0, T] ~ [q, q’] such
that p(0) = q, p(T) - q’. At the end of the proof, p(t) will be taken as a
rescaling of the function [1 - (s/T)03B1]-1 for some 0  a  1/2.

Following Davies [4], fix B = (03B81, ..., On) in (Rd)n, define 1Pt: Bn ~ R+
by

denote 03B8ip(t)/[p(t)- 1] by 03BBi(t) and let ht = ftlet.

For a function g: Bn -* R and 1  p  oo, denote by Ilgll’ljJ,p the LP norm
of g with respect to the measure e dpn :

A straightforward computation gives that

Denote hp(t) t by ut and u2t/~ut~22 by vt . By Lemma 3.4, the second term on
the right hand side of last formula is bounded above by
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where R(t) = R(03BB(t)). Notice that the second term in this expression cancels
with the first term in the previous formula and that v2 is a density with
respect to the measure et dpn . By Lemma 3.3, the first term of this formula
is bounded by

for all é à 2.

By definition of 03C8t,

so that the first term of formula (3.10) cancels with the fifth term of formula
(3.9). Denote by [a] the integer part of a real a. If we set ~= é(t) as

a straightforward computation shows that the Dirichlet form in formula
(3.9) cancels with the Dirichlet form appearing in (3.10). The inequality
~(t)  2 imposes conditions on p(t) that will need to be checked when
defining p(t) .

Up to this point we proved that

because ~(t)2p(t)  p(t)2 by definition of I!(t). Integrating in time, we obtain
that

because ~(t)2  [p(t)-1]/8C1p(t). By definition of the density f, ~h0~03C80,p0 =
f(Z)03C80(Z)1-p0/p0 = expfo - z}. On the other hand, ~hT~03C8T,pT is bounded
below by fT(X)03C8T(X)1-pT/pT = exp{03B8·x} for every x in Bn. Moreover, since

because p(0) = 1 + (logT)-1, p(1) = log T. Finally, since p(t) is an in-

creasing function, p(t)/[p(t) - 1]  1 + log T  2 log T for T  e. Therefore,
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if we assume that |03B8i,j|  B/2 log T for some finite constant B,
R(t)  C(a0, B)~03B8~2p(t)2/(p(t)-1)2, where C(ao, B) = 2a 3M(aoB) and

Putting together all previous estimates, we obtain that

provided |03B8i,j|  B/2 log T.

It remains to choose an appropriate increasing smooth function

p : [0, T] - [q, q’] which connects 1+(logT)-1 to log T to conclude the proof
of the theorem. Let q(s) = p(sT)/p(sT)-1 and notice that q(0) = log T + 1,
q(1) = 10gT/logT - 1. With this notation, a change of variables and an
elementary computation shows that the two previous integrals become

and

The second term of the first line is bounded by log T-nd/2 + C(n, d), which
is responsible for the diagonal estimate of the density.

Let g(s) = 8-a for some 0  cx  1/2. It is easy to show

Defining q(s) = g(a + (b - a)s) for appropriate constants a, b, we deduce
that

provided |03B8i,j|  B/2 log T. An elementary computation shows that with
this choice ~(t)  2 for all 0  t  T provided T is chosen large enough:
TC2(n,d).

Fix x, let y = x - z and choose 03B8 = B(2logT)-1y/~Y~ I so that

|03B8i,j|  B/2logT. With this choice, the expression inside braces in the



703

previous formula becomes bounded by

for every B &#x3E; 0. Recall the definition of C(ao, B), change variables as
B’ - a0B and minimize over B’ to obtain that the previous expression
is bounded above by

where V is the convex conjugate of w2 cosh w. This concludes the proof of
Theorem 3.1.

Proof of Theorem 1.1. - Theorem 1.1 follows from Theorem 3.1 since
the evolution of n random walks evolving with exclusion can be obtained
from the evolution of n labeled random walks by just ignoring the labels.
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