We discuss an exact reconstruction algorithm for time expanding semi-algebraic sets given by a single polynomial inequality. The theoretical motivation comes from the classical -problem of moments, while some possible applications to 2D fluid moving boundaries are sketched. The proofs rely on an adapted co-area theorem and a Hankel form minimization.
Nous présentons un algorithme de reconstruction exacte pour des domaines sémi-algèbriques croissants en temps, qui sont donnés par une seule inegalité polynmiale. La motivation théoretique vient du -problème classique des moments, et nous esquissons une application possible aux fluides 2D avec des frontières mobiles. Les démonstrations sont basées sur le théorème de la co-aire et utilisent aussi la minimization d’une forme de Hankel.
@article{AFST_2007_6_16_3_647_0, author = {Gabriela Putinar and Mihai Putinar}, title = {Reconstruction of algebraic sets from dynamic moments}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {647--664}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 16}, number = {3}, year = {2007}, doi = {10.5802/afst.1163}, mrnumber = {2379056}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1163/} }
TY - JOUR AU - Gabriela Putinar AU - Mihai Putinar TI - Reconstruction of algebraic sets from dynamic moments JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2007 SP - 647 EP - 664 VL - 16 IS - 3 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1163/ DO - 10.5802/afst.1163 LA - en ID - AFST_2007_6_16_3_647_0 ER -
%0 Journal Article %A Gabriela Putinar %A Mihai Putinar %T Reconstruction of algebraic sets from dynamic moments %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2007 %P 647-664 %V 16 %N 3 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1163/ %R 10.5802/afst.1163 %G en %F AFST_2007_6_16_3_647_0
Gabriela Putinar; Mihai Putinar. Reconstruction of algebraic sets from dynamic moments. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 16 (2007) no. 3, pp. 647-664. doi : 10.5802/afst.1163. https://afst.centre-mersenne.org/articles/10.5802/afst.1163/
[1] Akhiezer (N. I.), Krein (M.).— Some questions in the theory of moments. Translations of Mathematical Monographs, Vol. 2 American Mathematical Society, Providence, R.I. (1962). | MR | Zbl
[2] Berg (C.).— The multidimensional moment problem and semigroups. Moments in mathematics, 110-124, Proc. Sympos. Appl. Math., 37, Amer. Math. Soc., Providence, RI (1987). | MR | Zbl
[3] Bochnak (J.), Coste (M.), Roy (M.-F.).— Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3)36. Springer-Verlag, Berlin (1998). | MR | Zbl
[4] Elad (M.), Milanfar (P.), Golub (G. H.).— Shape from moments- an estimation theory perspective. IEEE Trans. Signal Process. 52, no. 7, p. 1814-1829 (2004). | MR
[5] Fuglede (B.).— The multidimensional moment problem. Expositiones Math. 1, no. 1, p. 47-65 (1983). | MR | Zbl
[6] Golub (G. H.), Milanfar (P.), Varah (J.).— A stable numerical method for inverting shape from moments. SIAM J. Sci. Comput. 21, no. 4, p. 1222-1243 (1999/00). | MR | Zbl
[7] Golub (G. H.), Gustafsson (B.), Milanfar (P.), Putinar (M.), Varah (J.).— Shape reconstruction from moments: theory, algorithms, and applications, SPIE Proceedings vol. 4116 (2000), Advanced Signal Processing, Algorithms, Architecture, and Implementations X (Franklin T.Luk, ed.), p. 406-416.
[8] Gustafsson (B.), He (C.), Milanfar (P.), Putinar (M.).— Reconstructing planar domains from their moments. Inverse Problems 16, no. 4, p. 1053-1070 (2000). | MR | Zbl
[9] Gustafsson (B.), Putinar (M.).— Linear analysis of quadrature domains. II. Israel J. Math. 119, p. 187-216 (2000). | MR | Zbl
[10] Gustafsson (B.), Vasiliev (A.).— Conformal and Potential Analysis in Hele-Shaw Cells, Birkhauser, Basel (2006). | MR | Zbl
[11] Karlin (S.), Studden (W. J.).— Tchebycheff systems: With applications in analysis and statistics. Pure and Applied Mathematics, Vol. XV Interscience Publishers John Wiley & Sons (1966). | MR | Zbl
[12] Krein (M. G.), Nudelman (A. A.).— The Markov moment problem and extremal problems. Translations of Mathematical Monographs, Vol. 50. A. M. S., Providence, R.I. (1977). | Zbl
[13] Putinar (G.).— Asymptotics for extremal moments and monodromy of complex singularities. preprint UCSB, no. 2006-48.
[14] Putinar (G.).— Semi-local micro-differential theory and computations of moments for semi-algebraic domains. preprint UCSB, no. 2006-46.
[15] Putinar (M.).— Extremal solutions of the two-dimensional -problem of moments. II. J. Approx. Theory 92, no. 1, p. 38-58 (1998). | MR | Zbl
Cited by Sources: