The bending map of a hyperbolic -manifold maps a convex cocompact hyperbolic metric on a -manifold with boundary to its bending measured geodesic lamination. As proved in [KeS] and [KaT], this map is continuous. In the present paper we study the extension of this map to the space of geometrically finite hyperbolic metrics. We introduce a relationship on the space of measured geodesic laminations and show that the quotient map obtained from the bending map is continuous.
L’application de plissage d’une variété hyperbolique de dimension associe à une métrique hyperbolique convexe cocompacte sur une variété compacte à bord sa lamination géodésique mesurée de plissage. Il a été démontré dans [KeS] et [KaT] que cette application est continue. Dans ce texte, on étudie l’extension de cette application à l’espace des métriques hyperboliques géométriquement finies. On introduit une relation d’équivalence dans l’espace des laminations géodésiques mesurées et on montre que l’application quotient de l’application de plissage est continue.
@article{AFST_2008_6_17_1_93_0, author = {Cyril Lecuire}, title = {Continuity of the bending map}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {93--119}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 17}, number = {1}, year = {2008}, doi = {10.5802/afst.1178}, mrnumber = {2464096}, zbl = {1158.53027}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1178/} }
TY - JOUR AU - Cyril Lecuire TI - Continuity of the bending map JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2008 SP - 93 EP - 119 VL - 17 IS - 1 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1178/ DO - 10.5802/afst.1178 LA - en ID - AFST_2008_6_17_1_93_0 ER -
%0 Journal Article %A Cyril Lecuire %T Continuity of the bending map %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2008 %P 93-119 %V 17 %N 1 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1178/ %R 10.5802/afst.1178 %G en %F AFST_2008_6_17_1_93_0
Cyril Lecuire. Continuity of the bending map. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 17 (2008) no. 1, pp. 93-119. doi : 10.5802/afst.1178. https://afst.centre-mersenne.org/articles/10.5802/afst.1178/
[AnC] Anderson (J.W.) and Canary (R.D.).— Algebraic limits of Kleinian groups which rearrange the pages of a book, Invent. Math. 126, 205-214 (1996). | MR | Zbl
[BeP] Benedetti (R.) and Petronio (C.).— Lectures on hyperbolic geometry, (1992). | MR | Zbl
[BiS] Birman (J. S.) and Series (C.).— Geodesics with bounded intersection number on surfaces are sparsely distributed, Topology 24, no. 2, 217-225 (1985). | MR | Zbl
[Bo1] Bonahon (F.).— Bouts des variétés hyperboliques de dimension , Ann. of Math. (2) 124, 71-158 (1986). | MR | Zbl
[Bo2] Bonahon (F.).— Variations of the boundary of 3-dimensionnal hyperbolic convex cores, J. Diff. Geom. 50, 1-24 (1998). | MR | Zbl
[Bo3] Bonahon (F.).— Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse Math. 5, 233-297 (1996). | Numdam | Zbl
[BoO] Bonahon (F.) and Otal (J.-P.).— Laminations mesurées de plissage des variétés hyperboliques de dimension 3, Ann. Math. (2) 160, No.3, 1013-1055 (2005). | MR | Zbl
[Br] Bridgeman (M.).— Average bending of convex pleated planes in hyperbolic three-space, Invent. Math. 132, 381–391 (1998). | MR | Zbl
[CEG] Canary (R.D.), Epstein (D.B.A.) and Green (P.).— Notes on notes of Thurston, Analytical and Geometrical Aspects of hyperbolic Space, 3-92 (1987). | MR | Zbl
[EpM] Epstein (D.B.A.) and Marden (A.).— Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Analytical and Geometric Aspects of Hyperbolic Space, 113-253 (1987). | MR | Zbl
[Ga] Gabai (D.).— On the geometric and topological rigidity of hyperbolic -manifolds, J. Amer. Math. Soc. 10 , 37-74 (1997). | MR | Zbl
[Jor] Jorgensen (T.).— On discrete groups of Möbius transformations, Amer. J. Math. 98, 739-749 (1976). | MR | Zbl
[KaT] Kamishima (Y.), Tan (S. P.).— Deformation spaces on geometric structures, Aspects of low-dimensional manifolds, Adv. Stud. Pure Math. 20, 263-299 (1992). | MR | Zbl
[KeS] Keen (L.) and Series (C.).— Continuity of convex hull boundaries, Pac. J. Math. 127, 457-519 (1988). | Zbl
[Le1] Lecuire (C.).— Plissage des variété hyperboliques de dimension 3, Inventiones Mathematicae 164, no. 1, 85-141 (2006). | MR | Zbl
[Le2] Lecuire (C.).— Bending map and strong convergence, preprint.
[Ot1] Otal (J.-P.).— Sur la dégénérescence des groupes de Schottky, Duke Math. J. 74, 777-792 (1994). | MR | Zbl
[Ot2] Otal (J.-P.).— Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, Astérisque 235 (1996). | Zbl
[Se] Series (C.).— Quasifuchsian groups with small bending, Warwick preprint (2002).
[Ta] Taylor (E.).— Geometric finiteness and the convergence of Kleinian groups, Com. Anal. Geom. 5, 497-533 (1997). | MR | Zbl
[Th] Thurston (W.P.).— The topology and geometry of 3-manifolds, Notes de cours, Université de Princeton (1976-79).
Cited by Sources: