Soit un espace de Banach (ou un quasi-Banach) invariant par translation et dilatation (typiquement un espace de Besov ou de Sobolev homogène). Nous introduisons une définition générale de régularité ponctuelle associée à , et notée . Nous montrons comment les propriétés de se traduisent en propriétés de . Nous donnons également des application en analyse multifractale.
Let be a Banach (or quasi-Banach) space which is shift and scaling invariant (typically a homogeneous Besov or Sobolev space). We introduce a general definition of pointwise regularity associated with , and denoted by . We show how properties of are transferred into properties of . Applications are given in multifractal analysis.
@article{AFST_2006_6_15_1_3_0, author = {St\'ephane Jaffard}, title = {Wavelet techniques for pointwise regularity}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {3--33}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 15}, number = {1}, year = {2006}, doi = {10.5802/afst.1111}, mrnumber = {2225745}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1111/} }
TY - JOUR AU - Stéphane Jaffard TI - Wavelet techniques for pointwise regularity JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2006 SP - 3 EP - 33 VL - 15 IS - 1 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1111/ DO - 10.5802/afst.1111 LA - en ID - AFST_2006_6_15_1_3_0 ER -
%0 Journal Article %A Stéphane Jaffard %T Wavelet techniques for pointwise regularity %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2006 %P 3-33 %V 15 %N 1 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1111/ %R 10.5802/afst.1111 %G en %F AFST_2006_6_15_1_3_0
Stéphane Jaffard. Wavelet techniques for pointwise regularity. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 15 (2006) no. 1, pp. 3-33. doi : 10.5802/afst.1111. https://afst.centre-mersenne.org/articles/10.5802/afst.1111/
[1] Wavelet-based multifractal formalism: Applications to DNA sequences, satellite images of the cloud structure and stock market data, The Science of Disasters, Springer, 2002, pp. 27-102
[2] Point de vue maxiset en estimation non paramétrique, Université Paris 7 (2004) (Ph. D. Thesis)
[3] Introduction to Banach spaces and their geometry, 68, North-Holland Publishing Co., Amsterdam, 1985 | MR | Zbl
[4] Identifying the multifractional function of a Gaussian process, Stat. Proba. letters., Volume 39 (1998), pp. 337-345 | MR | Zbl
[5] Elliptic Gaussian random processes, Rev. Mat. Iberoam., Volume 13 (1997), pp. 19-90 | MR | Zbl
[6] Second microlocalization and propagation of singularities for semilinear hyperbolic equations, Hyperbolic equations and related topics, Academic Press, 1986, pp. 11-49 (Katata/Kyoto, 1984) | MR | Zbl
[7] Réalisations des espaces de Besov homogènes, Arkiv för Mat., Volume 26 (1988), pp. 41-54 | MR | Zbl
[8] Analyse fonctionnelle, Masson, 1983 | MR | Zbl
[9] Local properties of solutions of elliptic partial differential equations, Studia Math., Volume 20 (1961), pp. 171-227 | MR | Zbl
[10] Harmonic analysis of the space BV, Rev. Mat. Iberoam., Volume 19 (2003), pp. 235-263 | MR | Zbl
[11] Adaptive wavelet methods for elliptic operator equations: Convergence rates, Math. Comput., Volume 70 (2001) no. 233, pp. 27-75 | MR | Zbl
[12] Liens entre densité spectrale et autosimilarité asymptotique dans certains modèles gaussiens (might appear in Ann. Univ. Blaise Pascal)
[13] Wavelet shrinkage: Asymptopia?, J. R. Stat. Soc., Ser. B, Volume 57 (1995), pp. 301-369 | MR | Zbl
[14] An exotic minimal Banach space of functions, Math. Nachr., Volume 239-240 (2002), pp. 42-61 | MR | Zbl
[15] Littlewood-Paley theory and the study of function spaces, CBMS Regional Conference Series in Mathematics, 79, AMS, 1991 | Zbl
[16] Wavelet analysis of fractal Boundaries, Part 1: Local regularity and Part 2: Multifractal formalism, Comm. Math. Phys., Volume 258 (2005) no. 3, pp. 513-565 | MR | Zbl
[17] Wavelets: Tools for Science and Technology, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001 | MR | Zbl
[18] Wavelet methods for pointwise regularity and local oscillations of functions, Mem. Amer. Math. Soc., Volume 123 (1996) no. 587, pp. x+110 | MR | Zbl
[19] Pointwise smoothness, two-microlocalization and wavelet coefficients, Publications Matematiques, Volume 35 (1991), pp. 155-168 | MR | Zbl
[20] Wavelet methods for fast resolution of elliptic problems, SIAM J. Numer. Anal., Volume 29 (1992), pp. 965-986 | MR | Zbl
[21] Local behavior of Riemann’s function, Harmonic analysis and operator theory (Caracas, 1994) (Contemporary Mathematics), Volume 189, Amer. Math. Soc., Providence, RI, 1995, pp. 287-307 | MR | Zbl
[22] Oscillation spaces: Properties and applications to fractal and multifractal functions, J. Math. Phys., Volume 39 (1998), pp. 4129-4141 | MR | Zbl
[23] Sur la dimension de boîte des graphes, C. R. Acad. Sci. Paris Sér. I Math., Volume 326 (1998) no. 5, pp. 555-560 | MR | Zbl
[24] Pointwise regularity criteria, C.R.A.S., Série 1, Volume 339 (2004) no. 11, pp. 757-762 | MR | Zbl
[25] Wavelet techniques in multifractal analysis, Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2 (Proc. Sympos. Pure Math.), Volume 72, Amer. Math. Soc., Providence, RI, 2004, pp. 91-151 | MR | Zbl
[26] Beyond Besov spaces Part 2: Oscillation spaces, Constr. Approx., Volume 21 (2005) no. 1, pp. 29-61 | MR | Zbl
[27] A Wavelet Tour of Signal Processing, Academic Press, 1998 | MR | Zbl
[28] Wavelet analysis and chirps, Appl. Comput. Harmon. Anal., Volume 4 (1997) no. 4, pp. 366-379 | Zbl
[29] La minimalité de l’espace de Besov et la continuité des opérateurs définis par des intégrales singulières, Monografias de Matematicas, Univ. Autonoma de Madrid, 1986 no. 4 | MR | Zbl
[30] Ondelettes et opérateurs, Hermann, 1990 | MR | Zbl
[31] Wavelet analysis, local Fourier analysis and 2-microlocalization, Harmonic Analysis and Operator Theory (Caracas, 1994) (Contemp. Math.), Volume 189, Amer. Math. Soc., Providence, RI, 1995, pp. 393-401 | MR | Zbl
[32] Wavelets, Vibrations and Scalings, CRM Monograph Series, 9, American Mathematical Society, 1998 | MR | Zbl
[33] Two-microlocal Besov spaces and wavelets, Rev. Mat. Iberoamericana, Volume 20 (2004), pp. 277-283 | MR | Zbl
[34] On the singularity spectrum of fully developped turbulence, Turbulence and predictability in geophysical fluid dynamics (1985), pp. 84-87
[35] Bases in Banach spaces 1, Springer-Verlag, 1970 | MR | Zbl
[36] Wavelet frames for distributions; local and pointwise regularity, Studia Math., Volume 154 (2003), pp. 59-88 | MR | Zbl
[37] Règlement de la divergence infra-rouge dans des bases d’ondelettes adaptées, Université d’Amiens (2004) (Ph. D. Thesis)
[38] Banach spaces for analysts, Cambridge Univ. Press, 1991 | MR | Zbl
Cité par Sources :