Properties of local-nondeterminism of Gaussian and stable random fields and their applications
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 15 (2006) no. 1, pp. 157-193.

In this survey, we first review various forms of local nondeterminism and sectorial local nondeterminism of Gaussian and stable random fields. Then we give sufficient conditions for Gaussian random fields with stationary increments to be strongly locally nondeterministic (SLND). Finally, we show some applications of SLND in studying sample path properties of (N,d)-Gaussian random fields. The class of random fields to which the results are applicable includes fractional Brownian motion, the Brownian sheet, fractional Brownian sheets and so on.

DOI : 10.5802/afst.1117

Yimin Xiao 1

1 Department of Statistics and Probability, A-413 Wells Hall, Michigan State University, East Lansing, MI 48824.
@article{AFST_2006_6_15_1_157_0,
     author = {Yimin Xiao},
     title = {Properties of local-nondeterminism of {Gaussian} and stable random fields and their applications},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {157--193},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 15},
     number = {1},
     year = {2006},
     doi = {10.5802/afst.1117},
     mrnumber = {2225751},
     zbl = {1128.60041},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1117/}
}
TY  - JOUR
AU  - Yimin Xiao
TI  - Properties of local-nondeterminism of Gaussian and stable random fields and their applications
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2006
SP  - 157
EP  - 193
VL  - 15
IS  - 1
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1117/
DO  - 10.5802/afst.1117
LA  - en
ID  - AFST_2006_6_15_1_157_0
ER  - 
%0 Journal Article
%A Yimin Xiao
%T Properties of local-nondeterminism of Gaussian and stable random fields and their applications
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2006
%P 157-193
%V 15
%N 1
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1117/
%R 10.5802/afst.1117
%G en
%F AFST_2006_6_15_1_157_0
Yimin Xiao. Properties of local-nondeterminism of Gaussian and stable random fields and their applications. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 15 (2006) no. 1, pp. 157-193. doi : 10.5802/afst.1117. https://afst.centre-mersenne.org/articles/10.5802/afst.1117/

[1] R. J. Adler The Geometry of Random Fields, Wiley, New York, 1981 | MR | Zbl

[2] R. Addie; P. Mannersalo; I. Norros Performance formulae for queues with Gaussian input, European Trans. Telecommunications, Volume 13 (2002) no. 3, pp. 183-196

[3] V. V. Anh; J. M. Angulo; M. D. Ruiz-Medina Possible long-range dependence in fractional random fields, J. Statist. Plann. Inference, Volume 80 (1999), pp. 95-110 | MR | Zbl

[4] A. Ayache; Y. Xiao Asymptotic growth properties and Hausdorff dimension of fractional Brownian sheets, J. Fourier Anal. Appl., Volume 11 (2005), pp. 407-439 | MR | Zbl

[5] A. Ayache; D. Wu; Y. Xiao Joint continuity of the local times of fractional Brownian sheets (2005) (In Preparation)

[6] A. Benassi; S. Jaffard; D. Roux Elliptic Gaussian random processes, Rev. Mat. Iberoamericana, Volume 13 (1997), pp. 19-90 | MR | Zbl

[7] D. A. Benson; M. M. Meerschaert; B. Baeumer Aquifer operator-scaling and the efferct on solute mixing and dispersion (2004) (Preprint)

[8] C. Berg; G. Forst Potential Theory on Locally Compact Abelian Groups, Springer-Verlag, New York-Heidelberg, 1975 | MR | Zbl

[9] S. M. Berman Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Math. Soc., Volume 137 (1969), pp. 277-299 | MR | Zbl

[10] S. M. Berman Gaussian processes with stationary increments: Local times and sample function properties, Ann. Math. Statist., Volume 41 (1970), pp. 1260-1272 | MR | Zbl

[11] S. M. Berman Gaussian sample function: uniform dimension and Hölder conditions nowhere, Nagoya Math. J., Volume 46 (1972), pp. 63-86 | MR | Zbl

[12] S. M. Berman Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J., Volume 23 (1973), pp. 69-94 | MR | Zbl

[13] S. M. Berman Gaussian processes with biconvex covariances, J. Multivar. Anal., Volume 8 (1978), pp. 30-44 | MR | Zbl

[14] S. M. Berman Spectral conditions for local nondeterminism, Stochastic Process. Appl., Volume 27 (1988), pp. 160-191 | MR | Zbl

[15] S. M. Berman Self-intersections and local nondeterminism of Gaussian processes, Ann. Probab., Volume 19 (1991), pp. 160-191 | MR | Zbl

[16] N. H. Bingham; C. M. Goldie; J. L. Teugels Regular Variation, Cambridge University Press, 1987 | MR | Zbl

[17] A. Bonami; A. Estrade Anisotropic analysis of some Gaussian models, J. Fourier Anal. Appl., Volume 9 (2003), pp. 215-236 | MR | Zbl

[18] S. Cambanis; M. Maejima Two classes of selfsimilar stable processes with stationary increments, Stochastic Process. Appl., Volume 32 (1989), pp. 305-329 | MR | Zbl

[19] P. Cheridito Gaussian moving averages, semimartingales and option pricing, Stochastic Process. Appl., Volume 109 (2004), pp. 47-68 | MR | Zbl

[20] M. Csörgő; Z.-Y. Lin; Q.-M. Shao On moduli of continuity for local times of Gaussian processes, Stochastic Process. Appl., Volume 58 (1995), pp. 1-21 | MR | Zbl

[21] J. Cuzick Conditions for finite moments of the number of zero crossings for Gaussian processes, Ann. Probab., Volume 3 (1975), pp. 849-858 | MR | Zbl

[22] J. Cuzick A lower bound for the prediction error of stationary Gaussian processes, Indiana Univ. Math. J., Volume 26 (1977), pp. 577-584 | MR | Zbl

[23] J. Cuzick Local nondeterminism and the zeros of Gaussian processes, Ann. Probab., Volume 6 (1978), pp. 72-84 Correction: 15, 1229 (1987) | MR | Zbl

[24] J. Cuzick Multiple points of a Gaussian vector field, Z. Wahrsch. Verw. Gebiete, Volume 61 (1982a) no. 4, pp. 431-436 | MR | Zbl

[25] J. Cuzick Continuity of Gaussian local times, Ann. Probab., Volume 10 (1982b), pp. 818-823 | MR | Zbl

[26] J. Cuzick; J. DuPreez Joint continuity of Gaussian local times, Ann. Probab., Volume 10 (1982), pp. 810-817 | MR | Zbl

[27] P. Doukhan; G. Oppenheim; M. S. Taqqu Theory and Applications of Long-range Dependence, Birkhäuser Boston, Inc.,, Boston, MA, 2003 | MR | Zbl

[28] M. Dozzi Occupation density and sample path properties of N-parameter processes, Topics in Spatial Stochastic Processes (Martina Franca, 2001) (Lecture Notes in Math.), Springer, Berlin, 2003, pp. 127-166 | MR | Zbl

[29] M. Dozzi; A. R. Soltani Local time for stable moving average processes: Hölder conditions, Stoch. Process. Appl., Volume 68 (1997), pp. 195-207 | MR | Zbl

[30] W. Ehm Sample function properties of multi-parameter stable processes, Z. Wahrsch. verw Gebiete, Volume 56 (1981), pp. 195-228 | MR | Zbl

[31] N. Eisenbaum; D. Khoshnevisan On the most visited sites of symmetric Markov processes, Stoch. Process. Appl., Volume 101 (2002), pp. 241-256 | MR | Zbl

[32] D. Geman; J. Horowitz Occupation densities, Ann. Probab., Volume 8 (1980), pp. 1-67 | MR | Zbl

[33] D. Geman; J. Horowitz; J. Rosen A local time analysis of intersections of Brownian paths in the plane, Ann. Probab., Volume 12 (1984), pp. 86-107 | MR | Zbl

[34] C. D. Hardin Jr. On the spectral representation of symmetric stable processes, J. Multivar. Anal., Volume 12 (1982), pp. 385-401 | MR | Zbl

[35] E. Herbin From N parameter fractional Brownian motions to N parameter multifractional Brownian motions (2004) (Rocky Mount. J. Math., to appear) | Zbl

[36] Y. Hu; B. Øksendal; T. Zhang Stochastic partial differential equations driven by multiparameter fractional white noise, Stochastic Processes, Physics and Geometry: new interplays, II, Amer. Math. Soc., Providence, RI, 2000, pp. 327-337 (Leipzig, 1999) | MR | Zbl

[37] J.-P. Kahane Some Random Series of Functions, Cambridge University Press, 1985 (2nd edition) | MR | Zbl

[38] Y. Kasahara; N. Ogawa A note on the local time of fractional Brownian motion, J. Theoret. Probab., Volume 12 (1999), pp. 207-216 | MR | Zbl

[39] Y. Kasahara; N. Kôno; T. Ogawa On tail probability of local times of Gaussian processes, Stochastic Process, Volume 82 (1999), pp. 15-21 | MR | Zbl

[40] D. Khoshnevisan Multiparameter Processes: An Introduction to Random Fields, Springer, New York, 2002 | MR | Zbl

[41] D. Khoshnevisan; D. Wu; Y. Xiao Sectorial local nondeterminism and the geometry of the Brownian sheet (2005) (Submitted)

[42] D. Khoshnevisan; Y. Xiao Level sets of additive Lévy processes, Ann. Probab., Volume 30 (2002), pp. 62-100 | MR | Zbl

[43] D. Khoshnevisan; Y. Xiao Weak unimodality of finite measures, and an application to potential theory of additive Lévy processes, Proc. Amer. Math. Soc., Volume 131 (2003), pp. 2611-2616 | MR | Zbl

[44] D. Khoshnevisan; Y. Xiao Additive Levy processes: capacity and Hausdorff dimension, Progress in Probability, Volume 57 (2004a), pp. 151-170 | MR | Zbl

[45] D. Khoshnevisan; Y. Xiao Images of the Brownian sheet (2004b) (Trans. Amer. Math. Soc., to appear) | Zbl

[46] D. Khoshnevisan; Y. Xiao; Y. Zhong Local times of additive Lévy processes, Stoch. Process. Appl., Volume 104 (2003a), pp. 193-216 | MR | Zbl

[47] D. Khoshnevisan; Y. Xiao; Y. Zhong Measuring the range of an additive Lévy processes, Ann. Probab., Volume 31 (2003b), pp. 1097-1141 | MR | Zbl

[48] P. S. Kokoszka; M. S. Taqqu New classes of self-similar symmetric stable random fields, J. Theoret. Probab., Volume 7 (1994), pp. 527-549 | MR | Zbl

[49] N. Kôno On the modulus of continuity of sample functions of Gaussian processes, J. Math. Kyoto Univ., Volume 10 (1970), pp. 493-536 | MR | Zbl

[50] N. Kôno Kallianpur-Robbins law for fractional Brownian motion, Probability theory and mathematical statistics, World Sci. Publishing, River Edge, NJ, 1996, pp. 229-236 (Tokyo, 1995) | MR | Zbl

[51] N. Kôno; N.-R. Shieh Local times and related sample path properties of certain self-similar processes, J. Math. Kyoto Univ., Volume 33 (1993), pp. 51-64 | MR | Zbl

[52] J. Kuelbs; W. V. Li; Q.-M. Shao Small ball probabilities for Gaussian processes with stationary increments under Hölder norms, J. Theoret. Probab., Volume 8 (1995), pp. 361-386 | MR | Zbl

[53] W. V. Li; Q.-M. Shao; C. R. Rao; D. Shanbhag Gaussian processes: inequalities, small ball probabilities and applications, Stochastic Processes: Theory and Methods (Handbook of Statistics), Volume 19, North-Holland, 2001, pp. 533-597 | MR | Zbl

[54] M. A. Lifshits Asymptotic behavior of small ball probabilities, Probab. Theory and Math. Statist. (1999), pp. 533-597

[55] H.-N. Lin Uniform dimension results of multi-parameter stable processes, Sci. China Ser. A, Volume 42 (1999), pp. 932-944 | MR | Zbl

[56] S. J. Lin Stochastic analysis of fractional Brownian motion, Stochastics and Stochastic Rep., Volume 55 (1995), pp. 121-140 | MR | Zbl

[57] M. Maejima On a class of selfsimilar stable processes, Z. Wahrsch. verw Gebiete, Volume 62 (1983), pp. 235-245 | MR | Zbl

[58] B. B. Mandelbrot; J. W. Van Ness Fractional Brownian motions, fractional noises and applications, SIAM Review, Volume 10 (1968), pp. 422-437 | MR | Zbl

[59] P. Mannersalo; I. Norros A most probable path approach to queueing systems with general Gaussian input, Comp. Networks, Volume 40 (2002) no. 3, pp. 399-412

[60] M. B. Marcus Gaussian processes with stationary increments possessing discontinuous sample paths, Pac. J. Math., Volume 26 (1968a), pp. 149-157 | MR | Zbl

[61] M. B. Marcus Hölder conditions for Gaussian processes with stationary increments, Trans. Amer. Math. Soc., Volume 134 (1968b), pp. 29-52 | MR | Zbl

[62] D. J. Mason; Y. Xiao Sample path properties of operator self-similar Gaussian random fields, Th. Probab. Appl., Volume 46 (2002), pp. 58-78 | MR | Zbl

[63] R. Miroshin Conditions of local nondeterminism of differentiable Gaussian stationary processes, Th. Probab. Appl., Volume 22 (1977), pp. 831-836 | Zbl

[64] D. Monrad; L. D. Pitt; E. Cinlar; K. L. Chung; R. K. Getoor Local nondeterminism and Hausdorff dimension, Progress in Probability and Statistics. Seminar on Stochastic Processes 1986, Birkhauser, Boston, 1987, pp. 163-189 | MR | Zbl

[65] D. Monrad; H. Rootzén Small values of Gaussian processes, functional laws of the iterated logarithm, Probab. Th. Rel. Fields, Volume 101 (1995), pp. 173-192 | MR | Zbl

[66] T. S. Mountford An extension of a result of Kahane using Brownian local times of intersection, Stochastics, Volume 23 (1988), pp. 449-464 | MR | Zbl

[67] T. S. Mountford Uniform dimension results for the Brownian sheet, Ann. Probab., Volume 17 (1989), pp. 1454-1462 | MR | Zbl

[68] T. S. Mountford Level sets of multiparameter stable processes (2004) (Preprint)

[69] T. Mountford; E. Nualart Level sets of multiparameter Brownian motions, Electron. J. Probab., Volume 9 (2004) no. 20, pp. 594-614 | MR | Zbl

[70] C. Mueller; R. Tribe Hitting properties of a random string, Electron. J. Probab., Volume 7 (2002) no. 10, pp. 29 p. | MR | Zbl

[71] J. Nolan Path properties of index-β stable fields, Ann. Probab., Volume 16 (1988), pp. 1596-1607 Correction: 20 (1992), p. 1601-1602 | MR | Zbl

[72] J. Nolan Local nondeterminism and local times for stable processes, Probab. Th. Rel. Fields, Volume 82 (1989), pp. 387-410 | MR | Zbl

[73] S. Orey; W. E. Pruitt Sample functions of the N-parameter Wiener process, Ann. Probab., Volume 1 (1973), pp. 138-163 | MR | Zbl

[74] B. Øksendal; T. Zhang Multiparameter fractional Brownian motion and quasi-linear stochastic partial differential equations, Stochastics and Stochastics Reports, Volume 71 (2000), pp. 141-163 | MR | Zbl

[75] E. J. G. Pitman On the behavior of the characteristic function of a probability sidtribution in the neighbourhood of the origin, J. Australian Math. Soc. Series A, Volume 8 (1968), pp. 422-443 | MR | Zbl

[76] L. D. Pitt Stationary Gaussian Markov fields on R d with a deterministic component, J. Multivar. Anal., Volume 5 (1975), pp. 300-311 | MR | Zbl

[77] L. D. Pitt Local times for Gaussian vector fields, Indiana Univ. Math. J., Volume 27 (1978), pp. 309-330 | MR | Zbl

[78] L. D. Pitt; L. T. Tran Local sample path properties of Gaussian fields, Ann. Probab., Volume 7 (1979), pp. 477-493 | MR | Zbl

[79] L. C. G. Rogers Arbitrage with fractional Brownian motion, Math. Finance, Volume 7 (1997), pp. 95-105 | MR | Zbl

[80] J. Rosen Self-intersections of random fields, Ann. Probab., Volume 12 (1984), pp. 108-119 | MR | Zbl

[81] Q.-M. Shao; D. Wang Small ball probabilities of Gaussian fields, Probab. Th. Rel. Fields, Volume 102 (1995), pp. 511-517 | MR | Zbl

[82] N.-R. Shieh Multiple points of fractional stable processes, J. Math. Kyoto Univ., Volume 33 (1993), pp. 731-741 | MR | Zbl

[83] N.-R. Shieh; Y. Xiao Images of Gaussian random fields: Salem sets and interior points (2004) (Submitted)

[84] G. Samorodnitsky; M. S. Taqqu Stable non-Gaussian Random Processes: Stochastic models with infinite variance, Chapman & Hall, New York, 1994 | MR | Zbl

[85] W. Stolz Some small ball probabilities for Gaussian processes under nonuniform norms, J. Theoret. Probab., Volume 9 (1996), pp. 613-630 | MR | Zbl

[86] M. Talagrand New Gaussian estimates for enlarged balls, Geometric and Funt. Anal., Volume 3 (1993), pp. 502-526 | MR | Zbl

[87] M. Talagrand Hausdorff measure of trajectories of multiparameter fractional Brownian motion, Ann. Probab., Volume 23 (1995), pp. 767-775 | MR | Zbl

[88] M. Talagrand Multiple points of trajectories of multiparameter fractional Brownian motion, Probab. Th. Rel. Fields, Volume 112 (1998), pp. 545-563 | MR | Zbl

[89] M. S. Taqqu; R. Wolpert Infinite variance selfsimilar processes subordinate to a Poisson measure, Z. Wahrsch. verw Gebiete, Volume 62 (1983), pp. 53-72 | MR | Zbl

[90] D. Wu; Y. Xiao Geometric properties of the images of fractional Brownian sheets (2005) (Preprint)

[91] Y. Xiao Dimension results for Gaussian vector fields and index-α stable fields, Ann. Probab., Volume 23 (1995), pp. 273-291 | MR | Zbl

[92] Y. Xiao Hausdorff measure of the sample paths of Gaussian random fields, Osaka J. Math., Volume 33 (1996), pp. 895-913 | MR | Zbl

[93] Y. Xiao Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields, Probab. Th. Rel. Fields, Volume 109 (1997a), pp. 129-157 | MR | Zbl

[94] Y. Xiao Weak variation of Gaussian processes, J. Theoret. Probab., Volume 10 (1997b), pp. 849-866 | MR | Zbl

[95] Y. Xiao Hausdorff measure of the graph of fractional Brownian motion, Math. Proc. Camb. Philos. Soc., Volume 122 (1997c), pp. 565-576 | MR | Zbl

[96] Y. Xiao The packing measure of the trajectories of multiparameter fractional Brownian motion, Math. Proc. Camb. Philo. Soc., Volume 135 (2003), pp. 349-375 | MR | Zbl

[97] Y. Xiao; Michel L. Lapidus; Machiel van Frankenhuijsen Random fractals and Markov processes, Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, American Mathematical Society, 2004, pp. 261-338 | MR | Zbl

[98] Y. Xiao Strong local nondeterminism and the sample path properties of Gaussian random fields (2005) (Preprint)

[99] Y. Xiao; T. Zhang Local times of fractional Brownian sheets, Probab. Th. Rel. Fields, Volume 124 (2002), pp. 204-226 | MR | Zbl

[100] A. M. Yaglom Some classes of random fields in n-dimensional space, related to stationary random processes, Th. Probab. Appl., Volume 2 (1957), pp. 273-320

Cité par Sources :