The complete real spectrum of a commutative ring with is introduced. Points of the complete real spectrum are triples , where is a real prime of , is a real valuation of the field and is an ordering of the residue field of . is shown to have the structure of a spectral space in the sense of Hochster [5]. The specialization relation on is considered. Special attention is paid to the case where the ring in question is a real holomorphy ring.
Nous introduisons la notion de spectre réel complet d’un anneau commutatif avec unité. Les points de ce spectre réel complet, noté , sont les triplets , où est un idéal premier de , une valuation réelle du corps et un ordre du corps résiduel de . Nous montrons que a une structure d’espace spectral au sens de Hochster [5]. On considère aussi la relation de spécialisation sur . Nous nous intéressons particulièrement au cas où l’anneau est un anneau d’holomorphie réel.
@article{AFST_2010_6_19_S1_57_0, author = {D. Gondard and M. Marshall}, title = {Real holomorphy rings and the complete real spectrum}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {57--74}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {S1}, year = {2010}, doi = {10.5802/afst.1275}, mrnumber = {2675721}, zbl = {1209.13026}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1275/} }
TY - JOUR AU - D. Gondard AU - M. Marshall TI - Real holomorphy rings and the complete real spectrum JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 57 EP - 74 VL - 19 IS - S1 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1275/ DO - 10.5802/afst.1275 LA - en ID - AFST_2010_6_19_S1_57_0 ER -
%0 Journal Article %A D. Gondard %A M. Marshall %T Real holomorphy rings and the complete real spectrum %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 57-74 %V 19 %N S1 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1275/ %R 10.5802/afst.1275 %G en %F AFST_2010_6_19_S1_57_0
D. Gondard; M. Marshall. Real holomorphy rings and the complete real spectrum. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. S1, pp. 57-74. doi : 10.5802/afst.1275. https://afst.centre-mersenne.org/articles/10.5802/afst.1275/
[1] C. Andradas, L. Bröcker, J. Ruiz, Constructible sets in real geometry, Springer 1996 | MR | Zbl
[2] E. Becker, D. Gondard, On the space of real places of a formally real field, Real analytic and algebraic geometry, Walter de Gruyter (1995), 21–46 | MR | Zbl
[3] E. Becker, V. Powers, Sums of powers in rings and the real holomorphy ring, J. reine angew. Math. 480 (1996), 71–103 | EuDML | MR | Zbl
[4] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Springer 1987 | MR | Zbl
[5] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43–60 | MR | Zbl
[6] R. Huber, Bewertungsspektrum und rigide geometrie, Regensburger Math. Schriften 23 1993 | MR | Zbl
[7] R. Huber, M. Knebusch, On valuation spectra, Contemporary Math. 155 (1994), 167–206 | MR | Zbl
[8] M. Knebusch, D. Zhang, Manis valuations and Prüfer extensions I, Springer 2002 | MR | Zbl
[9] T.-Y. Lam, An introduction to real algebra, Rky. Mtn. J. Math. 14 (1984), 767–814 | MR | Zbl
[10] M. Marshall, Spaces of orderings and abstract real spectra, Lecture Notes in Mathematics 1636, Springer 1996 | MR | Zbl
[11] M. Marshall, A real holomorphy ring without the Schmüdgen property, Canad. Math. Bull. 42 (1999), 354–358 | MR | Zbl
[12] M. Marshall, Real reduced multirings and multifields J. Pure and Applied Algebra 205 (2006), 452–468 | MR | Zbl
[13] M.J. de la Puente, Riemann surfaces of a ring and compactifications of semi-algebraic sets, Doctoral Dissertation, Stanford 1988
[14] M.J. de la Puente, Specializations and a local homomorphism theorem for real Riemann surfaces of rings, Pac. J. Math. 176 (1996), 427–442 | MR | Zbl
[15] K. Schmüdgen, The –moment problem for compact semi-algebraic sets, Math. Ann. 289 (1991), 203–206 | MR | Zbl
[16] H. Schülting, On real places of a field and the real holomorphy ring, Comm. Alg. 10 (1982), 1239–1284 | MR | Zbl
[17] M. Schweighofer, Iterated rings of bounded elements and generalizations of Schmüdgen’s Positivstellensatz, J. reine angew. Math. 554 (2003), 19–45 | MR | Zbl
Cited by Sources: