Real holomorphy rings and the complete real spectrum
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. S1, pp. 57-74.

The complete real spectrum of a commutative ring A with 1 is introduced. Points of the complete real spectrum Sper c A are triples α=(𝔭,v,P), where 𝔭 is a real prime of A, v is a real valuation of the field k(𝔭):=qf(A/𝔭) and P is an ordering of the residue field of v. Sper c A is shown to have the structure of a spectral space in the sense of Hochster [5]. The specialization relation on Sper c A is considered. Special attention is paid to the case where the ring A in question is a real holomorphy ring.

Nous introduisons la notion de spectre réel complet d’un anneau A commutatif avec unité. Les points de ce spectre réel complet, noté Sper c A, sont les triplets α=(𝔭,v,P), où 𝔭 est un idéal premier de A, v une valuation réelle du corps k(𝔭):=qf(A/𝔭) et P un ordre du corps résiduel de v. Nous montrons que Sper c A a une structure d’espace spectral au sens de Hochster [5]. On considère aussi la relation de spécialisation sur Sper c A. Nous nous intéressons particulièrement au cas où l’anneau A est un anneau d’holomorphie réel.

DOI: 10.5802/afst.1275

D. Gondard 1; M. Marshall 2

1 Institut de Mathématiques de Jussieu, Université Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05, France
2 Department of Mathematics & Statistics, University of Saskatchewan, 106 Wiggins Road, Saskatoon, SK Canada, S7N 5E6
@article{AFST_2010_6_19_S1_57_0,
     author = {D. Gondard and M. Marshall},
     title = {Real holomorphy rings and the complete real spectrum},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {57--74},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 19},
     number = {S1},
     year = {2010},
     doi = {10.5802/afst.1275},
     mrnumber = {2675721},
     zbl = {1209.13026},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1275/}
}
TY  - JOUR
AU  - D. Gondard
AU  - M. Marshall
TI  - Real holomorphy rings and the complete real spectrum
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2010
SP  - 57
EP  - 74
VL  - 19
IS  - S1
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1275/
DO  - 10.5802/afst.1275
LA  - en
ID  - AFST_2010_6_19_S1_57_0
ER  - 
%0 Journal Article
%A D. Gondard
%A M. Marshall
%T Real holomorphy rings and the complete real spectrum
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2010
%P 57-74
%V 19
%N S1
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1275/
%R 10.5802/afst.1275
%G en
%F AFST_2010_6_19_S1_57_0
D. Gondard; M. Marshall. Real holomorphy rings and the complete real spectrum. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. S1, pp. 57-74. doi : 10.5802/afst.1275. https://afst.centre-mersenne.org/articles/10.5802/afst.1275/

[1] C. Andradas, L. Bröcker, J. Ruiz, Constructible sets in real geometry, Springer 1996 | MR | Zbl

[2] E. Becker, D. Gondard, On the space of real places of a formally real field, Real analytic and algebraic geometry, Walter de Gruyter (1995), 21–46 | MR | Zbl

[3] E. Becker, V. Powers, Sums of powers in rings and the real holomorphy ring, J. reine angew. Math. 480 (1996), 71–103 | EuDML | MR | Zbl

[4] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Springer 1987 | MR | Zbl

[5] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43–60 | MR | Zbl

[6] R. Huber, Bewertungsspektrum und rigide geometrie, Regensburger Math. Schriften 23 1993 | MR | Zbl

[7] R. Huber, M. Knebusch, On valuation spectra, Contemporary Math. 155 (1994), 167–206 | MR | Zbl

[8] M. Knebusch, D. Zhang, Manis valuations and Prüfer extensions I, Springer 2002 | MR | Zbl

[9] T.-Y. Lam, An introduction to real algebra, Rky. Mtn. J. Math. 14 (1984), 767–814 | MR | Zbl

[10] M. Marshall, Spaces of orderings and abstract real spectra, Lecture Notes in Mathematics 1636, Springer 1996 | MR | Zbl

[11] M. Marshall, A real holomorphy ring without the Schmüdgen property, Canad. Math. Bull. 42 (1999), 354–358 | MR | Zbl

[12] M. Marshall, Real reduced multirings and multifields J. Pure and Applied Algebra 205 (2006), 452–468 | MR | Zbl

[13] M.J. de la Puente, Riemann surfaces of a ring and compactifications of semi-algebraic sets, Doctoral Dissertation, Stanford 1988

[14] M.J. de la Puente, Specializations and a local homomorphism theorem for real Riemann surfaces of rings, Pac. J. Math. 176 (1996), 427–442 | MR | Zbl

[15] K. Schmüdgen, The K–moment problem for compact semi-algebraic sets, Math. Ann. 289 (1991), 203–206 | MR | Zbl

[16] H. Schülting, On real places of a field and the real holomorphy ring, Comm. Alg. 10 (1982), 1239–1284 | MR | Zbl

[17] M. Schweighofer, Iterated rings of bounded elements and generalizations of Schmüdgen’s Positivstellensatz, J. reine angew. Math. 554 (2003), 19–45 | MR | Zbl

Cited by Sources: