We will prove that the Pierce-Birkhoff Conjecture holds for non-singular two-dimensional affine real algebraic varieties over real closed fields, i.e., if is such a variety, then every piecewise polynomial function on can be written as suprema of infima of polynomial functions on . More precisely, we will give a proof of the so-called Connectedness Conjecture for the coordinate rings of such varieties, which implies the Pierce-Birkhoff Conjecture.
@article{AFST_2010_6_19_S1_221_0, author = {Sven Wagner}, title = {On the {Pierce-Birkhoff} {Conjecture} for {Smooth} {Affine} {Surfaces} over {Real} {Closed} {Fields}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {221--242}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {S1}, year = {2010}, doi = {10.5802/afst.1283}, mrnumber = {2675729}, zbl = {1210.14069}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1283/} }
TY - JOUR AU - Sven Wagner TI - On the Pierce-Birkhoff Conjecture for Smooth Affine Surfaces over Real Closed Fields JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 221 EP - 242 VL - 19 IS - S1 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1283/ DO - 10.5802/afst.1283 LA - en ID - AFST_2010_6_19_S1_221_0 ER -
%0 Journal Article %A Sven Wagner %T On the Pierce-Birkhoff Conjecture for Smooth Affine Surfaces over Real Closed Fields %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 221-242 %V 19 %N S1 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1283/ %R 10.5802/afst.1283 %G en %F AFST_2010_6_19_S1_221_0
Sven Wagner. On the Pierce-Birkhoff Conjecture for Smooth Affine Surfaces over Real Closed Fields. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. S1, pp. 221-242. doi : 10.5802/afst.1283. https://afst.centre-mersenne.org/articles/10.5802/afst.1283/
[AJM95] D. Alvis, B. L. Johnston, and J. J. Madden. Complete ideals defined by sign conditions and the real spectrum of a two-dimensional local ring. Mathematische Nachrichten, 174:21 – 34, 1995. | MR | Zbl
[BCR98] J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry. Springer-Verlag, 1998. | MR | Zbl
[LMSS07] F. Lucas, J. J. Madden, D. Schaub, and M. Spivakovsky. On connectedness of sets in the real spectra of polynomial rings. Preprint, 2007. | MR | Zbl
[Mad89] J. J. Madden. Pierce-Birkhoff rings. Archiv der Mathematik, 53:565 – 570, 1989. | MR | Zbl
[Mah84] L. Mahé. On the Pierce-Birkhoff conjecture. Rocky Mountain Journal of Mathematics, 14:983 – 985, 1984. | MR | Zbl
[ZS60] O. Zariski and P. Samuel. Commutative Algebra, volume II. Van Nostrand, 1960. | MR | Zbl
Cited by Sources: