The Way to the Proof of Fermat’s Last Theorem
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. S2, pp. 5-23.
DOI: 10.5802/afst.1227

Gerhard Frey 1

1 Institute for Experimental Mathematics, University of Duisburg-Essen, Ellernstrasse 29, D-45326 Essen, Germany
@article{AFST_2009_6_18_S2_5_0,
     author = {Gerhard Frey},
     title = {The {Way} to the {Proof} of {Fermat{\textquoteright}s} {Last} {Theorem}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {5--23},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 18},
     number = {S2},
     year = {2009},
     doi = {10.5802/afst.1227},
     mrnumber = {2561373},
     zbl = {1201.11001},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1227/}
}
TY  - JOUR
AU  - Gerhard Frey
TI  - The Way to the Proof of Fermat’s Last Theorem
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2009
SP  - 5
EP  - 23
VL  - 18
IS  - S2
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1227/
DO  - 10.5802/afst.1227
LA  - en
ID  - AFST_2009_6_18_S2_5_0
ER  - 
%0 Journal Article
%A Gerhard Frey
%T The Way to the Proof of Fermat’s Last Theorem
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2009
%P 5-23
%V 18
%N S2
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1227/
%R 10.5802/afst.1227
%G en
%F AFST_2009_6_18_S2_5_0
Gerhard Frey. The Way to the Proof of Fermat’s Last Theorem. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. S2, pp. 5-23. doi : 10.5802/afst.1227. https://afst.centre-mersenne.org/articles/10.5802/afst.1227/

[MF] Modular forms and Fermat’s Last Theorem; ed. G. Cornell, J.H. Silverman, G. Stevens, New York (1997). | MR | Zbl

[F1] Frey (G.).— Some remarks concerning points of finite order on elliptic curves over global fields; Arkiv för Mat. 15, p. 1-19 (1977). | MR | Zbl

[F2] Frey (G.).— Links between stable elliptic curves and certain Diophantine equations; Ann. Univ. Saraviensis, 1, p. 1-40 (1986). | MR | Zbl

[F3] Frey (G.).— On ternary equations of Fermat type and relations with elliptic curves; in [MF], 527-548. | MR | Zbl

[He] Hellegouarch (Y.).— Points d’ordre 2 p h sur les courbes elliptiques; Acta Arith. 26, p. 253-263 (1975). | MR | Zbl

[Ma] Mazur (B.).— Modular curves and the Eisenstein ideal; Publ. math. IHES 47, p. 33-186 (1977). | Numdam | MR | Zbl

[Ri] Ribenboim (P.).— 13 Lectures on Fermat’s Last Theorem; New York (1982). | Zbl

[Rib] Ribet (K.).— On modular representations of Gal( ¯/) arising from modular forms; Inv. Math. 100, p. 431-476 (1990). | MR | Zbl

[Ro] Roquette (P.).— Analytic theory of elliptic functions over local fields; Hamb. Math. Einzelschriften, Neue Folge-Heft 1, Vandenhoeck und Ruprecht, Göttingen (1969). | MR | Zbl

[Se1] Serre (J.-P.).— Propriétés galoisiennes des points d’ordre finis des courbes elliptiques; Inv. Math. 15, p. 259-331 (1972). | MR | Zbl

[Se2] Serre (J.-P.).— Sur les représentations modulaires de degré 2 de G( ¯/); Duke Math. J. 54, p. 179-230 (1987). | MR | Zbl

[Si] Silverman (J.H.).— The Arithmetic of Elliptic Curves; GTM 106, Berlin and New York (1986). | MR | Zbl

[Ta] Tate (J.).— The arithmetic of elliptic curves; Inv. Math. 23, p. 179-206 (1974). | MR | Zbl

[T-W] Taylor (R.), Wiles (A.).— Ring theoretic properties of certain Hecke algebras; Annals of Math. 141, p. 553-572 (1995). | MR | Zbl

[W] Wiles (A.).— Modular elliptic curves and Fermat’s Last Theorem; Annals of Math. 142, p. 443-551 (1995). | MR | Zbl

Cited by Sources: