logo AFST
Markov loops, coverings and fields
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 2, p. 401-416

We investigate the relations between the Poissonnian loop ensembles, their occupation fields, non ramified Galois coverings of a graph, the associated gauge fields, and random Eulerian networks.

Notre étude montre les relations existant entre les ensembles poissoniens de lacets, les champs qu’ils définissent, les circuits euleriens, les revêtements galoisiens des graphes et les champs de jauges associés.

Published online : 2017-04-13
DOI : https://doi.org/10.5802/afst.1538
Classification:  60K99,  60J55,  60G60
Keywords: Free field, Markov processes, ‘Loop soups’, Eulerian circuits, homology
@article{AFST_2017_6_26_2_401_0,
     author = {Yves Le Jan},
     title = {Markov loops, coverings and fields},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 26},
     number = {2},
     year = {2017},
     pages = {401-416},
     doi = {10.5802/afst.1538},
     language = {en},
     url={afst.centre-mersenne.org/item/AFST_2017_6_26_2_401_0/}
}
Le Jan, Yves. Markov loops, coverings and fields. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 2, pp. 401-416. doi : 10.5802/afst.1538. https://afst.centre-mersenne.org/item/AFST_2017_6_26_2_401_0/

[1] Federico Camia; Marcin Lis Non-backtracking loop soups and statistical mechanics on spin networks (2016) (https://arxiv.org/abs/1507.05065)

[2] Yinshan Chang; Yves Le Jan Markov loops in discrete spaces, Probability and Statistical Physics in St. Petersburg. (Proceedings of Symposia in Pure Mathematics) Tome 91, American Mathematical Society, 2016, pp. 222-279

[3] Motoko Kotani; Toshikazu Sunada Jacobian Tori Associated with a Finite Graph and Its Abelian Covering Graphs, Adv. Appl. Math., Tome 24 (2000) no. 2, pp. 89-110 | Article

[4] Gregory F. Lawler; Wendelin Werner The Brownian loop soup, Probab. Theory Relat. Fields, Tome 128 (2004) no. 4, pp. 565-588 | Article

[5] Yves Le Jan Markov loops, determinants and Gaussian fields (2007) (https://arxiv.org/abs/math/0612112)

[6] Yves Le Jan Markov paths, loops and fields. École d’Été de Probabilités de Saint-Flour XXXVIII - 2008, Lecture Notes in Mathematics, Tome 2026, Springer, 2012, viii+124 pages

[7] Yves Le Jan free field and Eulerian networks, J. Math. Soc. Japan, Tome 67 (2015) no. 4, pp. 1671-1680 | Article

[8] Titus Lupu Poisson ensembles of loops of one-dimensional diffusions (2014) (https://arxiv.org/abs/1302.3773)

[9] Titus Lupu From loop clusters and random interlacement to the free field (2016) (https://arxiv.org/abs/1402.0298, to appear in Ann. Prob.)

[10] William S. Massey Algebraic Topology: An Introduction, Harbrace College Mathematics Series, Harcourt, Brace & World, Inc., 1967, xix+261 pages

[11] Erhard Seiler Gauge theories as a problem of constructive quantum field theory and statistical mechanics, Lecture Notes in Physics, Tome 159, Springer, 1982, iii+181 pages

[12] Jean-Pierre Serre Arbres, amalgames, SL 2 , Astérisque, Tome 46, Société Mathématique de France, 977, ix+189 pages

[13] Kurt Symanzik Euclidean quantum field theory, Scuola intenazionale di Fisica ”Enrico Fermi”. XLV Corso., Academic Press, 1969, pp. 152-223

[14] Wendelin Werner On the spatial Markov property of soups of unoriented and oriented loops (1969) (https://arxiv.org/abs/1508.03696, to appear in Séminaire de de Probabilités)

[15] Don Zagier Appendix in Graphs on Surfaces and their Applications, by S.K. Lando and A.K. Zvonkin, Encyclopaedia of Mathematical Sciences, Tome 141, Springer, 2004