logo AFST
A 3–Manifold with no Real Projective Structure
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 5, pp. 1219-1238.

Nous montrons que la somme connexe de deux copies de l’espace projectif de dimension trois n’admet pas de structure projective réelle. Ceci est le premier exemple connu d’une variété connexe de dimension 3 sans structure projective réelle.

We show that the connected sum of two copies of real projective 3-space does not admit a real projective structure. This is the first known example of a connected 3-manifold without a real projective structure.

DOI : 10.5802/afst.1482
Daryl Cooper 1 ; William Goldman 2

1 Department of Mathematics, University of California Santa Barbara, CA 93106, USA
2 Department of Mathematics at the University of Maryland, College Park, MD 20742, USA
@article{AFST_2015_6_24_5_1219_0,
     author = {Daryl Cooper and William Goldman},
     title = {A {3{\textendash}Manifold} with no {Real} {Projective} {Structure}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1219--1238},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 24},
     number = {5},
     year = {2015},
     doi = {10.5802/afst.1482},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1482/}
}
TY  - JOUR
AU  - Daryl Cooper
AU  - William Goldman
TI  - A 3–Manifold with no Real Projective Structure
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2015
SP  - 1219
EP  - 1238
VL  - 24
IS  - 5
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1482/
DO  - 10.5802/afst.1482
LA  - en
ID  - AFST_2015_6_24_5_1219_0
ER  - 
%0 Journal Article
%A Daryl Cooper
%A William Goldman
%T A 3–Manifold with no Real Projective Structure
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2015
%P 1219-1238
%V 24
%N 5
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1482/
%R 10.5802/afst.1482
%G en
%F AFST_2015_6_24_5_1219_0
Daryl Cooper; William Goldman. A 3–Manifold with no Real Projective Structure. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 5, pp. 1219-1238. doi : 10.5802/afst.1482. https://afst.centre-mersenne.org/articles/10.5802/afst.1482/

[1] Benoist (Y.).— Nilvariétés projectives. Comment. Math. Helv., 69(3), p. 447-473 (1994). | MR | Zbl

[2] Benoist (Y.).— Tores affines. In Crystallographic groups and their generalizations (Kortrijk, 1999), volume 262 of Contemp. Math., pages 1-37. Amer. Math. Soc., Providence, RI (2000). | MR | Zbl

[3] Benoist (Y.).— Convexes divisibles. IV. Structure du bord en dimension 3. Invent. Math., 164(2), p. 249-278 (2006). | MR | Zbl

[4] Bergeron (N.) and Gelander (T.).— A note on local rigidity. Geom. Dedicata, 107, p. 111-131 (2004). | MR | Zbl

[5] Bonahon (F.).— Geometric structures on 3-manifolds. In Handbook of geometric topology, pages 93-164. North-Holland, Amsterdam (2002). | MR | Zbl

[6] Canary (R. D.), Epstein (D. B. A.), and Green (P.).— Notes on notes of Thurston. In Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984), volume 111 of London Math. Soc. Lecture Note Ser., p. 3-92. Cambridge Univ. Press, Cambridge (1987). | MR | Zbl

[7] Carrière (Y.), Dal’bo (F.), and Meigniez (G.).— Inexistence de structures affines sur les fibrés de Seifert. Math. Ann., 296(4), p. 743-753 (1993). | MR | Zbl

[8] Choi (S.).— Convex decompositions of real projective surfaces. III. For closed or nonorientable surfaces. J. Korean Math. Soc., 33(4), p. 1139-1171 (1996). | MR | Zbl

[9] Choi (S.) and Goldman (W. M.).— The classification of real projective structures on compact surfaces. Bull. Amer. Math. Soc. (N.S.), 34(2), p. 161-171 (1997). | MR | Zbl

[10] Choi (S.) and Goldman (W. M.).— The deformation spaces of convex RP 2 -structures on 2-orbifolds. Amer. J. Math., 127(5), p. 1019-1102 (2005). | MR | Zbl

[11] Cooper (D.), Long (D.), and Thistlethwaite (M.).— Computing varieties of representations of hyperbolic 3-manifolds into SL(4, R). Experiment. Math., 15(3), p. 291-305 (2006). | MR | Zbl

[12] Cooper (D.), D. Long (D.), and Thistlethwaite (M. B.).— Flexing closed hyperbolic manifolds. Geom. Topol., 11, p. 2413-2440 (2007). | MR | Zbl

[13] Earle (C. J.).— On variation of projective structures. In Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), volume 97 of Ann. of Math. Stud., pages 87-99. Princeton Univ. Press, Princeton, N.J. (1981). | MR | Zbl

[14] Ehresmann (C.).— Variétes localement projectives. L’Enseignement Mathématique, 35, p. 317-333 (1937). | Zbl

[15] Goldman (W. M.).— Conformally flat manifolds with nilpotent holonomy and the uniformization problem for 3- manifolds. Trans. Amer. Math. Soc., 278(2), p. 573-583 (1983). | MR | Zbl

[16] Goldman (W. M.).— Geometric structures on manifolds and varieties of representations. In Geometry of group representations (Boulder, CO, 1987), volume 74 of Contemp. Math., pages 169-198. Amer. Math. Soc., Providence, RI (1988). | MR | Zbl

[17] Goldman (W. M.).— Convex real projective structures on compact surfaces. J. Differential Geom., 31(3), p. 791-845 (1990). | MR | Zbl

[18] Goldman (W. M.).— Locally homogeneous geometric manifolds. In Proceedings of the International Congress of Mathematicians. Volume II, p. 717-744, New Delhi (2010). Hindustan Book Agency. | MR | Zbl

[19] Guichard (O.) and Wienhard (A.).— Topological invariants of Anosov representations. J. Topol., 3(3), p. 578-642 (2010). | MR | Zbl

[20] Hejhal (D. A.).— Monodromy groups and linearly polymorphic functions. Acta Math., 135(1), p. 1-55 (1975). | MR | Zbl

[21] Hubbard (J. H.).— The monodromy of projective structures. In Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), volume 97 of Ann. of Math. Stud., pages 257-275. Princeton Univ. Press, Princeton, N.J. (1981). | MR | Zbl

[22] Lok (W. L.).— Deformations of locally homogeneous spaces and Kleinian groups. ProQuest LLC, Ann Arbor, MI, 1984. Thesis (Ph.D.)-Columbia University. | MR

[23] Molnár (E.).— The projective interpretation of the eight 3-dimensional homogeneous geometries. Beiträge Algebra Geom., 38(2), p. 261-288 (1997). | MR | Zbl

[24] Reeb (G.).— Sur certaines propriétés globales des trajectoires de la dynamique, dues à l’existence de l’invariant intégral de M. Elie Cartan. In Colloque de Topologie de Strasbourg, 1951, no. III, page 7. La Bibliothèque Nationale et Universitaire de Strasbourg (1952). | MR | Zbl

[25] Scott (P.).— The geometries of 3-manifolds. Bull. London Math. Soc., 15(5), p. 401-487 (1983). | MR | Zbl

[26] Sharpe (R. W.).— Differential geometry, volume 166 of Graduate Texts in Mathematics. Springer-Verlag, New York (1997). Cartan’s generalization of Klein’s Erlangen program, With a foreword by S. S. Chern. | MR | Zbl

[27] Thiel (B.).— Einheitliche Beschreibung der acht Thurstonschen Geometrien. Diplomarbeit, Universitat zu Gottingen (1997).

[28] Thurston (W.).— The geometry and topology of 3-manifolds. Mimeographed notes (1979).

[29] Thurston (W. P.).— Three-dimensional geometry and topology. Vol. 1, volume 35 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. | MR | Zbl

[30] Waldhausen (F.).— Heegaard-Zerlegungen der 3-Sphäre. Topology, 7, p. 195-203 (1968). | MR | Zbl

[31] Weil (A.).— On discrete subgroups of Lie groups. Ann. of Math. (2), 72, p. 369-384 (1960). | MR | Zbl

Cité par Sources :