logo AFST

Wavelet techniques for pointwise regularity
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 15 (2006) no. 1, pp. 3-33.

Soit E un espace de Banach (ou un quasi-Banach) invariant par translation et dilatation (typiquement un espace de Besov ou de Sobolev homogène). Nous introduisons une définition générale de régularité ponctuelle associée à E, et notée C E α (x 0 ). Nous montrons comment les propriétés de E se traduisent en propriétés de C E α (x 0 ). Nous donnons également des application en analyse multifractale.

Let E be a Banach (or quasi-Banach) space which is shift and scaling invariant (typically a homogeneous Besov or Sobolev space). We introduce a general definition of pointwise regularity associated with E, and denoted by C E α (x 0 ). We show how properties of E are transferred into properties of C E α (x 0 ). Applications are given in multifractal analysis.

@article{AFST_2006_6_15_1_3_0,
     author = {St\'ephane Jaffard},
     title = {Wavelet techniques for pointwise regularity},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {3--33},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 15},
     number = {1},
     year = {2006},
     doi = {10.5802/afst.1111},
     zbl = {pre05208247},
     mrnumber = {2225745},
     language = {en},
     url = {https://afst.centre-mersenne.org/item/AFST_2006_6_15_1_3_0/}
}
Stéphane Jaffard. Wavelet techniques for pointwise regularity. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 15 (2006) no. 1, pp. 3-33. doi : 10.5802/afst.1111. https://afst.centre-mersenne.org/item/AFST_2006_6_15_1_3_0/

[1] A. Arneodo; B. Audit; N. Decoster; J.-F. Muzy; C. Vaillant Wavelet-based multifractal formalism: Applications to DNA sequences, satellite images of the cloud structure and stock market data, The Science of Disasters (A. Bunde; J. Kropp; H. J. Schellnhuber., eds.), Springer, 2002, pp. 27-102

[2] F. Autin Point de vue maxiset en estimation non paramétrique (2004) (Ph. D. Thesis)

[3] B. Beauzamy Introduction to Banach spaces and their geometry Volume 68, North-Holland Publishing Co., Amsterdam, 1985 | MR 889253 | Zbl 0585.46009

[4] A. Benassi; S. Cohen; J. Istas Identifying the multifractional function of a Gaussian process, Stat. Proba. letters., Volume 39 (1998), pp. 337-345 | MR 1646220 | Zbl 0931.60022

[5] A. Benassi; S. Jaffard; D. Roux Elliptic Gaussian random processes, Rev. Mat. Iberoam., Volume 13 (1997), pp. 19-90 | MR 1462329 | Zbl 0880.60053

[6] J.-M. Bony Second microlocalization and propagation of singularities for semilinear hyperbolic equations, Hyperbolic equations and related topics, Academic Press, 1986, pp. 11-49 ((Katata/Kyoto, 1984)) | MR 925240 | Zbl 0669.35073

[7] G. Bourdaud Réalisations des espaces de Besov homogènes, Arkiv för Mat., Volume 26 (1988), pp. 41-54 | MR 948279 | Zbl 0661.46026

[8] H. Brezis Analyse fonctionnelle, Masson, 1983 | MR 697382 | Zbl 0511.46001

[9] A. P. Caldéron; A. Zygmund Local properties of solutions of elliptic partial differential equations, Studia Math., Volume 20 (1961), pp. 171-227 | MR 136849 | Zbl 0099.30103

[10] A. Cohen; W. Dahmen; I. Daubechies; R. DeVore Harmonic analysis of the space BV, Rev. Mat. Iberoam., Volume 19 (2003), pp. 235-263 | MR 1993422 | Zbl 1044.42028

[11] A. Cohen; W. Dahmen; R. DeVore Adaptive wavelet methods for elliptic operator equations: Convergence rates, Math. Comput., Volume 70 (2001) no. 233, pp. 27-75 | MR 1803124 | Zbl 0980.65130

[12] S. Cohen Liens entre densité spectrale et autosimilarité asymptotique dans certains modèles gaussiens (might appear in Ann. Univ. Blaise Pascal)

[13] D. Donoho; I. M. Johnstone; G. Kerkyacharian; D. Picard Wavelet shrinkage: Asymptopia?, J. R. Stat. Soc., Ser. B, Volume 57 (1995), pp. 301-369 | MR 1323344 | Zbl 0827.62035

[14] H. Feichtinger; G. Zimmermann An exotic minimal Banach space of functions, Math. Nachr., Volume 239-240 (2002), pp. 42-61 | MR 1905663 | Zbl 1019.46025

[15] M. Frazier; B. Jawerth; G. Weiss Littlewood-Paley theory and the study of function spaces, CBMS Regional Conference Series in Mathematics, Volume 79, AMS, 1991 | Zbl 0757.42006

[16] S. Jaffard; C. Melot Wavelet analysis of fractal Boundaries, Part 1: Local regularity and Part 2: Multifractal formalism, Comm. Math. Phys., Volume 258 (2005) no. 3, pp. 513-565 | MR 1103613 | Zbl 0760.42016

[17] S. Jaffard; Y. Meyer; R. Ryan Wavelets: Tools for Science and Technology, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001 | MR 1173180 | Zbl 0761.65083

[18] S. Jaffard; Y. Meyer Wavelet methods for pointwise regularity and local oscillations of functions, Mem. Amer. Math. Soc., Volume 123 (1996) no. 587, x+110 pages | MR 1347019 | Zbl 0889.26004

[19] S. Jaffard Pointwise smoothness, two-microlocalization and wavelet coefficients, Publications Matematiques, Volume 35 (1991), pp. 155-168 | MR 1649544 | Zbl 0917.28006

[20] S. Jaffard Wavelet methods for fast resolution of elliptic problems, SIAM J. Numer. Anal., Volume 29 (1992), pp. 965-986 | MR 1633152 | Zbl 0930.42021

[21] S. Jaffard Local behavior of Riemann’s function, Harmonic analysis and operator theory (Caracas, 1994) (Contemporary Mathematics) Volume 189, Amer. Math. Soc., Providence, RI, 1995, pp. 287-307 | MR 2112122 | Zbl 02154236

[22] S. Jaffard Oscillation spaces: Properties and applications to fractal and multifractal functions, J. Math. Phys., Volume 39 (1998), pp. 4129-4141 | MR 2110377 | Zbl 1074.42006

[23] S. Jaffard Sur la dimension de boîte des graphes, C. R. Acad. Sci. Paris Sér. I Math., Volume 326 (1998) no. 5, pp. 555-560 | MR 2105390 | Zbl 1076.42024

[24] S. Jaffard Pointwise regularity criteria, C.R.A.S., Série 1, Volume 339 (2004) no. 11, pp. 757-762 | MR 2172009 | Zbl 02221337

[25] S. Jaffard Wavelet techniques in multifractal analysis, Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2 (M. Lapidus; M. van Frankenhuijsen, eds.) (Proc. Sympos. Pure Math.) Volume 72, Amer. Math. Soc., Providence, RI, 2004, pp. 91-151 | MR 1342019 | Zbl 0873.42019

[26] S. Jaffard Beyond Besov spaces Part 2: Oscillation spaces, Constr. Approx., Volume 21 (2005) no. 1, pp. 29-61 | MR 1827998 | Zbl 0970.42020

[27] S. Mallat A Wavelet Tour of Signal Processing, Academic Press, 1998 | MR 1614527 | Zbl 0937.94001

[28] Y. Meyer; H. Xu Wavelet analysis and chirps, Appl. Comput. Harmon. Anal., Volume 4 (1997) no. 4, pp. 366-379 | Zbl 0960.94006

[29] Y. Meyer La minimalité de l’espace de Besov B 1 0,1 et la continuité des opérateurs définis par des intégrales singulières, Monografias de Matematicas, Univ. Autonoma de Madrid, 1986 no. 4 | MR 1085487 | Zbl 0694.41037

[30] Y. Meyer Ondelettes et opérateurs, Hermann, 1990 | MR 1347026 | Zbl 0852.35005

[31] Y. Meyer Wavelet analysis, local Fourier analysis and 2-microlocalization, Harmonic Analysis and Operator Theory (Caracas, 1994) (Contemp. Math.) Volume 189, Amer. Math. Soc., Providence, RI, 1995, pp. 393-401 | MR 1483896 | Zbl 0893.42015

[32] Y. Meyer Wavelets, Vibrations and Scalings, CRM Monograph Series, Volume 9, American Mathematical Society, 1998 | MR 1474095 | Zbl 0960.94006

[33] S. Moritoh; T. Yamada Two-microlocal Besov spaces and wavelets, Rev. Mat. Iberoamericana, Volume 20 (2004), pp. 277-283 | MR 2076781 | Zbl 1052.46025

[34] G. Parisi; U. Frisch On the singularity spectrum of fully developped turbulence, Turbulence and predictability in geophysical fluid dynamics (1985), pp. 84-87

[35] I. Singer Bases in Banach spaces 1, Springer-Verlag, 1970 | MR 298399 | Zbl 0198.16601

[36] H. Triebel Wavelet frames for distributions; local and pointwise regularity, Studia Math., Volume 154 (2003), pp. 59-88 | MR 1949049 | Zbl 1047.46027

[37] B. Vedel Règlement de la divergence infra-rouge dans des bases d’ondelettes adaptées (2004) (Ph. D. Thesis)

[38] P. Wojtaszczyk Banach spaces for analysts, Cambridge Univ. Press, 1991 | MR 1144277 | Zbl 0724.46012