Some comments and examples on generation of (hyper-)archimedean -groups and f-rings
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. S1, pp. 75-100.

This paper systematizes some theory concerning the generation of -groups and reduced f-rings from substructures. We are particularly concerned with archimedean and hyperarchimedean groups and rings. We discuss the process of adjoining a weak order unit to an -group, or an identity to an f-ring and find significant contrasts between these cases. In -groups, hyperarchimedeanness and similar properties fail to pass from generating structures to the structures that they generate, as illustrated by a basic example of Conrad and Martinez which we revisit and elaborate. For reduced f-rings, on the other hand, these properties do inherit upwards.

DOI: 10.5802/afst.1276

A. W. Hager 1; D. G. Johnson 2

1 Department of Mathematics Wesleyan University Middletown, CT, USA, 06459
2 5 W. Oak St. Ramsey, NJ 07446
@article{AFST_2010_6_19_S1_75_0,
     author = {A. W. Hager and D. G. Johnson},
     title = {Some comments and examples on generation of (hyper-)archimedean $\ell $-groups and $f$-rings},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {75--100},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 19},
     number = {S1},
     year = {2010},
     doi = {10.5802/afst.1276},
     mrnumber = {2675722},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1276/}
}
TY  - JOUR
AU  - A. W. Hager
AU  - D. G. Johnson
TI  - Some comments and examples on generation of (hyper-)archimedean $\ell $-groups and $f$-rings
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2010
SP  - 75
EP  - 100
VL  - 19
IS  - S1
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1276/
DO  - 10.5802/afst.1276
LA  - en
ID  - AFST_2010_6_19_S1_75_0
ER  - 
%0 Journal Article
%A A. W. Hager
%A D. G. Johnson
%T Some comments and examples on generation of (hyper-)archimedean $\ell $-groups and $f$-rings
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2010
%P 75-100
%V 19
%N S1
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1276/
%R 10.5802/afst.1276
%G en
%F AFST_2010_6_19_S1_75_0
A. W. Hager; D. G. Johnson. Some comments and examples on generation of (hyper-)archimedean $\ell $-groups and $f$-rings. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. S1, pp. 75-100. doi : 10.5802/afst.1276. https://afst.centre-mersenne.org/articles/10.5802/afst.1276/

[1] A. Bigard, K. Keimel, S. Wolfenstain, Groupes et Anneaux Réticulés, Lecture Notes in Mathematics, Vol. 608, Springer, 1977. | MR | Zbl

[2] G. Birkhoff, R. S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Ci., 28 (1956) 41-69. | MR | Zbl

[3] P..Conrad, The essential closure of an archimedean lattice-ordered group, Duke Math. J.,38 (1971), 151-160. | MR | Zbl

[4] P. Conrad, Epi-archimedean groups, Czech. Math. J., 24 (99) (1974), 192-218. | MR | Zbl

[5] E. van Douwen, The integers and topology, Handbook of Set-Theoretic Topology (K. Kunen, J. Vaughan, ed.), Elsevier, 1984, 111-167. | MR | Zbl

[6] P. Conrad, J. Martinez, Settling a number of questions about hyper-archimedean lattice-ordered groups, Proc. AMS, 109, no. 2, (1990), 291-296. | MR | Zbl

[7] P. Conrad, J. Martinez, On adjoining units to hyper-archimedean -groups, Czech. Math. J., 45 (120) (1995), 503-516. | MR | Zbl

[8] L. Gillman, M. Jerison, Rings of Continuous Functions, Van Nostrand Co., 1960; reprinted Springer-Verlag, 1976. | MR | Zbl

[9] M. Henriksen, J. R.Isbell, Lattice-ordered rings and function rings, Pacific Math. J., 12 (1962), 533-565. | MR | Zbl

[10] A. W. Hager, D. G. Johnson, Adjoining an identity to a reduced archimedean f-ring, Communications in Algebra, 38 (2007), 1487-1503. | MR | Zbl

[11] A. W. Hager, D. G. Johnson, Adjoining an identity to a reduced archimedean f-ring II: Algebras, Appl. Categor. Struct., 15 (2007), 35-47. | MR | Zbl

[12] A. W. Hager, C. M. Kimber, Some examples of hyperarchimedean lattice-ordered groups, Fund, Math. 182 (2004), 107-122. | MR | Zbl

[13] A. W. Hager, C. M. Kimber, W. W. McGovern, Least integer closed groups, in Ordered algebraic structures (J. Martinez, ed.), 2002, 245-260. | MR | Zbl

[14] A. W. Hager, L. C. Robertson, Representing and ringifying a Riesz space, Symp. Math. 21, Academic Press, 1977, 411-431. | MR | Zbl

[15] M. Henriksen, D. G. Johnson, On the structure of a class of archimedean lattice-ordered algebras, Fund. Math. 50 (1961), 73-94. | MR | Zbl

[16] D. G. Johnson, On a representation theory for a class of archimedean lattice-ordered rings, Proc. London Math. Soc., (3) 12 (1962), 207-226. | MR | Zbl

[17] D. G. Johnson, A representation Theorem revisited, Algebra Universalis, 56, (2007), 303-314. | MR | Zbl

[18] W. Luxemberg, A. Zaanen, Riesz Spaces I, North Holland, 1971. | MR | Zbl

[19] J. J. Madden, On f-rings that are not formally real, this volume. | Numdam

[20] E. C. Weinberg, Completely distributive lattice-ordered groups, Pacific Math. J., 12 (1962), 1131-1137. | MR | Zbl

Cited by Sources: